
-11 -

technical contribution s

A IVTGLTI-TASK SYST I., T FOR ROBOT PROGRAKr"ING .

by Giuseppinn. Gini, Maria. Gini, Renato Gini, Dario Giuse .
Istituto di Elettrotecnica ed Elettronic a

Politecnico, Milan, Italy

ABSTRAC T
In this pa per we discuss issues of design for softwar e

systems for computer controlled manipulators .
The aim of the paper is to present the experience obtaine d

in designing and implementing MAL, a stand-clone software sy-
stem for controlling and programming a two-arms manipulator .

That system supplies the user a simple multi-task program-
ming language, with a BASIC-like external form, and operatin g
instructions for compiling, executing, editing and saving th e
program .

We will emphasize how management of multiprocess capabili-
ties, synchronization of different devices, error handling an d
other desirable features can be inserted in a, simple system ,
implemented on a small minicomputer, suitable for industria l
applications .

I - INTRODUCTIO N

Since computer controlled manipulators were introduced a s
general purpose mechanisms for industrial automation, the metho-
dology of controlling and programming them for specific task s
has seen a great deal of development .

Programmable automation consists of a set of multidegree-
of-freedom manipulators and sensors under computer control ; the
se systems can be programmed to perform a task and can be applie d
to new jobs by reprogramming them . Although programmability i s
an important aspect of these systems, the development of softwar e
for controlling and programming them has just started .

The only programming method in common industrial use toda y
is called "teach mode" ; in that case, no text of the program ,
expressed in any programming language, is obtained, but only a
seouence of absolute manipulator positions is memorized .

The research in programming languages has widely demonstra -
ted the importance of developing software systems for robot pro -
-cramming [1 .11'0E83191 . Flexibility, generality, ease in repro -
gramming, documentability, are only the most important advanta-
ges produced by the introduction of a software system, while on-
ly few shortcomings are added . It is, of course, harder to ex -
press by a formal language the human experience about how th e
manipulator hardware can be used to accomplish a task .

Previous researches in machine Intelligence have been pri-
ma.rly directed to general and very-high-level systems, while

little attention has been [raid to computational costs, program-
ming difficulties, real a.pplice.tions . Now the decreasing in the
costs of computer components and the large introduction of micro -
computers make it possible a. new era in programmable industrial
ms.ninulsti on .

The design of complete and simple programming systems fo r
automation represents a.n important research area, in which som e
real-time software problems can be approached together with so -
me software-engineering requirements . In this direction MA L
(T;ultipurpose Assembly Language) has been designed and implemen-
ted at Milan Polytechnic .

MAL is a complete software system for controlling and. pro--
grnmrning the Supersigma . robot, a, two-arms robot mainly designe d
for assembly operations . MAI was designed with emp hasis on por-
tability to different computers and to different robots, ease i n
programming end multi-task organization . It is a sta .nd-alone sy-
stem, supporting interactive editing, comp ilation and executio n
of programs .

nesides, the prograrinsbility of the Sunersigm robot is ex -
tended to different levels . The control structure, constitute d
by

	

set of microcomputers, allows nr.ogremms.bility at a level u-
sually fixed by the hardware [2j . The connection with a general
purpose computer allows developing higher-level software aime d
at managing error recovery anal. decision taking 14)

II - TM?, PHILOSOPHY OF ROROT PROGRAMING

For a robot system, programmability means the system is a-
ble to learn how to p erform a task from its human teacher . leve r
theless the direction of d veloping programming languages for
describing assembly tasks has not been widely investigated .

In industrial applications robots are commonly programme d
by guiding the mechanical device through the sequence of opera-
tions required to perform the assembly process . A joystick or a
button box is used to insert in the control memory the position s
that must be remenbered . The p osition seonence may be playe d
back, to cause the arm to accomplish the task . This method, com-
monly called teach-mode, is e non-textual ap oronch . It does no t
require to write a program and does not re q uire to associate ab -
stract symbols with manipulator movements .

The execution of the task is obtained playing back fixe d
sequence of movements, and the impossi-bility of expressing con-
ditional actions makes it impossible to use force sensors or to
introduce any adaptation, while the lack of a text produces th e
impossibility of maintaining, documenting and modifying the pro -
gram .

