# Simplified Molecular Input-Line Entry System and International Chemical Identifier in the QSAR Analysis of Styrylquinoline Derivatives as HIV-1 Integrase Inhibitors

# Alla P. Toropova<sup>1</sup>, Andrey A. Toropov<sup>1,\*</sup>, Emilio Benfenati<sup>1</sup> and Giuseppina Gini<sup>2</sup>

<sup>1</sup>Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy

<sup>2</sup>Department of Electronics and Information, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy \*Corresponding author: Andrey A. Toropov, andrey.toropov@marionegri.it

The simplified molecular input-line entry system (SMILES) and IUPAC International Chemical Identifier (InChI) were examined as representations of the molecular structure for quantitative structureactivity relationships (QSAR), which can be used to predict the inhibitory activity of styrylquinoline derivatives against the human immunodeficiency virus type 1 (HIV-1). Optimal SMILES-based descriptors give a best model with n = 26,  $r^2 =$ 0.6330,  $q^2 = 0.5812$ , s = 0.502, F = 41 for the training set and n = 10,  $r^2 = 0.7493$ ,  $r_{pred}^2 = 0.6235$ ,  $R_{\rm m}^2$  = 0.537, s = 0.541, F = 24 for the validation set. Optimal InChI-based descriptors give a best model with n = 26,  $r^2 = 0.8673$ ,  $q^2 = 0.8456$ , s = 0.302, F = 157 for the training set and n = 10,  $r^2 =$ 0.8562,  $r_{\text{pred}}^2 = 0.7715$ ,  $R_{\text{m}}^2 = 0.819$ , s = 0.329, F =48 for the validation set. Thus, the InChl-based model is preferable. The described SMILES-based and InChl-based approaches have been checked with five random splits into the training and test sets.

Key words: anti-HIV-1 inhibitory activity, InChI, optimal descriptor, QSAR, SMILES

Received 23 December 2009, revised 15 February 2011 and accepted for publication 20 February 2011

Quantitative structure-property/activity relationships (QSPR/QSAR) are tools of modern research in the fields of chemistry, biochemistry, and ecology. Some models use a large number of substances (1), while in other cases, it is preferable or necessary because of the limited number of examples to use a small set of compounds

(2). Establishing correlations between the molecular structure and a rare biochemical activity for a small set of compounds is just as important as for large arrays of chemicals.

The inhibitory activity of 36 styrylquinoline derivatives (Table 1) against the human immunodeficiency virus (HIV-1), studied in Ref. (3), can be used for an experiment to establish robust correlations between the molecular structure and the activity.

Representation of the molecular structure is an important component of the QSPR/QSAR analyses, and the molecular graph is the most widely used representation (4–17). Being a convenient mathematical tool, the molecular graph required operations with the adjacency matrix in which majority of elements are equal to zero (18). For this reason, the simplified molecular input-line entry system (SMILES<sup>a</sup>) (19–21) and IUPAC International Chemical Identifier (InChI) (22,23) are widely used in databases available on the Internet for the physicochemical and biochemical endpoints<sup>b,c</sup>. Thus, searching for algorithms to establish correlations between molecular structures represented by SMILES or InChI and various end-points is a logical way to develop QSPR/QSAR analyses.

Both the SMILES and the InChI are tools to describe the molecular structure by means of a sequence of symbols (19–23). The SMILES is a more convenient representation for the understanding by human. The InChI is a more complex representation able to provide a unique representation of the molecular structure (22,23). For example, the representation of 2-methylbutane by SMILES is 'CC(C)CC'<sup>a</sup>; the representation of this molecule by means of the In-ChI is 'InChI=1/C5H12/c1-4-5(2)3/h5H,4H2,1-3H3'<sup>a</sup>. In other words, InChI is a more detailed representation of the molecular structure (22,23).

Optimal descriptors (24–29) can be reorganized so that they can be calculated with a representation of the molecular structure by SMILES (30,31) and/or InChI (32,33). The optimal SMILES-based descriptors can provide robust prediction for toxicity (31). The optimal InChI-based descriptors can be better predictors for octanol–water partition coefficient (32) and for solubility (33) than the SMILES-based optimal descriptors.

Table 1: Molecular structure of styrylquinoline derivatives





| Number<br>of split | Training set                                                                                                                                            | Test set                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 1                  | 2,3,4,5,8,9,11,12,14,15,16,17,18,19,20,23, 24,25,27,28,30,31,33,34,35,36                                                                                | 1,6,7,10,13,21,22,26,29,32                              |
| 3                  | 2,4,5,8,9,11,12,14,15,16,17,18,19,20,23,24,25,27,28,29,30,31,32,35,34,35,36                                                                             | 1,3, 6,7,10,13,21,22,26,32                              |
| 4<br>5             | 1,2,3,4,5, 8,10,11,12,13,14,16,17,18,20,23, 25,27,30,33,34,35,36,21,22,32<br>2,3,4,5,8,10,11,12,13,16,17,19,20,21, 22,23,24,25, 28,29,30,31,32,34,35,36 | 6,7,9,15,19,24,28,31,26,29<br>1,6,7,9,14,15,18,26,27,33 |

Table 2: Five splits into the training and test sets [split 1 has been taken from Ref. (3)]

N(TRN)

 N(VLD) 

CW(Sk)

Table 3: Correlation weights of simplified molecular input-line entry system (SMILES) attributes obtained in the first probe of the Monte Carlo optimization method with threshold equal to 4. N(TRN)

| Table | 3: | (Continued) |
|-------|----|-------------|
| ID    | Sk |             |

|    |                |           |               |                                         | 4/ | Cxxx\ xxxCxxx   | U.U     |
|----|----------------|-----------|---------------|-----------------------------------------|----|-----------------|---------|
| n  | Sk             | CW(Sk)    | M(TRNI)       |                                         | 48 | Ixxxcxxx1xxx    | 0.0     |
| 0  | UK .           | 011(017)  | / ( ) ( ) ( ) | //(//////////////////////////////////// | 49 | Nxxx#xxxCxxx    | 0.0     |
| 1  | (xxxBrxx (xxx  | 0.0       | 1             | 0                                       | 50 | Nxxx[ xxx (xxx  | 0.0     |
| 2  | (xxxClxx(xxx   | 0.0       | 0             | 1                                       | 51 | Nxxxcxxx1xxx    | 0.0     |
| 3  | (xxxCxxx#xxx   | 0.0       | 1             | 0                                       | 52 | Oxxx (xxxNxxx   | 0.0     |
| 4  | (xxxCxxx (xxx  | 0.3498468 | 22            | 10                                      | 53 | Oxxx (xxxCxxx   | 1.64970 |
| 5  | (xxxNxxx#xxx   | 0.0       | 1             | 0                                       | 54 | Oxxx (xxx/xxx   | 0.0     |
| 6  | (xxxNxxx (xxx  | 0.0       | 1             | 0                                       | 55 | Oxxx (xxxOxxx   | 0.30438 |
| 7  | (xxxOxxx (xxx  | 1.7962853 | 20            | 7                                       | 56 | Oxxx=xxx (xxx   | 0.29857 |
| 8  | (XXXCXXX (XXX  | 2.4025995 | 14            | 6                                       | 57 | Oxxx=xxxCxxx    | 2.40282 |
| 9  | +xxx[ xxx (xxx | 0.0       | 1             | 1                                       | 58 | OxxxCxxx (xxx   | 0.0     |
| 10 | -xxx[ xxx (xxx | 0.0       | 1             | 0                                       | 59 | OxxxCxxxCxxx    | 0.0     |
| 11 | 1xxx2xxx (xxx  | 0.0       | 2             | 1                                       | 60 | Oxxx[ xxx (xxx  | 0.0     |
| 12 | 1xxxCxxx (xxx  | 0.0       | 0             | 1                                       | 61 | 0xxxcxxx2xxx    | 0.0     |
| 13 | 1xxxOxxx (xxx  | 0.2969450 | 16            | 3                                       | 62 | Oxxxcxxx1xxx    | 0.49620 |
| 14 | 1xxxcxxx (xxx  | 1.2009262 | 8             | 3                                       | 63 | SxxxCxxx3xxx    | 0.0     |
| 15 | 1xxxcxxx/xxx   | 0.0       | 1             | 0                                       | 64 | SxxxCxxxCxxx    | 0.0     |
| 16 | 2xxx (xxx/xxx  | 0.0       | 1             | 0                                       | 65 | [ xxx (xxx[ xxx | 0.0     |
| 17 | 2xxx0xxx (xxx  | 0.0       | 3             | 0                                       | 66 | xxx (xxx=xxx    | 0.0     |
| 18 | 2xxxcxxx (xxx  | 2,3961978 | 19            | 8                                       | 67 | [ xxx+xxxNxxx   | 0.0     |
| 19 | 2xxxcxxx1xxx   | 0.0       | 3             | 1                                       | 68 | [ xxx-xxxOxxx   | 0.0     |
| 20 | 3xxxCxxx/xxx   | 0.0       | 1             | 0                                       | 69 | [ xxxNxxx+xxx   | 0.0     |
| 21 | 3xxxcxxx2xxx   | 0.0       | 2             | 0                                       | 70 | [ XXXOXXX-XXX   | 0.0     |
| 22 | 3xxxcxxx/xxx   | 0.0       | 1             | 0                                       | 71 | [ XXX[ XXX-XXX  | 0.0     |
| 23 | 3xxxcxxx (xxx  | 0.7204912 | 19            | 8                                       | 72 | [ XXX[ XXXNXXX  | 0.0     |
| 24 | 3xxxnxxx2xxx   | 1.2047657 | 16            | 8                                       | 73 | \xxxCxxx=xxx    | 0.0     |
| 25 | 4xxxcxxx (xxx  | 0.0       | 2             | 0                                       | 74 | \xxxCxxx3xxx    | 0.0     |
| 26 | 4xxxnxxx3xxx   | 0.0       | 1             | 0                                       | 75 | cxxx (xxxBrxx   | 0.0     |
| 27 | =xxxCxxx (xxx  | 1.0209640 | 24            | 10                                      | 76 | CXXX (XXX0XXX   | 1.40343 |
| 28 | =xxxCxxx/xxx   | 1.6961277 | 4             | 0                                       | 77 | CXXX (XXX/XXX   | 0.0     |
| 29 | =xxx0xxx (xxx  | 0.3048762 | 15            | 7                                       | 78 | CXXX (XXXCXXX   | 0.50120 |
| 30 | Brxxcxxx1xxx   | 0.0       | 1             | 0                                       | 79 | CXXX (XXXCXXX   | 0.94635 |
| 31 | Cxxx (xxx2xxx  | 0.9012408 | 13            | 6                                       | 80 | CXXX (XXXNXXX   | 0.0     |
| 32 | Cxxx (xxx=xxx  | 0.4272772 | 21            | 9                                       | 81 | CXXX (XXXC]XX   | 0.0     |
| 33 | Cxxx (xxx1xxx  | 0.0       | 3             | 3                                       | 82 | CXXX (XXX XXX   | 0.0     |
| 34 | Cxxx (xxxCxxx  | 0.0       | 2             | 2                                       | 83 | cxxx/xxxCxxx    | 0.0     |
| 35 | Cxxx/xxxCxxx   | 0.0       | 1             | 0                                       | 84 | cxxx1xxxcxxx    | 2.39697 |
| 36 | Cxxx/xxx (xxx  | 2 1969389 | 4             | 0                                       | 85 | CXXX1XXXCXXX    | 0.0     |
| 37 | Cxxx3xxxCxxx   | 0.0       | 2             | 0                                       | 86 | cxxx1xxx0xxx    | 0.29988 |
| 38 | Cxxx=xxx (xxx  | 0 2993007 | 21            | 9                                       | 87 | cxxx1xxx2xxx    | 0.0     |
| 39 | Cxxx=xxxCxxx   | 2 0963202 | 4             | 0                                       | 88 | CXXX1XXX (XXX   | 2 40003 |
| 40 | CxxxCxxx3xxx   | 0.0       | 2             | 0                                       | 89 | cxxx2xxx0xxx    | 0.0     |
| 41 | CxxxCxxxCxxx   | 0.0       | - 1           | 0                                       | 90 | cxxx2xxxcxxx    | 2 15465 |
| 42 | CxxxCxxx (xxx  | 0.0       | 1             | 2                                       | 91 | CXXX2XXX3XXX    | 0.0     |
| 43 | Cxxx0xxx (xxx  | 0.0       | 3             | 1                                       | 92 | CXXX3XXXCXXX    | 0.30190 |
| 44 | CxxxOxxx1xxx   | 0.0       | 1             | 1                                       | 92 | CXXX3XXXOVXX    | 0.00100 |
| 1  | 00             | 0.0       | 1             | 0                                       | 0/ |                 | 0.0     |

Chem Biol Drug Des 2011; 77: 343-360

**QSAR Analysis of Styrylquinoline Derivatives** 

Table 4: (Continued)

No.

| ID  | Sk            | CW(Sk)    | <i>N</i> (TRN) | N(VLD) |
|-----|---------------|-----------|----------------|--------|
| 95  | cxxxNxxx (xxx | 0.0       | 1              | 0      |
| 96  | cxxx0xxx (xxx | 0.0       | 2              | 2      |
| 97  | CXXXOXXXCXXX  | 0.0       | 3              | 0      |
| 98  | cxxxcxxxlxxx  | 0.3028519 | 26             | 10     |
| 99  | cxxxcxxx4xxx  | 0.0       | 2              | 0      |
| 100 | схххсхххЗххх  | 0.2955818 | 23             | 9      |
| 101 | CXXXCXXXCXXX  | 0.2951162 | 26             | 10     |
| 102 | cxxxcxxx2xxx  | 2.1503686 | 26             | 10     |
| 103 | CXXXCXXX (XXX | 0.2981324 | 26             | 10     |
| 104 | CXXXNXXX (XXX | 1.0499671 | 10             | 2      |
| 105 | CXXXNXXXCXXX  | 0.0       | 1              | 0      |
| 106 | nxxx (xxx1xxx | 0.0       | 1              | 0      |
| 107 | nxxx (xxxCxxx | 0.0       | 3              | 1      |
| 108 | nxxx (xxxcxxx | 1.4971106 | 6              | 1      |
| 109 | nxxx2xxx(xxx  | 2.3952194 | 12             | 5      |
| 110 | nxxx3xxxcxxx  | 1.4746850 | 16             | 8      |
| 111 | nxxx4xxxcxxx  | 0.0       | 1              | 0      |
| 112 | nxxxcxxxlxxx  | 2.4007048 | 6              | 1      |
| 113 | nxxxcxxx2xxx  | 0.3019832 | 4              | 1      |
| 114 | nxxxcxxx3xxx  | 0.0       | 1              | 0      |
| 115 | nxxxcxxxcxxx  | 0.0       | 1              | 0      |

Table 4: Correlation weights of InChI attributes obtained in the first probe of the Monte Carlo optimization method with threshold equal to 2. N(TRN) and N(VLD) are the numbers of InChl, which contain the given lk, in training and validation sets, respectively

| No. | lk  | CW(Ik)    | <i>N</i> (TRN) | N(VLD) |
|-----|-----|-----------|----------------|--------|
| 1   | (10 | 1.3932368 | 8              | 4      |
| 2   | (11 | 0.4974939 | 12             | 5      |
| 3   | (12 | 1.9774505 | 13             | 5      |
| 4   | (13 | 0.3129114 | 5              | 2      |
| 5   | (14 | 0.3077129 | 3              | 1      |
| 6   | (15 | 1.2997495 | 2              | 1      |
| 7   | (16 | 2.1315503 | 3              | 1      |
| 8   | (17 | 2.2335049 | 3              | 1      |
| 9   | (18 | 0.5823361 | 11             | 6      |
| 10  | (19 | 1.1208031 | 11             | 5      |
| 11  | (20 | 0.3235466 | 12             | 3      |
| 12  | (21 | 1.3010836 | 16             | 5      |
| 13  | (22 | 0.3142406 | 13             | 6      |
| 14  | (23 | 0.3067574 | 13             | 5      |
| 15  | (24 | 0.3123641 | 9              | 1      |
| 16  | (25 | 2.0198240 | 3              | 0      |
| 17  | (26 | 0.4033249 | 2              | 0      |
| 18  | (27 | 0.0       | 1              | 0      |
| 19  | (28 | 0.0       | 1              | 1      |
| 20  | (29 | 0.0       | 1              | 0      |
| 21  | (30 | 0.0       | 1              | 0      |
| 22  | (2  | 1.1222480 | 4              | 3      |
| 23  | (3  | 0.0       | 0              | 1      |
| 24  | (4  | 0.0       | 0              | 1      |
| 25  | (5  | 0.0       | 0              | 1      |
| 26  | (7  | 0.0       | 0              | 2      |
| 27  | (8  | 2.3783567 | 4              | 0      |
| 28  | (9  | 2.3835241 | 5              | 1      |
| 29  | (   | 0.7559318 | 26             | 10     |