We will develo p textual lenc'ua.ges for robot programming be -
cause text can be read by users, can be saved in on understan-
dable form and can fit different situations .

-13 -

Textual languages have the big n .dvonts,7e of introducing va -
riables, control structures and i_nterfece with p eople . Variable s
allow to obtain information during the execution and to modif y
the behavior of the program according to the results of tests .
Control structures allow branching end conditional ectivity ac -
cording to the sensor output . Interface with people nll ows edi-
ting, modifying and_ documenting progrsms, and supplies facilitie s
in programming .

The textual approach to robot programming introduces in ro-
botics the philosophy and the experience of software system de -
sign . In fact, new lengueges for robot progre .?.miing are necessary

becsu.se genera l purpose lap ur ges ere generally not odeeaete .
Two directions in robot software design, as described in

may be noted . The first of them, celled explicit-progreAping, re -
quires explicit instructions for every action the robot must ta-
ke . The second, called world-modeling, tries to make the robo t
responsible for taking some decisions according to its knowled-
ge . While explicit-programming systems may be inserted by now i n
factory uses, world-modeling systems are in the research stage .
They tend to require a lot of computer p ower, but they are abl e

to accept very abst .rset and high-level instructions [1) [3] [5J[6 ! .
Because of some practical reasons, as our limited compute r

facilities, and because of the aim of our project at devel op ing
systems suitable for industrial uses, we decided to develop a n
explicit-programming system .

In the next section we will illustrate P,AL, an explicit- -p r o p
gremming system that introduces new features in the stand rd o f
the present manipulator languages . Because DIAL is operational al
Milan Polytechnic, we will illustrate the project lines, the cha-
racteristics of implementation and the way of using it .

III - DESIGN CRITERIA OF M A L

Our research in multi-task systems for robot programmin g

was motivated. by the need of developing the programming syste m
for the Supersigme robot . Supersigma is a. cz.rtesian axes manipu-
lator, with two arms. arm has three degrees of freedom plu s

the hand opening . Its mechanical structure is the same as Sigm a
robot of Olivetti Co ., while its electronic control has been corn
p letely redesigned and implemented with a, set of microcomputer s
[2j , each one devoted to the control of one motor, and using a .
minicomputer as CPU . The structure of the system is illustrate d
in Fig . 1 .

The lack of an adequate control and programming system fo r
our robot convinced us to design and implement a . complete softwa-
re system supporting the writing, the verification end the execu
tion of programs . This system is called MAL (Multipurpose Assem-
bly Language) .

Moreover, the lack of similar systems adequate for industria l
applications constituted an important incentive to develop a so-
twere system for general use in computer controlled manipulation .

-14 -

axis 2

axis N

directio n
{ pulse
control

MINICOMPUTER

	

MICROCOMPUTERS

	

ROBO T

Fig . 1

We will now illustrate the major design issues we bore i n

mind and we inserted into MAL .
In our opinion, the language used to describe assembly task s

should be unspecialized, in the sense that it should not be a

single-problem oriented language . The external form should be a s
similar as possible to the form of some widely known language ,

to increase the readability of the program and to reduce the tra i

ning time . MAL has a BASIC-like external form ; the choice o f
BASIC is motivated by the wide use of this language in industria l
applications, the ease in editing and modifying the program, th e
readability with respect to other languages used for industria l

control .
A language for robot programming should minimize the numbe r

of steps between the initial writing of the program and the fina l

testing. This organization is important in real applications be -
cause it reduces the time necessary to program the robot for a
new task and increases the reliability of the system . With MAI
the turn-around time after a revision is very short, and the pro -
gram has not to be restarted after a change . This last feature
is called "hot editing" f9 j . It may be very easily obtained i n

an interpreter ; in our system it is obtained by partially compi-
ling the program into an internal form which can be fastly inter-

preted .
The parallel execution of different tasks is another funda -

mental feature of a robot programming system . In the case of a
robot with two or more arms that aspect is particularly importan t
since it makes it possible to write a different task for eac h
arm. Parallel programming is useful when different control acti -
vities can be executed by a robot co-operating with external de -
vices . MAL allows the independent programming of different tasks
and provides semaphores for synchronization .