| Io.         Ik         CW(Ik)         MTRN)         MVLD           30         +         1.1153524         3         0           31         .10         0.0         1         0           32         .12         2.3837917         2         0           33         .13         0.0         0         1           34         .14         0.0         0         1           35         .15         0.0         0         1           36         .18         1.0303879         3         0           37         .19         2.3760177         4         2           38         .20         1.5712777         10         2           39         .21         1.2849163         10         4           40         .22         2.376275         10         3           43         .25         0.577748         7         0           44         .26         0.3244974         7         3           44         .26         0.3244974         7         3           48         .3         0.0         1         0           50         .9         0.0 | able     |          | J)        |                |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|----------------|----------------|
| 30       +       1.1153524       3       0         31       .10       0.0       1       0         32       .12       2.3837917       2       0         33       .13       0.0       0       1         34       .14       0.0       0       1         35       .15       0.0       0       1         36       .18       1.0303879       3       0         37       .19       2.3780177       4       2         38       .20       1.5712777       10       2         39       .21       1.2849163       10       4         40       .22       2.3762251       5       2         41       .23       1.5542150       7       5         42       .24       1.0524861       23       10         43       .25       0.577768       7       0         44       .26       0.3062678       2       0         45       .7       0.0       1       0         50       .7       0.0       1       0         51       .7       .2841207       15       6                                                                                                   | No.      | lk       | CW(Ik)    | <i>N</i> (TRN) | <i>N</i> (VLD) |
| 31       .10       0.0       1       0         32       .12       2.3837917       2       0         33       .13       0.0       0       1         34       .14       0.0       0       1         35       .15       0.0       0       1         36       .18       1.0303679       3       0         37       .19       2.3780177       4       2         38       .20       1.5712777       10       2         39       .21       1.2849163       10       4         40       .22       2.3762251       5       2         41       .23       1.5342150       7       5         42       .24       1.0657276       10       3         43       .25       0.577748       7       0         44       .26       0.3062678       .2       0         45       .27       0.0       1       0         46       .1       0.5246861       23       10         47       .2       0.3344974       7       3         48       .3       0.0       1       0 <td>30</td> <td>+</td> <td>1.1153524</td> <td>3</td> <td>0</td>                               | 30       | +        | 1.1153524 | 3              | 0              |
| 32       ,12       2.3837917       2       0         33       ,13       0.0       0       1         34       ,14       0.0       0       1         35       ,15       0.0       0       1         36       ,18       1.0303879       3       0         37       ,19       2.3780177       4       2         38       ,20       1.5712777       10       2         39       ,21       1.2849163       10       4         40       ,22       2.3762251       5       2         41       ,23       1.5342150       7       5         42       ,24       1.0657276       10       3         43       ,25       0.5777748       7       0         44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         45       ,27       0.0       1       0         45       ,27       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6      <                                                                                               | 31       | ,10      | 0.0       | 1              | 0              |
| 33       ,13       0.0       0       1         34       ,14       0.0       0       1         35       ,15       0.0       0       1         36       ,18       1.0303879       3       0         37       ,19       2.3780177       4       2         38       ,20       1.5712777       10       2         39       ,21       1.2849163       10       4         40       ,22       2.3762251       5       2         41       ,23       1.5342150       7       5         42       ,24       1.0657276       10       3         43       ,25       0.5777748       7       0         44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.5246861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         50       ,10       0.51746       24       8         54       ,12       0.729485       23       9                                                                                          | 32       | ,12      | 2.3837917 | 2              | 0              |
| 34       ,14       0.0       0       1         35       ,15       0.0       0       1         36       ,18       1.0303879       3       0         37       ,19       2.3780177       4       2         38       ,20       1.5712777       10       2         39       ,21       1.2849163       10       4         40       ,22       2.3762251       5       2         41       ,23       1.5342150       7       5         42       ,24       1.0657276       10       3         43       ,25       0.5777748       7       0         44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.5266861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9                                                                                          | 33       | ,13      | 0.0       | 0              | 1              |
| 35       ,15       0.0       0       1         36       ,18       1.0303879       3       0         37       ,19       2.3780177       4       2         38       ,20       1.5712777       10       2         39       ,21       1.2849183       10       4         40       ,22       2.3762251       5       2         41       ,23       1.5342150       7       5         42       ,24       1.0657276       10       3         43       ,25       0.5777748       7       0         44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.5246861       23       10         47       ,2       0.3349974       7       3         48       ,3       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3128622       23       9 </td <td>34</td> <td>,14</td> <td>0.0</td> <td>0</td> <td>1</td>                  | 34       | ,14      | 0.0       | 0              | 1              |
| 36       ,18       1.0303879       3       0         37       ,19       2.3780177       4       2         38       ,20       1.5712777       10       2         39       ,21       1.2849163       10       4         40       ,22       2.3762251       5       2         41       ,23       1.5342150       7       5         42       ,24       1.0657276       10       3         43       ,25       0.5777748       7       0         44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.524861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.31029622       23       9         55       -13       0.3107120       19                                                                                    | 35       | ,15      | 0.0       | 0              | 1              |
| 37       ,19       2,3760177       4       2         38       ,20       1,5712777       10       2         39       ,21       1.2849163       10       4         40       ,22       2,3762251       5       2         41       ,23       1.5342150       7       5         42       ,24       1.0657276       10       3         43       ,25       0.5777748       7       0         44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.5246861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         55       -13       0.3128622       23       9         55       -13       0.3128622       3       2         61       -19       1.8412315       7       <                                                                             | 36       | ,18      | 1.0303879 | 3              | 0              |
| 38       ,20 $1.5712777$ 10       2         39       ,21 $1.2849163$ 10       4         40       ,22 $2.3762251$ 5       2         41       ,23 $1.5342150$ 7       5         42       ,24 $1.0657276$ 10       3         43       ,25 $0.5777748$ 7       0         44       ,26 $0.362678$ 2       0         45       ,27 $0.0$ 1       0         46       ,1 $0.5246861$ 23       10         47       ,2 $0.3344974$ 7       3         48       ,3 $0.0$ 1       0         50       ,9 $0.0$ 1       0         51       ,       2.2841207       15       6         52       -10 $0.4561746$ 24       9         53       -11 $0.3149572$ 24       8         54       -12 $0.7299485$ 23       9         55       -13 $0.3107120$ 19       7         58       -16 $1.47$                                                                                                                                                                                                                                                                     | 37       | ,19      | 2.3780177 | 4              | 2              |
| 39 $21$ 1.2849163       10       4         40 $22$ $2.3762251$ 5       2         41 $23$ $1.5342150$ 7       5         42 $.24$ $1.0657276$ 10       3         43 $25$ $0.5777748$ 7       0         44 $.26$ $0.3062678$ 2       0         45 $27$ $0.0$ 1       0         46 $.1$ $0.5246861$ $23$ 10         47 $2$ $0.3344974$ 7 $3$ 48 $.3$ $0.0$ 1       0         50 $.9$ $0.0$ 1       0         51       . $2.2841207$ 15       6         52 $-10$ $0.4561746$ 24       9         53 $-11$ $0.3149572$ 24       8         54 $-12$ $0.7299485$ 23       9         55 $-13$ $0.312427$ 3       2         60 $-18$ $0.3123427$ 3       2         61                                                                                                                                                                                                                                                                                                                                                                                    | 38       | ,20      | 1.5712777 | 10             | 2              |
| 40       ,22       2,3762251       5       2         41       ,23       1,5342150       7       5         42       ,24       1,0657276       10       3         43       ,25       0,5777748       7       0         44       ,26       0,3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.5246861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.7299485       23       9         55       -13       0.3128622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7                                                                                   | 39       | ,21      | 1.2849163 | 10             | 4              |
| 41       ,23       1.5342150       7       5         42       ,24       1.0657276       10       3         43       ,25       0.5777748       7       0         44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.5246861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.7299485       23       9         55       -13       0.3128622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7       4         62       -20       0.0       1       2                                                                                 | 40       | ,22      | 2.3762251 | 5              | 2              |
| 42       ,24       1.0657276       10       3         43       ,25       0.577748       7       0         44       ,26       0.306678       2       0         45       ,27       0.0       1       0         46       ,1       0.5246861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.7299485       23       9         55       -13       0.3128622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7       4         59       -17       0.6666253       5       2         61       -19       1.8412315       4       <                                                                             | 41       | ,23      | 1.5342150 | 7              | 5              |
| 43       ,25       0.5///148       7       0         44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.5246861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.729485       23       9         55       -13       0.312622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7       4         62       -20       0.0       1       2         63       -21       2.1556832       8       1         64       -22       0.3122587       5       3 <td>42</td> <td>,24</td> <td>1.0657276</td> <td>10</td> <td>3</td>                 | 42       | ,24      | 1.0657276 | 10             | 3              |
| 44       ,26       0.3062678       2       0         45       ,27       0.0       1       0         46       ,1       0.5246861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         49       ,7       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.7299485       23       9         55       -13       0.3127622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7       4         59       -17       0.6666253       5       2         60       -24       1.4761540       2       0         61       -19       1.8412315       4       1 </td <td>43</td> <td>,25</td> <td>0.5////48</td> <td>/</td> <td>0</td>            | 43       | ,25      | 0.5////48 | /              | 0              |
| 45 $27$ $0.0$ $1$ $0$ 46 $.1$ $0.5246861$ $23$ $10$ 47 $2$ $0.3344974$ $7$ $3$ 48 $.3$ $0.0$ $1$ $0$ 49 $.7$ $0.0$ $1$ $0$ 50 $.9$ $0.0$ $1$ $0$ 51 $.$ $22841207$ $15$ $6$ 52 $-10$ $0.4561746$ $24$ $9$ 53 $-11$ $0.3149572$ $24$ $8$ $54$ $-12$ $0.7299485$ $23$ $9$ $57$ $-15$ $0.3107120$ $19$ $7$ $58$ $-16$ $1.4784451$ $7$ $4$ $59$ $-17$ $0.6666253$ $5$ $22$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $22$ $63$ $-21$ $2.156832$ $8$ $1$ $64$ $-22$ $0.312287$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44       | ,26      | 0.3062678 | 2              | U              |
| 40       ,1       0.5246861       23       10         47       ,2       0.3344974       7       3         48       ,3       0.0       1       0         49       ,7       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.7299485       23       9         55       -13       0.3128622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7       4         59       -17       0.6666253       5       2         60       -18       0.3123427       3       2         61       -19       1.8412315       4       1         62       -20       0.0       1       0         64       -22       0.3122687       5       3<                                                                                  | 45       | ,27      | U.U       |                | U<br>10        |
| 47       ,2       0.33449/4       7       3         48       ,3       0.0       1       0         49       ,7       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.7299485       23       9         55       -13       0.312622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7       4         59       -17       0.6666253       5       2         60       -18       0.3123427       3       2         61       -19       1.8412315       4       1         62       -20       0.0       1       2         63       -21       2.156632       8       1         64       -22       0.3122687       5       3 <td>40</td> <td>, </td> <td>0.0240801</td> <td>Z3</td> <td>10</td>                   | 40       | ,        | 0.0240801 | Z3             | 10             |
| 449       ,7       0.0       1       0         50       ,9       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.7299485       23       9         55       -13       0.312622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7       4         59       -17       0.6666253       5       2         60       -18       0.3123427       3       2         61       -19       1.8412315       4       1         62       -20       0.0       1       2         63       -21       2.1556832       8       1         64       -22       0.3122587       5       3         65       -23       0.6729373       7       1         66       -24       1.4761540       2                                                                                    | 47<br>10 | ,Z<br>2  | 0.3344974 | /              | 3              |
| 43       ,7 $0.0$ 1 $0$ 50       ,9 $0.0$ 1 $0$ 51       , $2.2841207$ $15$ $6$ 52 $-10$ $0.4561746$ $24$ $9$ 53 $-11$ $0.3149572$ $24$ $8$ 54 $-12$ $0.7299485$ $23$ $9$ 55 $-13$ $0.3128622$ $23$ $9$ 56 $-14$ $0.3075480$ $21$ $9$ 57 $-15$ $0.3107120$ $19$ $7$ 58 $-16$ $1.4784451$ $7$ $4$ 59 $-17$ $0.6666253$ $5$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40<br>40 | נ,<br>ד  | 0.0       | 1              | 0              |
| 3.5       0.0       1       0         51       ,       2.2841207       15       6         52       -10       0.4561746       24       9         53       -11       0.3149572       24       8         54       -12       0.7299485       23       9         55       -13       0.3128622       23       9         56       -14       0.3075480       21       9         57       -15       0.3107120       19       7         58       -16       1.4784451       7       4         59       -17       0.6666253       5       2         60       -18       0.3123427       3       2         61       -19       1.8412315       4       1         62       -20       0.0       1       2         63       -21       2.1556832       8       1         64       -22       0.3122587       5       3         65       -23       0.6729373       7       1         66       -24       1.4761540       2       0         67       -31       0.0       1       0                                                                                   | 49<br>50 | ,/       | 0.0       | 1              | 0              |
| 51 $2204120$ $13$ $3$ $52$ $-10$ $0.4561746$ $24$ $9$ $53$ $-11$ $0.3149572$ $24$ $8$ $54$ $-12$ $0.7299485$ $23$ $9$ $55$ $-13$ $0.3128622$ $23$ $9$ $56$ $-14$ $0.3075480$ $21$ $9$ $57$ $-15$ $0.3107120$ $19$ $7$ $58$ $-16$ $1.4784451$ $7$ $4$ $59$ $-17$ $0.6666253$ $5$ $2$ $60$ $-18$ $0.3123427$ $3$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.406876$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.406876$ $26$ $9$ $73$ $-6$ $2.209127$ $25$ $9$ $74$ $-7$ $2.379340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $-7$ $0.0$ $1$                                                                                                                                                                                                                                      | 51       | ,J       | 0.0       | 15             | 6              |
| 32 $133$ $0.103149572$ $24$ $8$ $53$ $-112$ $0.7299485$ $23$ $9$ $55$ $-13$ $0.3128622$ $23$ $9$ $56$ $-14$ $0.3075480$ $21$ $9$ $57$ $-15$ $0.3107120$ $19$ $7$ $58$ $-16$ $1.4784451$ $7$ $4$ $59$ $-17$ $0.6666253$ $5$ $2$ $60$ $-18$ $0.3123427$ $3$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ <t< td=""><td>52</td><td>,<br/>—10</td><td>0.4561746</td><td>24</td><td>q</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52       | ,<br>—10 | 0.4561746 | 24             | q              |
| 54 $-12$ $0.7299485$ $23$ $9$ $55$ $-13$ $0.3128622$ $23$ $9$ $56$ $-14$ $0.3075480$ $21$ $9$ $57$ $-15$ $0.3107120$ $19$ $7$ $58$ $-16$ $1.4784451$ $7$ $4$ $59$ $-17$ $0.6666253$ $5$ $2$ $60$ $-18$ $0.3123427$ $3$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ <td< td=""><td>53</td><td>-11</td><td>0.3149572</td><td>24</td><td>8</td></td<>                                                                                                                                                       | 53       | -11      | 0.3149572 | 24             | 8              |
| -13 $0.3128622$ $23$ $9$ $55$ $-14$ $0.3075480$ $21$ $9$ $57$ $-15$ $0.3107120$ $19$ $7$ $58$ $-16$ $1.4784451$ $7$ $4$ $59$ $-17$ $0.6666253$ $5$ $2$ $60$ $-18$ $0.3123427$ $3$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $4$ $0.3122884$ $15$ $5$ $80$ $1$ $0.7261237$ $26$ $10$ $81$ $2$ $0.3075813$ $22$                                                                                                                                                                                                                                         | 54       | -12      | 0 7299485 | 23             | 9              |
| 56 $-14$ $0.3075480$ $21$ $9$ $57$ $-15$ $0.3107120$ $19$ $7$ $58$ $-16$ $1.4784451$ $7$ $4$ $59$ $-17$ $0.6666253$ $5$ $2$ $60$ $-18$ $0.3123427$ $3$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.406876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.782082$ <td< td=""><td>55</td><td>-13</td><td>0.3128622</td><td>23</td><td>9</td></td<>                                                                                                                                                    | 55       | -13      | 0.3128622 | 23             | 9              |
| 57 $-15$ $0.3107120$ $19$ $7$ $58$ $-16$ $1.4784451$ $7$ $4$ $59$ $-17$ $0.6666253$ $5$ $2$ $60$ $-18$ $0.3123427$ $3$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.209127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $79$ $0$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ </td <td>56</td> <td>-14</td> <td>0.3075480</td> <td>21</td> <td>9</td>                                                                                                                                                                 | 56       | -14      | 0.3075480 | 21             | 9              |
| 58       -16 $1.4784451$ 7       4         59       -17 $0.6666253$ 5       2         60       -18 $0.3123427$ 3       2         61       -19 $1.8412315$ 4       1         62       -20 $0.0$ 1       2         63       -21 $2.1556832$ 8       1         64       -22 $0.3122587$ 5       3         65       -23 $0.6729373$ 7       1         66       -24 $1.4761540$ 2       0         67       -31 $0.0$ 1       0         68       -1 $1.2958900$ 4       0         69       -2 $1.8402775$ 23       7         70       -3 $0.6135869$ 26       9         71       -4 $0.3147165$ 25       10         72       -5 $1.4068876$ 26       9         73       -6 $2.209127$ 25       9         74       -7 $2.3790340$ 25       7         75       -8 $0$                                                                                                                                                                                                                                                                                 | 57       | -15      | 0.3107120 | 19             | 7              |
| 59 $-17$ $0.6666253$ $5$ $2$ $60$ $-18$ $0.3123427$ $3$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.406876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ <td>58</td> <td>-16</td> <td>1.4784451</td> <td>7</td> <td>4</td>                                                                                                                                                                         | 58       | -16      | 1.4784451 | 7              | 4              |
| 60 $-18$ $0.3123427$ $3$ $2$ $61$ $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $79$ $0$ </td <td>59</td> <td>-17</td> <td>0.6666253</td> <td>5</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59       | -17      | 0.6666253 | 5              | 2              |
| 61 $-19$ $1.8412315$ $4$ $1$ $62$ $-20$ $0.0$ $1$ $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.406876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ $0.3084866$ $20$ $9$ $87$ $8$ $2.3846030$ $14$ <                                                                                                                                                                                                                                           | 60       | -18      | 0.3123427 | 3              | 2              |
| 62 $-20$ $0.0$ 1 $2$ $63$ $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61       | -19      | 1.8412315 | 4              | 1              |
| 63 $-21$ $2.1556832$ $8$ $1$ $64$ $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ $0.3084866$ $20$ $9$ $87$ $8$ $2.3846030$ $14$ $4$ $89$ $8r$ $0.3112684$ $14$ $5$ $89$ $8r$ $0.0$ $1$ <                                                                                                                                                                                                                                           | 62       | -20      | 0.0       | 1              | 2              |
| 64 $-22$ $0.3122587$ $5$ $3$ $65$ $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ $0.3084866$ $20$ $9$ $87$ $8$ $2.3846030$ $14$ $4$ $88$ $9$ $0.3112684$ $14$ $5$ $89$ $Br$ $0.0$ $1$ $0$ $90$ $C10$ $0.0$ $1$ $0$ <                                                                                                                                                                                                                                              | 63       | -21      | 2.1556832 | 8              | 1              |
| 65 $-23$ $0.6729373$ $7$ $1$ $66$ $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ $0.3084866$ $20$ $9$ $87$ $8$ $2.3846030$ $14$ $4$ $88$ $9$ $0.3112684$ $14$ $5$ $89$ $Br$ $0.0$ $1$ $0$ $90$ $C10$ $0.0$ $1$ $0$                                                                                                                                                                                                                                                                               | 64       | -22      | 0.3122587 | 5              | 3              |
| 66 $-24$ $1.4761540$ $2$ $0$ $67$ $-31$ $0.0$ $1$ $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $84$ $5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65       | -23      | 0.6729373 | 7              | 1              |
| 67 $-31$ $0.0$ 1 $0$ $68$ $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66       | -24      | 1.4761540 | 2              | 0              |
| 68 $-1$ $1.2958900$ $4$ $0$ $69$ $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ </td <td>67</td> <td>-31</td> <td>0.0</td> <td>1</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67       | -31      | 0.0       | 1              | 0              |
| 69 $-2$ $1.8402775$ $23$ $7$ $70$ $-3$ $0.6135869$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ </td <td>68</td> <td>-1</td> <td>1.2958900</td> <td>4</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68       | -1       | 1.2958900 | 4              | 0              |
| 70 $-3$ $0.6133639$ $26$ $9$ $71$ $-4$ $0.3147165$ $25$ $10$ $72$ $-5$ $1.406876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ $0.3084866$ $20$ $9$ $87$ $8$ $2.3846030$ $14$ $4$ $88$ $9$ $0.3112684$ $14$ $5$ $89$ $Br$ $0.0$ $1$ $0$ $90$ $C10$ $0.0$ $1$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69<br>70 | -2       | 1.8402775 | 23             | /              |
| 71 $-4$ $0.3147163$ $23$ $10$ $72$ $-5$ $1.4068876$ $26$ $9$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $83$ $4$ $0.3122884$ $15$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ $0.3084866$ $20$ $9$ $87$ $8$ $2.3846030$ $14$ $4$ $88$ $9$ $0.3112684$ $14$ $5$ $89$ $Br$ $0.0$ $1$ $0$ $90$ $C10$ $0.0$ $1$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                    | /U<br>71 | -3       | 0.0135869 | 20<br>25       | 9<br>10        |
| 72 $-5$ $1.4008070$ $20$ $3$ $73$ $-6$ $2.2009127$ $25$ $9$ $74$ $-7$ $2.3790340$ $25$ $7$ $75$ $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $83$ $4$ $0.3122884$ $15$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ $0.3084866$ $20$ $9$ $87$ $8$ $2.3846030$ $14$ $4$ $88$ $9$ $0.3112684$ $14$ $5$ $89$ $Br$ $0.0$ $1$ $0$ $90$ $C10$ $0.0$ $1$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71       | -4<br>E  | 1 4060076 | 20             | 10             |
| 73 $-0$ $2.203797$ $23$ $3$ 74 $-7$ $2.3790340$ $25$ $7$ 75 $-8$ $0.3078477$ $24$ $10$ 76 $-9$ $0.8453533$ $25$ $9$ 77 $ 0.0$ $1$ $0$ 78 $/$ $1.2240344$ $26$ $10$ 79 $0$ $0.3109460$ $11$ $8$ 80 $1$ $0.7651237$ $26$ $10$ 81 $2$ $0.3056813$ $22$ $9$ 82 $3$ $0.8309131$ $10$ $5$ 83 $4$ $0.3122884$ $15$ $5$ 84 $5$ $1.7820982$ $15$ $8$ 85 $6$ $0.3075810$ $21$ $6$ 86 $7$ $0.3084866$ $20$ $9$ 87 $8$ $2.3846030$ $14$ $4$ 88 $9$ $0.3112684$ $14$ $5$ 89 $Br$ $0.0$ $1$ $0$ 90 $C10$ $0.0$ $1$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72<br>72 | -0       | 2 2000127 | 20             | 9              |
| 75 $-8$ $0.3078477$ $24$ $10$ $76$ $-9$ $0.8453533$ $25$ $9$ $77$ $ 0.0$ $1$ $0$ $78$ $/$ $1.2240344$ $26$ $10$ $79$ $0$ $0.3109460$ $11$ $8$ $80$ $1$ $0.7651237$ $26$ $10$ $81$ $2$ $0.3056813$ $22$ $9$ $82$ $3$ $0.8309131$ $10$ $5$ $83$ $4$ $0.3122884$ $15$ $5$ $84$ $5$ $1.7820982$ $15$ $8$ $85$ $6$ $0.3075810$ $21$ $6$ $86$ $7$ $0.3084866$ $20$ $9$ $87$ $8$ $2.3846030$ $14$ $4$ $88$ $9$ $0.3112684$ $14$ $5$ $89$ $Br$ $0.0$ $1$ $0$ $90$ $C10$ $0.0$ $1$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73       | -0<br>-7 | 2.2003127 | 25             | 5              |
| 76 $-9$ $0.8453533$ $25$ $9$ 77 $ 0.0$ $1$ $0$ 78 $/$ $1.2240344$ $26$ $10$ 79 $0$ $0.3109460$ $11$ $8$ 80 $1$ $0.7651237$ $26$ $10$ 81 $2$ $0.3056813$ $22$ $9$ 82 $3$ $0.8309131$ $10$ $5$ 83 $4$ $0.3122884$ $15$ $5$ 84 $5$ $1.7820982$ $15$ $8$ 85 $6$ $0.3075810$ $21$ $6$ 86 $7$ $0.3084866$ $20$ $9$ 87 $8$ $2.3846030$ $14$ $4$ 88 $9$ $0.3112684$ $14$ $5$ 89 $Br$ $0.0$ $1$ $0$ 90 $C10$ $0.0$ $1$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75       | -8       | 0 3078477 | 23             | 10             |
| 77-0.010 $78$ /1.22403442610 $79$ 00.3109460118 $80$ 10.76512372610 $81$ 20.3056813229 $82$ 30.8309131105 $83$ 40.3122884155 $84$ 51.7820982158 $85$ 60.3075810216 $86$ 70.3084866209 $87$ 82.3846030144 $88$ 90.3112684145 $89$ Br0.010 $90$ C100.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76       | -9       | 0.8453533 | 25             | 9              |
| 78/1.22403442610790 $0.3109460$ 118801 $0.7651237$ 2610812 $0.3056813$ 229823 $0.8309131$ 105834 $0.3122884$ 155845 $1.7820982$ 158856 $0.3075810$ 216867 $0.3084866$ 209878 $2.3846030$ 14489Br $0.0$ 1090C10 $0.0$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77       | _        | 0.0       | 1              | 0              |
| 79         0         0.3109460         11         8           80         1         0.7651237         26         10           81         2         0.3056813         22         9           82         3         0.8309131         10         5           83         4         0.3122884         15         5           84         5         1.7820982         15         8           85         6         0.3075810         21         6           86         7         0.3084866         20         9           87         8         2.3846030         14         4           88         9         0.3112684         14         5           89         Br         0.0         1         0           90         C10         0.0         1         0                                                                                                                                                                                                                                                                                           | 78       | /        | 1.2240344 | 26             | 10             |
| 80         1         0.7651237         26         10           81         2         0.3056813         22         9           82         3         0.8309131         10         5           83         4         0.3122884         15         5           84         5         1.7820982         15         8           85         6         0.3075810         21         6           86         7         0.3084866         20         9           87         8         2.3846030         14         4           88         9         0.3112684         14         5           89         Br         0.0         1         0           90         C10         0.0         1         0                                                                                                                                                                                                                                                                                                                                                         | 79       | 0        | 0.3109460 | 11             | 8              |
| 81       2       0.3056813       22       9         82       3       0.8309131       10       5         83       4       0.3122884       15       5         84       5       1.7820982       15       8         85       6       0.3075810       21       6         86       7       0.3084866       20       9         87       8       2.3846030       14       4         88       9       0.3112684       14       5         89       Br       0.0       1       0         90       C10       0.0       1       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80       | 1        | 0.7651237 | 26             | 10             |
| 82       3       0.8309131       10       5         83       4       0.3122884       15       5         84       5       1.7820982       15       8         85       6       0.3075810       21       6         86       7       0.3084866       20       9         87       8       2.3846030       14       4         88       9       0.3112684       14       5         89       Br       0.0       1       0         90       C10       0.0       1       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81       | 2        | 0.3056813 | 22             | 9              |
| 83       4       0.3122884       15       5         84       5       1.7820982       15       8         85       6       0.3075810       21       6         86       7       0.3084866       20       9         87       8       2.3846030       14       4         88       9       0.3112684       14       5         89       Br       0.0       1       0         90       C10       0.0       1       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82       | 3        | 0.8309131 | 10             | 5              |
| 84         5         1.7820982         15         8           85         6         0.3075810         21         6           86         7         0.3084866         20         9           87         8         2.3846030         14         4           88         9         0.3112684         14         5           89         Br         0.0         1         0           90         C10         0.0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83       | 4        | 0.3122884 | 15             | 5              |
| 85         6         0.3075810         21         6           86         7         0.3084866         20         9           87         8         2.3846030         14         4           88         9         0.3112684         14         5           89         Br         0.0         1         0           90         C10         0.0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84       | 5        | 1.7820982 | 15             | 8              |
| 86         7         0.3084866         20         9           87         8         2.3846030         14         4           88         9         0.3112684         14         5           89         Br         0.0         1         0           90         C10         0.0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85       | 6        | 0.3075810 | 21             | 6              |
| 87         8         2.3846030         14         4           88         9         0.3112684         14         5           89         Br         0.0         1         0           90         C10         0.0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86       | 7        | 0.3084866 | 20             | 9              |
| 88         9         0.3112684         14         5           89         Br         0.0         1         0           90         C10         0.0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87       | 8        | 2.3846030 | 14             | 4              |
| 89         Br         0.0         1         0           90         C10         0.0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88       | 9        | 0.3112684 | 14             | 5              |
| 90 C10 0.0 1 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89       | Br       | 0.0       | 1              | 0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90       | C10      | 0.0       | 1              | 0              |