Other design issues for a robot programming system are mor e

related to implementation aspects .
The system should run on a small computer because costs are

-15 -

a fundamental aspect in industrial applications . The minicompu-
ter we employed has 24K memory words of 16 bits ; MAL require s
less than 20K words, although it is written in FORTRAN and no t
optimized .

Last, the system should be portable . Portability for a
control language has to be defined not only in relation to th e
computer but also to the manipulator . MAL is implemented i n
FORTRAN IV (except for a small interface to the robot which i s
written in assembler) . Moreover MAI is implemented in such a wa y
that the change of the controlled robot would not require a com-
plete rewriting of the system. For instance, the conversion fro m
a Cartesian robot to a polar one should require changes only t o
a. given module ; likewise, the system should be able to contro l
more than one robot, possibly working in co-operation, at the sa-
me time .

IV - PROGRAMT:`ING BY MA L

MAL is made up by two different parts, one devoted to th e
compilation of the input language into an internal form, the o-
ther devoted to the execution .

The compilation part gives the user facilities to create ,
update and maintain the source program . The execution p art ha s
the responsibility of executing the sequence of operations de -
scribed in the user program . The debugging of the program is e-
asy, and the user can modify the text and immediately check it .

To develop a program the user has to express the assembly
task as a sequence of elementary operations . If the task requi -
res some parallel activities, the programmer writes the diffe-
rent parts as they are independent and then synchronizes them .
MAL compiler translates the program into an easily interpreta-
ble object code . The user may, at any given moment, list hi s
program, modify it and save it on a mass storage .

The system is line-oriented ; after an instruction has bee n
typed in, the compiler checks for syntactic errors and eventual-
ly gives the appropriate error message . When the program is com-
plete the user may ask the execution of it .

The program may be partially executed, by stopping it in
correspondence with an instruction or by typing a command from
the teletype . The execution can be restarted at any point o f
the program, because the values of the variables and the physi-
cal positions of the arms have not been changed . That feature ,
called hot editing, is considered one of the most important re-
quirements for manipulator software .

Let us now insist on independent nrogrammin.g of different
activities to be executed in parallel ; that seems to be a funda-
mental aspect of robot programming . Parallel programming is use-
ful for multi-arm robots and when different control activitie s
can be carried out by a single-arm robot together with other me-
chanisms (es moving belts) . Besides parallel activities are use-

-16 -

ful when different robots interact .
To execute parallel tasks, we ought to isolate every logi-

cally independent activity in order to minimize the interaction s
between them . Every activity is separately programmed as inde-
pendent . The second step is to insert into the program the in-
structions which manage synchronization and information flo w
between tasks . These instructions are tests on semaphore varia-
bles .

We will now show a simple MAI, program for repetitively mm-
ving an object from a position to another through an intermedia-
te position . het us suppose the left arm moves the object to th e
position X = FIB, and the right arm moves it to the final posi-
tion X = F1', as illustrated in Fig . 2 .

IP

	

DE?

	

FP

Fig . 2

In the programs controlling each Prm we insert synchroniza-
tion instructions according to the following conditions :
i) no arm can reach NP when the other arm is in it ;
ii) the right arm. can go and grasp the object in P only afte r

the left t erm has ungrasped it in IT .
The first condition is handled by means of the semaphor e

variable FREEAREA, which is set to YES only when the area upo n
NP is free . The second condition is managed by OP,JECTRE .ADY, who -
se value is YES when the object is placed in I:1-L ' .

The complete MAL program is :

5

	

SET IP=10, MP=150 .5, 1+'1'=700, TABLE ;=15 .7, UP=TABLE+40
6

	

SET LEFTTIAND = 8
7 SET YES = 0, NO = 1, OBJECTREADY = NO
8 TASK 2,150
9 "--- TASK NO . 1 - LEFT ARM --- -
10 MOVE W ZIP = UP
15 SET FREEAREA = YE S
20 MOVE W XL = IP
30 MOVE W ZL = TABL E
40

	

ACT LEFTIi.A `7D

	

"close left han d
50 MOVE W ZI = UI?
55 WAIT FREEAREA

	

"may I access my area?

-17 -

	

57

	

SET FREEAREA = NO

	

°yes . It' my own now !