Table 3: (Continued)

Table 4: (Continued)

| No. | lk  | CW(Ik)    | N(TRN) | N(VLD) |
|-----|-----|-----------|--------|--------|
| 91  | C11 | 0.0       | 0      | 1      |
| 92  | C16 | 1.2726048 | 2      | 0      |
| 93  | C17 | 0.3952620 | 5      | 2      |
| 94  | C18 | 2.3774174 | 8      | 4      |
| 95  | C19 | 0.3058109 | 5      | 2      |
| 96  | C20 | 0.3097077 | 3      | 0      |
| 97  | C21 | 0.0       | 1      | 0      |
| 98  | C23 | 0.0       | 0      | 1      |
| 99  | C25 | 0.0       | 1      | 0      |
| 100 | CI  | 0.0       | 0      | 1      |
| 101 | H11 | 0.0       | 1      | 1      |
| 102 | H12 | 1.4787828 | 4      | 1      |
| 103 | H13 | 2.3846044 | 8      | 3      |
| 104 | H14 | 0.3050102 | 2      | 1      |
| 105 | H15 | 0.4862685 | 6      | 2      |
| 106 | H16 | 0.0       | 1      | 0      |
| 107 | H17 | 0.0       | 1      | 0      |
| 108 | H19 | 1.3432290 | 2      | 1      |
| 109 | H2  | 0.3147637 | 23     | 9      |
| 110 | H3  | 0.9420254 | 8      | 4      |
| 111 | H9  | 0.0       | 1      | 1      |
| 112 | Н   | 1.6007745 | 26     | 10     |
| 113 | I   | 0.0       | 1      | 0      |
| 114 | N2  | 1.2219115 | 6      | 2      |
| 115 | N   | 1.4235922 | 20     | 8      |
| 116 | 02  | 0.3086935 | 2      | 2      |
| 117 | 03  | 2.3847641 | 5      | 3      |
| 118 | 04  | 0.3058276 | 7      | 1      |
| 119 | 05  | 0.3103874 | 6      | 3      |
| 120 | 06  | 0.5753524 | 4      | 1      |
| 121 | 0   | 2.3782819 | 2      | 0      |
| 122 | S   | 0.0       | 1      | 0      |
| 123 | b12 | 0.0       | 1      | 0      |
| 124 | b4  | 0.0       | 1      | 0      |
| 125 | b6  | 0.0       | 1      | 0      |
| 126 | b7  | 0.0       | 1      | 0      |
| 127 | c18 | 1.3034296 | 2      | 0      |
| 128 | c20 | 0.0       | 1      | 0      |
| 129 | c23 | 0.0       | 1      | 0      |
| 130 | c1  | 1.4752837 | 22     | 10     |
| 131 | h1  | 1.9346553 | 3      | 0      |
| 132 | h2  | 2.2280274 | 14     | 7      |
| 133 | h3  | 1.5709405 | 7      | 2      |
| 134 | h4  | 0.0       | 1      | 0      |
| 135 | h5  | 0.0       | 1      | 1      |

The aim of the present study was to compare the statistical characteristics of QSARs for anti-HIV-1 activity of styrylquinoline derivatives calculated with the optimal SMILES-based and InChI-based descriptors.

# Method

Anti-HIV-1 integrase inhibitory activity data, minus decimal logarithm of 50% effective concentration, and  $pEC_{50}$  have been taken from a report of Leonard and Roy (3). Split into the training and the test sets from Ref. (3) and four additional random splits were examined in the present study (Table 2). It is to be noted that the absolutely random split for 36 substances that are examined in the present research is impossible, because 13 substances are characterized by the same value  $pEC_{50} = 4$ . Thus, five splits are organized in such a way where the mentioned 13 substances are distributed in both the training set (majority) and test set.

The optimal SMILES-based descriptors of correlation weights (DCW) are calculated as the following:

$$DCW(Threshold) = \sum CW(Sk)$$
(1)

where Sk is SMILES attribute that includes three SMILES elements. CW(Sk) is the correlation weight of Sk. The SMILES element is one symbol of the SMILES notation or two symbols that cannot be examined separately (e.g. Br, Cl, etc.). For instance, SMILES = 'CN(C)Cl' contains the following elements: C, N, (, C,), Cl, the construction of SMILES attributes containing three elements can be represented as:

CxxxNxxx (xxx; Nxxx (xxxCxxx;

(XXXCXXX)XXX;

Cxxx) xxxClxx.

The 'x' indicates a vacant position in the string that represents the attribute.

**Table 5:** Statistical characteristics of simplified molecular input-line entry system-based models for anti-HIV-1 activity,  $pEC_{50}$ .  $N_{act}$  is the number of attributes that are not blocked for the given threshold; r, s, and F are correlation coefficient, standard error of estimation, and Fisher *F*-ratio, respectively. The model with the best predictability is indicated in bold

| Threshold | N <sub>act</sub> |         |                | Training set, $n = 26$ |    |                | Validation set, $n = 10$ |    |  |
|-----------|------------------|---------|----------------|------------------------|----|----------------|--------------------------|----|--|
|           |                  | Probe   | r <sup>2</sup> | S                      | F  | r <sup>2</sup> | S                        | F  |  |
| Split 1   |                  |         |                |                        |    |                |                          |    |  |
| 0         | 115              | 1       | 0.7210         | 0.438                  | 62 | 0.5915         | 0.608                    | 12 |  |
|           |                  | 2       | 0.7232         | 0.436                  | 63 | 0.5682         | 0.618                    | 11 |  |
|           |                  | 3       | 0.7225         | 0.437                  | 62 | 0.5893         | 0.608                    | 11 |  |
|           |                  | Average | 0.7222         | 0.437                  | 62 | 0.5830         | 0.611                    | 11 |  |

| Table 5: | (Continued) |
|----------|-------------|
|----------|-------------|

|           |                  |         | Training set,  | Training set, $n = 26$ |          |                | Validation set, $n = 10$ |          |  |
|-----------|------------------|---------|----------------|------------------------|----------|----------------|--------------------------|----------|--|
| Threshold | N <sub>act</sub> | Probe   | r <sup>2</sup> | S                      | F        | r <sup>2</sup> | S                        | F        |  |
| 1         | 109              | 1       | 0.7217         | 0.437                  | 62       | 0.6644         | 0.549                    | 16       |  |
|           |                  | 2       | 0.7206         | 0.438                  | 62       | 0.6756         | 0.541                    | 17       |  |
|           |                  | 3       | 0.7210         | 0.438                  | 62       | 0.6410         | 0.563                    | 14       |  |
|           |                  | Average | 0.7211         | 0.438                  | 62       | 0.6603         | 0.551                    | 16       |  |
| 2         | 63               | 1       | 0.6741         | 0.473                  | 50       | 0.6929         | 0.561                    | 18       |  |
| -         |                  | 2       | 0.6738         | 0 474                  | 50       | 0.6971         | 0 564                    | 18       |  |
|           |                  | 3       | 0.6734         | 0.474                  | 49       | 0.6901         | 0.565                    | 18       |  |
|           |                  | Average | 0.6738         | 0.474                  | 50       | 0.693/         | 0.563                    | 18       |  |
| 3         | 50               | 1       | 0.6739         | 0.474                  | 50       | 0.6596         | 0.582                    | 16       |  |
| 0         | 50               | 2       | 0.6723         | 0.475                  | 19       | 0.6546         | 0.502                    | 15       |  |
|           |                  | 2       | 0.67/19        | 0.473                  | 40<br>50 | 0.0540         | 0.507                    | 15       |  |
|           |                  | Avorado | 0.6727         | 0.473                  | 50       | 0.6570         | 0.504                    | 15       |  |
| 4         | 40               | Average | 0.0737         | 0.474                  | JU<br>41 | 0.0373         | 0.504                    | 10       |  |
| 4         | 40               |         | 0.0330         | 0.502                  | 41       | 0.7493         | 0.541                    | 24       |  |
|           |                  | 2       | 0.0337         | 0.502                  | 42       | 0.7470         | 0.548                    | 24       |  |
|           |                  | 3       | 0.0328         | 0.502                  | 41       | 0.7425         | 0.549                    | 23       |  |
| -         | 05               | Average | U.b33Z         | 0.502                  | 41       | 0.7464         | 0.546                    | 24       |  |
| 5         | 35               | 1       | 0.5782         | 0.539                  | 33       | 0.6847         | 0.617                    | 1/       |  |
|           |                  | 2       | 0.5767         | 0.540                  | 33       | 0.7142         | 0.604                    | 20       |  |
|           |                  | 3       | 0.5741         | 0.541                  | 32       | 0.7138         | 0.606                    | 20       |  |
|           |                  | Average | 0.5763         | 0.540                  | 33       | 0.7042         | 0.609                    | 19       |  |
| Split 2   |                  |         |                |                        |          |                |                          |          |  |
| 0         | 115              | 1       | 0.7270         | 0.448                  | 64       | 0.6385         | 0.493                    | 14       |  |
|           |                  | 2       | 0.7288         | 0.447                  | 65       | 0.6339         | 0.496                    | 14       |  |
|           |                  | 3       | 0.7265         | 0.449                  | 64       | 0.6303         | 0.499                    | 14       |  |
|           |                  | Average | 0.7275         | 0.448                  | 64       | 0.6342         | 0.496                    | 14       |  |
| 1         | 109              | 1       | 0.7254         | 0.450                  | 63       | 0.7423         | 0.426                    | 23       |  |
|           |                  | 2       | 0.7252         | 0.450                  | 63       | 0.7438         | 0.425                    | 23       |  |
|           |                  | 3       | 0.7264         | 0.449                  | 64       | 0.7336         | 0.433                    | 22       |  |
|           |                  | Average | 0.7257         | 0.450                  | 63       | 0.7399         | 0.428                    | 23       |  |
| 2         | 65               | 1       | 0.6606         | 0.500                  | 47       | 0.7593         | 0.425                    | 25       |  |
|           |                  | 2       | 0.6598         | 0.501                  | 47       | 0.7529         | 0.428                    | 24       |  |
|           |                  | 3       | 0.6586         | 0.502                  | 46       | 0 7593         | 0 424                    | 25       |  |
|           |                  | Average | 0.6596         | 0.501                  | 47       | 0.7572         | 0.426                    | 25       |  |
| 3         | 51               | 1       | 0.6379         | 0.517                  | 42       | 0 7547         | 0.431                    | 25       |  |
| 0         | 01               | 2       | 0.6391         | 0.516                  | 43       | 0.7582         | 0.429                    | 25       |  |
|           |                  | 2       | 0.0001         | 0.517                  | 40       | 0.768/         | 0.420                    | 20       |  |
|           |                  | Average | 0.6381         | 0.516                  | 42       | 0.7604         | 0.427                    | 27       |  |
| 1         | //1              | 1       | 0.61/6         | 0.510                  | 28       | 0.7004         | 0.427                    | 20       |  |
| 4         | 41               | 2       | 0.0140         | 0.000                  | 20       | 0.7550         | 0.432                    | 01<br>01 |  |
|           |                  | 2       | 0.0104         | 0.032                  | 20       | 0.7971         | 0.430                    | 31<br>22 |  |
|           |                  | Average | 0.0145         | 0.000                  | 20       | 0.7990         | 0.420                    | 32       |  |
| F         | 24               | Average | 0.0100         | 0.000                  | 30<br>27 | 0.7500         | 0.429                    | 26       |  |
| 5         | 54               | 1       | 0.0297         | 0.009                  | 27       | 0.7071         | 0.003                    | 20       |  |
|           |                  | 2       | 0.5270         | 0.590                  | 27       | 0.7003         | 0.504                    | 20       |  |
|           |                  | 3       | 0.5269         | 0.590                  | 27       | 0.7682         | 0.502                    | 27       |  |
| 0 // 0    |                  | Average | 0.5279         | 0.590                  | 27       | 0.7672         | 0.503                    | Zb       |  |
| Split 3   |                  |         | 0 7000         | 0.405                  |          | 0.4700         | 0.054                    | _        |  |
| U         | 115              | 1       | 0.7382         | 0.435                  | 68       | 0.4780         | 0.654                    | /        |  |
|           |                  | 2       | 0.7403         | 0.433                  | 68       | 0.4899         | 0.649                    | 8        |  |
|           |                  | 3       | 0.7371         | 0.436                  | 67       | 0.4848         | 0.650                    | 8        |  |
|           |                  | Average | 0.7385         | 0.435                  | 68       | 0.4842         | 0.651                    | 8        |  |
| 1         | 104              | 1       | 0.7392         | 0.434                  | 68       | 0.4632         | 0.642                    | 7        |  |
|           |                  | 2       | 0.7401         | 0.433                  | 68       | 0.4440         | 0.649                    | 6        |  |
|           |                  | 3       | 0.7387         | 0.434                  | 68       | 0.4729         | 0.637                    | 7        |  |
|           |                  | Average | 0.7393         | 0.434                  | 68       | 0.4600         | 0.642                    | 7        |  |
| 2         | 60               | 1       | 0.6789         | 0.482                  | 51       | 0.6419         | 0.582                    | 14       |  |
|           |                  | 2       | 0.6780         | 0.482                  | 51       | 0.6446         | 0.575                    | 15       |  |
|           |                  | 3       | 0.6777         | 0.482                  | 50       | 0.6454         | 0.579                    | 15       |  |
|           |                  | Average | 0.6782         | 0.482                  | 51       | 0.6440         | 0.579                    | 14       |  |
| 3         | 47               | 1       | 0.6673         | 0.490                  | 48       | 0.5550         | 0.612                    | 10       |  |
|           |                  | -       |                |                        |          |                |                          | .0       |  |

| Threshold<br>2<br>3<br>Average<br>4 | N <sub>act</sub><br>0.6634<br>0.6641<br>0.6649<br>37 | Probe<br>0.493<br>0.492<br>0.492 | r <sup>2</sup> | \$     | F     | r <sup>2</sup> | S     | F        |
|-------------------------------------|------------------------------------------------------|----------------------------------|----------------|--------|-------|----------------|-------|----------|
| 2<br>3<br>Average<br>4              | 0.6634<br>0.6641<br>0.6649<br>37                     | 0.493<br>0.492<br>0.492          | 47             | 0 5000 |       |                |       |          |
| 3<br>Average<br>4                   | 0.6641<br>0.6649<br>37                               | 0.492<br>0.492                   | 47             | 115338 | 0.621 | q              |       |          |
| Average<br>4                        | 0.6649<br>37                                         | 0.492                            | 47             | 0.5506 | 0.621 | 10             |       |          |
| 4                                   | 37                                                   | 0.432                            | 47             | 0.5300 | 0.615 | 10             |       |          |
| 4                                   | 57                                                   | 1                                | 0 6400         | 0.5405 | 0.015 | 0 4414         | 0.672 | 6        |
|                                     |                                                      | 1                                | 0.0433         | 0.505  | 40    | 0.4414         | 0.072 | 0        |
|                                     |                                                      | 2                                | 0.0023         | 0.301  | 40    | 0.4041         | 0.002 | 7        |
|                                     |                                                      | 3                                | 0.0541         | 0.500  | 45    | 0.4715         | 0.000 | /        |
| -                                   |                                                      | Average                          | 0.0521         | 0.501  | 45    | 0.4590         | 0.005 | /        |
| 5                                   | 34                                                   | 1                                | 0.6159         | 0.527  | 38    | 0.3886         | 0.693 | 5        |
|                                     |                                                      | 2                                | 0.6153         | 0.527  | 38    | 0.3869         | 0.692 | 5        |
|                                     |                                                      | 3                                | 0.6174         | 0.526  | 39    | 0.3775         | 0.697 | 5        |
| Colit A                             |                                                      | Average                          | 0.6162         | 0.526  | 39    | 0.3843         | 0.694 | 5        |
| 0                                   | 115                                                  | 1                                | 0.6749         | 0.446  | 50    | 0.7979         | 0.522 | 32       |
| -                                   |                                                      | 2                                | 0 6770         | 0 444  | 50    | 0 7863         | 0.527 | 29       |
|                                     |                                                      | 3                                | 0.6726         | 0.447  | 49    | 0.7800         | 0.529 | 28       |
|                                     |                                                      | Δνοταπο                          | 0.67/18        | 0.446  | 50    | 0.7881         | 0.526 | 20       |
| 1                                   | 107                                                  | 1                                | 0.6740         | 0.440  | 50    | 0.9522         | 0.320 | 16       |
| I                                   | 107                                                  | 2                                | 0.0747         | 0.440  | 50    | 0.0322         | 0.402 | 40<br>54 |
|                                     |                                                      | 2                                | 0.0740         | 0.447  | 30    | 0.0713         | 0.475 | 10       |
|                                     |                                                      | 3                                | 0.0730         | 0.447  | 49    | 0.0540         | 0.490 | 42       |
| 0                                   | 50                                                   | Average                          | 0.6740         | 0.446  | 50    | 0.8543         | 0.484 | 4/       |
| Ζ                                   | 56                                                   | 1                                | 0.5946         | 0.498  | 35    | 0.9068         | 0.440 | /8       |
|                                     |                                                      | 2                                | 0.5954         | 0.497  | 35    | 0.8959         | 0.451 | 69       |
|                                     |                                                      | 3                                | 0.5960         | 0.497  | 35    | 0.9027         | 0.439 | /4       |
|                                     |                                                      | Average                          | 0.5953         | 0.497  | 35    | 0.9018         | 0.443 | 74       |
| 3                                   | 48                                                   | 1                                | 0.5787         | 0.508  | 33    | 0.8767         | 0.433 | 57       |
|                                     |                                                      | 2                                | 0.5833         | 0.505  | 34    | 0.8816         | 0.440 | 60       |
|                                     |                                                      | 3                                | 0.5756         | 0.509  | 33    | 0.8792         | 0.436 | 58       |
|                                     |                                                      | Average                          | 0.5792         | 0.507  | 33    | 0.8792         | 0.437 | 58       |
| 4                                   | 39                                                   | 1                                | 0.4823         | 0.563  | 22    | 0.9140         | 0.408 | 85       |
|                                     |                                                      | 2                                | 0.4836         | 0.562  | 22    | 0.9105         | 0.413 | 81       |
|                                     |                                                      | 3                                | 0.4827         | 0.562  | 22    | 0.9118         | 0.412 | 83       |
|                                     |                                                      | Average                          | 0.4829         | 0.562  | 22    | 0.9121         | 0.411 | 83       |
| 5                                   | 35                                                   | 1                                | 0.4590         | 0.575  | 20    | 0.8625         | 0.468 | 50       |
|                                     |                                                      | 2                                | 0.4598         | 0.575  | 20    | 0.8582         | 0.470 | 48       |
|                                     |                                                      | 3                                | 0.4645         | 0.572  | 21    | 0.8592         | 0.469 | 49       |
|                                     |                                                      | Average                          | 0 4611         | 0 574  | 21    | 0.8599         | 0.469 | 49       |
| Snlit 5                             |                                                      | , norago                         | 0.1011         | 0.07 1 |       | 0.0000         | 01100 |          |
| 0                                   | 115                                                  | 1                                | 0 7747         | 0 377  | 83    | 0 7310         | 0.657 | 22       |
| 0                                   | 110                                                  | 2                                | 0.7763         | 0.376  | 83    | 0.7010         | 0.667 | 22       |
|                                     |                                                      | 2                                | 0.7703         | 0.370  | 70    | 0.7271         | 0.007 | 21       |
|                                     |                                                      | Average                          | 0.7073         | 0.303  | 73    | 0.7555         | 0.007 | 20       |
| 1                                   | 110                                                  | Average                          | 0.7730         | 0.379  | 04    | 0.7300         | 0.000 | 20       |
| I                                   | 110                                                  | 1                                | 0.7782         | 0.374  | 84    | 0.7338         | 0.705 | 22       |
|                                     |                                                      | Z                                | 0.7662         | 0.384  | /9    | 0.7571         | 0.695 | 25       |
|                                     |                                                      | 3                                | 0.7748         | 0.377  | 83    | 0.7518         | 0.694 | 24       |
|                                     |                                                      | Average                          | 0.7730         | 0.379  | 82    | 0.7476         | 0.698 | 24       |
| 2                                   | 64                                                   | 1                                | 0.6763         | 0.452  | 50    | 0.7997         | 0.639 | 32       |
|                                     |                                                      | 2                                | 0.6789         | 0.450  | 51    | 0.7924         | 0.649 | 31       |
|                                     |                                                      | 3                                | 0.6790         | 0.450  | 51    | 0.7902         | 0.646 | 30       |
|                                     |                                                      | Average                          | 0.6781         | 0.451  | 51    | 0.7941         | 0.645 | 31       |
| 3                                   | 50                                                   | 1                                | 0.6654         | 0.460  | 48    | 0.7818         | 0.643 | 29       |
|                                     |                                                      | 2                                | 0.6716         | 0.455  | 49    | 0.7633         | 0.649 | 26       |
|                                     |                                                      | 3                                | 0.6601         | 0.463  | 47    | 0.7763         | 0.650 | 28       |
|                                     |                                                      | Average                          | 0.6657         | 0.459  | 48    | 0.7738         | 0.647 | 27       |
| 4                                   | 43                                                   | 1                                | 0.6307         | 0.483  | 41    | 0.7602         | 0.679 | 25       |
|                                     |                                                      | 2                                | 0.6346         | 0.480  | 42    | 0.7705         | 0.666 | 27       |
|                                     |                                                      | 3                                | 0.6404         | 0.477  | 43    | 0.7658         | 0.669 | 26       |
|                                     |                                                      | Average                          | 0.6352         | 0.480  | 42    | 0.7655         | 0.671 | 26       |
| 5                                   | 35                                                   | 1                                | 0.5770         | 0.517  | 33    | 0 7122         | 0.691 | 20       |