	

60

	

MOVE W XL = P

	

70

	

MOVE W ZL = TABL E

	

80

	

DEACT L' FTTTAND

	

"open left hand

	

85

	

SET OBJECTREADY = YES

	

"object is in MP

	

90

	

GO TO 10

	

"repeat the sequenc e

	

106

	

SET RI GHTHAND = 9

	

109

	

TASK NO . 2 - RIGHT ARM --- -

	

110

	

MOVE W ZR = UP
115 SET FREEAREA = YES

	

120

	

MOVE W XR = PP

	

130

	

MOVE W ZR = TABL E

	

140

	

DEACT RI GHTHAND

	

"open right han d

	

150

	

MOVE W ZR = UP

	

155

	

WAIT_ OBJECTREADY, FREEAREA

	

"waiting for nn object in P ly'
157 SET FREEAREA = N O

	

160

	

MOVE W XR = riP

	

170

	

MOVE W ZR = TABLE

	

180

	

ACT RIGHTPPAND

	

"close right hand

	

185

	

SET OBJECTREADY = NO

	

"no object in MP

	

190

	

GO TO 110

Only a few notes

	

1 about that program . The values Ll.ssigne d
are in millimeters . TABLE is the height of the working mane, UP
the minimum hand elevation to avoid collisions, LEFT?AND an d
RIGHTHAND represent the hands . The W after MOVE means that th e
next instruction will be executed only after the accom plishment
of the movement .

The programs for the two arms are the same ; for making i t
clearer we incremented by 100 the line numbers of the second
task with respect to the first . The indentation is used to sho w
the instructions required for cooperation . The r`'Ut arm start s
operating only when both conditions of line 155 re met (objec t
present and area free) . The two tasks are executed at the sam e
time, because all the actions not referring to the common are a
are executed by each task if they were the only present in th e
system .

It would be possible to program the same job using onl y
one arm, but in this case the advantages of a, two-arms meni p_ ula -
for would be lost .

In a real operation we will modify every time the positio n
X or Y to reach objects in their actuLl position . Here we suppo-
se TP and FP moving belts .

V - CONCLUSIONS

We presented modern trends in robot programming and we di-
scussed about our experience in designing and implementing a
language for assembly, MAL .

Our project is still in evolution, because we intend to in-

-18 -

vestigate how to extend the interactivity of the system an d
how to make it really universal . For that reason we are no w
starting defining a new abstract machine, whose instruction s
will be interpreted at the execution time . That machine shoul d
be universal (the machine language for every robot) and shoul d
improve the portability of the system to different computers .
A very-high-level l,rng age for robot programming will be the n
easily implemented by translating the external language int o
the abstract machine language, and in that case we will obtai n
an universal system .

RHF'ME `ICE S

1. Binford et al . "Exploratory study of computer integrate d
assembly systems", Progress Report 4, Stanford Artificia l
Intelligence Laboratory Memo AIM-285 .4, 4enford, Ca, Au -
gust 1977 .

2. Cassinis, R., Mezzalira, L . "A rmiltimicroprocessor syste m
for the control of an industrial robot", Proc . 7th ISIR ,
Tokio, Japan, 1977 .

3. Finkel, R . et al . "An overview of AL, a programming syste m
for automation", Proc . 4th IJCAI, Tbilisi, USSR, 1975 .

4. Gini G ., et al . "Emergency recovery in intelligent robots "
Proc . 5th ISIR, Chicago, Illinois, 1975 .

5. Lieberman, L .I ., Wesley, W .A . "AUTnPASS : an automatic pro-
grarnming system for computer controlled mechanical assembly" ,
IBM Journal of Research and Development, July 1977 .

6. Lozano-Perez,T ., Winston, r . 'I . "LAMA : a language for automati c
mechanical assembly", Proc . 5th IJCAI, Boston, Mass, 1977 .

7. IIevins, J . et al. "Exploratory research in industrial modu-
lar assembly", Draper Lab ., 5th Report, Cambridge, Mass ,
September 1977 .

8. Park, W. "Minicomputer software organization for control o f
industrial robots", Proc . JACC, San Francisco, Ca, 1977 .

9. Rosen, C . et al "Machine intelligence research applied t o
industrial automation", 7th Report, SRI International, Ca ,
August 1977 .