### Table 5: (Continued)

### **QSAR Analysis of Styrylquinoline Derivatives**

**Table 6:** Statistical characteristics of InChI-based models for anti-HIV-1 activity,  $pEC_{50}$ .  $N_{act}$  is the number of attributes that are not blocked for the given threshold; *r*, *s*, and *F* are correlation coefficient, standard error of estimation, and Fisher *F*-ratio, respectively. The model with the best predictability is indicated in bold

|           |                  |              | Training set,  | <i>n</i> = 26 |     | Validation set, | , <i>n</i> = 10 |          |
|-----------|------------------|--------------|----------------|---------------|-----|-----------------|-----------------|----------|
| Threshold | N <sub>act</sub> | Probe        | r <sup>2</sup> | S             | F   | r <sup>2</sup>  | S               | F        |
| Split 1   |                  |              |                |               |     |                 |                 |          |
| 0         | 135              | 1            | 0.8994         | 0.263         | 215 | 0.6739          | 0.513           | 17       |
|           |                  | 2            | 0.8957         | 0.268         | 206 | 0.6834          | 0.505           | 17       |
|           |                  | 3            | 0.8959         | 0.268         | 207 | 0.6737          | 0.513           | 17       |
|           |                  | Average      | 0.8970         | 0.266         | 209 | 0.6770          | 0.510           | 17       |
| 1         | 125              | 1            | 0.8953         | 0.268         | 205 | 0.7647          | 0.421           | 26       |
|           |                  | 2            | 0.8948         | 0.269         | 204 | 0.7709          | 0.414           | 27       |
|           |                  | 3            | 0.9004         | 0.262         | 217 | 0.7590          | 0.427           | 25       |
|           |                  | Average      | 0.8968         | 0.266         | 209 | 0.7649          | 0.420           | 26       |
| 2         | 95               | 1            | 0.8673         | 0.302         | 157 | 0.8562          | 0.329           | 48       |
|           |                  | 2            | 0.8663         | 0.303         | 156 | 0.8631          | 0.321           | 50       |
|           |                  | 3            | 0.8664         | 0.303         | 156 | 0.8646          | 0.318           | 51       |
|           |                  | Average      | 0.8667         | 0.303         | 156 | 0.8613          | 0.323           | 50       |
| 3         | 84               | 1            | 0.8526         | 0.318         | 139 | 0.8356          | 0.375           | 41       |
|           |                  | 2            | 0.8540         | 0.317         | 140 | 0.8383          | 0.372           | 41       |
|           |                  | 3            | 0.8531         | 0.318         | 139 | 0.8372          | 0.374           | 41       |
|           |                  | Average      | 0.8532         | 0.318         | 140 | 0.8370          | 0.374           | 41       |
| 4         | 75               | 1            | 0.8228         | 0.349         | 111 | 0.8558          | 0.359           | 47       |
|           |                  | 2            | 0.8223         | 0.350         | 111 | 0.8510          | 0.364           | 46       |
|           |                  | 3            | 0.8216         | 0.350         | 111 | 0.8582          | 0.356           | 48       |
|           |                  | Average      | 0.8223         | 0.350         | 111 | 0.8550          | 0.360           | 47       |
| 5         | 69               | 1            | 0.7815         | 0.388         | 86  | 0.8373          | 0.404           | 41       |
|           |                  | 2            | 0.7815         | 0.388         | 86  | 0.8406          | 0.404           | 42       |
|           |                  | 3            | 0 7826         | 0.387         | 86  | 0 8347          | 0 409           | 40       |
|           |                  | Average      | 0 7819         | 0.387         | 86  | 0.8376          | 0.406           | 41       |
| Snlit 2   |                  | , norago     | 01/01/0        | 0.007         |     | 0.0070          | 0.100           |          |
| 0         | 135              | 1            | 0 8897         | 0 285         | 194 | 0 7651          | 0 401           | 26       |
| 0         | 100              | 2            | 0.8891         | 0.286         | 192 | 0 7661          | 0.399           | 26       |
|           |                  | 3            | 0.8885         | 0.287         | 191 | 0 7674          | 0.399           | 26       |
|           |                  | Δverage      | 0.8891         | 0.286         | 197 | 0.7662          | 0.000           | 20       |
| 1         | 128              | 1            | 0.8842         | 0.200         | 183 | 0.7002          | 0.400           | 20       |
| 1         | 120              | 2            | 0.8853         | 0.202         | 185 | 0.0001          | 0.366           | 3/       |
|           |                  | 2            | 0.00000        | 0.231         | 103 | 0.0073          | 0.300           | 23       |
|           |                  | Average      | 0.8861         | 0.200         | 192 | 0.0025          | 0.372           | 33       |
| 2         | 90               | Average<br>1 | 0.0001         | 0.230         | 152 | 0.0050          | 0.303           | 62       |
| Z         | 50               | 2            | 0.0000         | 0.317         | 152 | 0.0000          | 0.200           | 62       |
|           |                  | 2            | 0.0037         | 0.317         | 152 | 0.0000          | 0.200           | 02       |
|           |                  | Avorado      | 0.0035         | 0.317         | 152 | 0.0034          | 0.202           | 61       |
| 0         | 0E               | Average      | 0.0033         | 0.317         | 102 | 0.0040          | 0.201           | 50       |
| 3         | 00               | 1            | 0.0494         | 0.333         | 130 | 0.0702          | 0.299           | 00<br>57 |
|           |                  | 2            | 0.0409         | 0.334         | 100 | 0.0700          | 0.302           | 57<br>E0 |
|           |                  | 3<br>Average | 0.8493         | 0.333         | 130 | 0.8790          | 0.297           | 20       |
| 4         | 77               | Average      | 0.8492         | 0.333         | 130 | 0.8780          | 0.299           | 0C       |
| 4         | //               | I            | 0.8289         | 0.355         | 110 | 0.8553          | 0.321           | 4/       |
|           |                  | 2            | 0.8245         | 0.360         | 113 | 0.8500          | 0.327           | 45       |
|           |                  | 3            | 0.8292         | 0.355         | 116 | 0.8528          | 0.322           | 46       |
| -         | 22               | Average      | 0.8275         | 0.356         | 115 | 0.8527          | 0.323           | 46       |
| 5         | 69               | 1            | 0.7564         | 0.424         | /5  | 0.7923          | 0.382           | 31       |
|           |                  | 2            | 0.7552         | 0.425         | /4  | 0.7880          | 0.386           | 30       |
|           |                  | 3            | 0.7561         | 0.424         | /4  | 0.7980          | 0.378           | 32       |
|           |                  | Average      | 0.7559         | 0.424         | 74  | 0.7928          | 0.382           | 31       |
| Split3    |                  |              |                |               |     |                 |                 |          |
| 0         | 135              | 1            | 0.8984         | 0.271         | 212 | 0.6951          | 0.485           | 18       |
|           |                  | 2            | 0.8999         | 0.269         | 216 | 0.6719          | 0.506           | 16       |
|           |                  | 3            | 0.8996         | 0.269         | 215 | 0.6654          | 0.510           | 16       |
|           |                  | Average      | 0.8993         | 0.270         | 214 | 0.6775          | 0.500           | 17       |
| 1         | 123              | 1            | 0.8992         | 0.270         | 214 | 0.7743          | 0.412           | 27       |

|           |                  |           | Training set, <i>n</i> | = 26   |       | Validation set, | <i>n</i> = 10 |          |
|-----------|------------------|-----------|------------------------|--------|-------|-----------------|---------------|----------|
| Threshold | N <sub>act</sub> | Probe     | r <sup>2</sup>         | S      | F     | r <sup>2</sup>  | S             | F        |
| 2         | 0.8951           | 0.275     | 205                    | 0.7694 | 0.415 | 27              |               |          |
| 3         | 0.8984           | 0.271     | 212                    | 0.7649 | 0.420 | 26              |               |          |
| Average   | 0.8976           | 0.272     | 210                    | 0.7695 | 0.416 | 27              |               |          |
| 2         | 93               | 1         | 0.8583                 | 0.320  | 145   | 0.7985          | 0.386         | 32       |
|           |                  | 2         | 0.8582                 | 0.320  | 145   | 0.8011          | 0.384         | 32       |
|           |                  | 3         | 0.8620                 | 0.316  | 150   | 0.8010          | 0.383         | 32       |
|           |                  | Average   | 0.8595                 | 0.319  | 147   | 0.8002          | 0.384         | 32       |
| 3         | 81               | 1         | 0.8254                 | 0.015  | 113   | 0.8161          | 0.378         | 36       |
| 5         | 01               | 2         | 0.0259                 | 0.355  | 113   | 0.0101          | 0.370         | 34       |
|           |                  | 2         | 0.0230                 | 0.353  | 115   | 0.0100          | 0.302         | 36       |
|           |                  | Average   | 0.0271                 | 0.333  | 113   | 0.0170          | 0.370         | 25       |
| 4         | 75               | Average   | 0.0201                 | 0.334  | 114   | 0.0140          | 0.373         | 10       |
| 4         | /5               | 1         | 0.8293                 | 0.351  | 117   | 0.0571          | 0.331         | 48       |
|           |                  | 2         | 0.8255                 | 0.355  | 114   | 0.85/8          | 0.332         | 48       |
|           |                  | 3         | 0.8286                 | 0.352  | 116   | 0.8616          | 0.327         | 50       |
| -         |                  | Average   | 0.8278                 | 0.353  | 115   | 0.8588          | 0.330         | 49       |
| 5         | 68               | 1         | 0.7729                 | 0.405  | 82    | 0.8364          | 0.392         | 41       |
|           |                  | 2         | 0.7745                 | 0.404  | 82    | 0.8407          | 0.385         | 42       |
|           |                  | 3         | 0.7753                 | 0.403  | 83    | 0.8418          | 0.385         | 43       |
| SplitA    |                  | Average   | 0.7742                 | 0.404  | 82    | 0.8396          | 0.387         | 42       |
| 0         | 125              | 1         | 0 0020                 | 0.2/17 | 00    | 0 7020          | 0 522         | 20       |
| 0         | 155              | 1         | 0.0030                 | 0.347  | 30    | 0.7320          | 0.522         | 30       |
|           |                  | 2         | 0.0042                 | 0.340  | 99    | 0.7900          | 0.010         | 31<br>22 |
|           |                  | 3         | 0.8041                 | 0.340  | 99    | 0.7981          | 0.514         | 32       |
| 4         | 100              | Average   | 0.8038                 | 0.346  | 98    | 0.7956          | 0.517         | 31       |
| I         | 128              | 1         | 0.8029                 | 0.347  | 98    | 0.8749          | 0.452         | 56       |
|           |                  | 2         | 0.8037                 | 0.346  | 98    | 0.8726          | 0.449         | 55       |
|           |                  | 3         | 0.8027                 | 0.347  | 98    | 0.8739          | 0.449         | 55       |
|           |                  | Average   | 0.8031                 | 0.347  | 98    | 0.8738          | 0.450         | 55       |
| 2         | 95               | 1         | 0.7893                 | 0.359  | 90    | 0.8609          | 0.452         | 50       |
|           |                  | 2         | 0.7842                 | 0.363  | 87    | 0.8698          | 0.446         | 53       |
|           |                  | 3         | 0.7854                 | 0.362  | 88    | 0.8691          | 0.446         | 53       |
|           |                  | Average   | 0.7863                 | 0.362  | 88    | 0.8666          | 0.448         | 52       |
| 3         | 79               | 1         | 0.7276                 | 0.408  | 64    | 0.9215          | 0.419         | 94       |
|           |                  | 2         | 0.7233                 | 0.411  | 63    | 0.9217          | 0.418         | 94       |
|           |                  | 3         | 0.7230                 | 0.412  | 63    | 0.9230          | 0.419         | 96       |
|           |                  | Average   | 0.7246                 | 0.410  | 63    | 0.9221          | 0.418         | 95       |
| 4         | 75               | 1         | 0.7008                 | 0.428  | 56    | 0.9263          | 0.446         | 101      |
|           |                  | 2         | 0.7022                 | 0.427  | 57    | 0.9264          | 0.444         | 101      |
|           |                  | 3         | 0.7012                 | 0.428  | 56    | 0.9276          | 0.443         | 103      |
|           |                  | Average   | 0.7014                 | 0.427  | 56    | 0.9268          | 0.444         | 101      |
| 5         | 65               | 1         | 0.6233                 | 0.480  | 40    | 0.8913          | 0.519         | 66       |
| -         |                  | 2         | 0 6227                 | 0 480  | 40    | 0.8885          | 0 521         | 64       |
|           |                  | 3         | 0.6229                 | 0.480  | 40    | 0.8899          | 0.521         | 65       |
|           |                  | Average   | 0.6229                 | 0.480  | 40    | 0.8899          | 0.520         | 65       |
| Solit 5   |                  | / Workigo | 0.0220                 | 0.100  | 10    | 0.0000          | 0.020         | 00       |
| 0         | 135              | 1         | 0 9229                 | 0 221  | 287   | 0.8262          | 0.659         | 38       |
| 0         | 100              | 2         | 0.0220                 | 0.221  | 287   | 0.0202          | 0.658         | 38       |
|           |                  | 2         | 0.0210                 | 0.222  | 202   | 0.0274          | 0.665         | 30       |
|           |                  | Average   | 0.0200                 | 0.217  | 200   | 0.0240          | 0.000         | 20       |
| 1         | 120              | Average   | 0.3233                 | 0.220  | 203   | 0.0201          | 0.001         | 30       |
| I         | 129              | 1         | 0.9223                 | U.ZZ I | 200   | 0.30/0          | 0.004         | /9<br>75 |
|           |                  | 2         | 0.9223                 | U.ZZT  | 200   | 0.3033          | 0.007         | /5       |
|           |                  | చ         | 0.9222                 | 0.222  | 285   | 0.9037          | 0.667         | /5       |
|           |                  | Average   | 0.9223                 | 0.222  | 285   | 0.9049          | 0.664         | 76       |
| Z         | 97               | 1         | 0.8754                 | 0.281  | 169   | 0.9330          | 0.605         | 111      |
|           |                  | 2         | 0.8758                 | 0.280  | 169   | 0.9316          | 0.604         | 109      |
|           |                  | 3         | 0.8752                 | 0.281  | 168   | 0.9328          | 0.609         | 111      |
|           |                  | Average   | 0.8755                 | 0.280  | 169   | 0.9325          | 0.606         | 110      |
| 3         | 85               | 1         | 0.8488                 | 0.309  | 135   | 0.9405          | 0.557         | 126      |

### Table 6: (Continued)

#### Table 6: (Continued)

|           |                  |         | Training set, <i>n</i> | = 26   |       | Validation set, <i>i</i> | n = 10 |     |
|-----------|------------------|---------|------------------------|--------|-------|--------------------------|--------|-----|
| Threshold | N <sub>act</sub> | Probe   | r <sup>2</sup>         | S      | F     | r <sup>2</sup>           | S      | F   |
| 2         | 0.8499           | 0.308   | 136                    | 0.9417 | 0.555 | 129                      |        |     |
| 3         | 0.8519           | 0.306   | 138                    | 0.9407 | 0.557 | 127                      |        |     |
| Average   | 0.8502           | 0.308   | 136                    | 0.9409 | 0.556 | 127                      |        |     |
| 4         | 75               | 1       | 0.7992                 | 0.356  | 95    | 0.9620                   | 0.582  | 202 |
|           |                  | 2       | 0.7993                 | 0.356  | 96    | 0.9619                   | 0.580  | 202 |
|           |                  | 3       | 0.7993                 | 0.356  | 96    | 0.9596                   | 0.584  | 190 |
|           |                  | Average | 0.7993                 | 0.356  | 96    | 0.9612                   | 0.582  | 198 |
| 5         | 69               | 1       | 0.7657                 | 0.385  | 78    | 0.9501                   | 0.542  | 152 |
|           |                  | 2       | 0.7637                 | 0.386  | 78    | 0.9476                   | 0.546  | 145 |
|           |                  | 3       | 0.7651                 | 0.385  | 78    | 0.9501                   | 0.542  | 152 |
|           |                  | Average | 0.7648                 | 0.385  | 78    | 0.9493                   | 0.543  | 150 |

Additional operations are then performed to define the list of attributes:

- Bracket ')' is changed into '(', because both brackets indicate the same molecular phenomenon (branching);
- Each system of 'AxxxBxxxCxxx' is represented by only one version (according to ASCII), in other words, only one version of a SMILES attribute is used for the modeling (not 'AxxxBxxxCxxx' together with 'CxxxBxxxAxxx').

The CW(Sk) is the correlation weight of Sk. There are numerical data for the correlation weights calculated by the Monte Carlo optimization method that indicate the maximum of correlation coefficient between DCW(Threshold) (defined in eqn 3) and the pEC<sub>50</sub> for the training set. Using the numerical data on the correlation weights, one can calculate DCW(Threshold) for compounds of the training set, and then by the least squares method, one calculate the model

$$pEC_{50} = C_0 + C_1 \times DCW(Threshold)$$
(2)

The predictability of eqn 2 must be checked with compounds of the external validation set.

Threshold is a parameter of the model intended to define rare attributes. For example, if threshold = 4, then all attributes that take place less than in four SMILES of the training set should be classified as rare, and their correlation weight should be defined as zero. Table 3 contains SMILES attributes and their correlation weights used for the QSAR analysis (the split 1).

The optimal InChI-based descriptors are calculated as follows:

$$DCW(Threshold) = \sum CW(Ik)$$
(3)

where Ik is the InChI attribute and CW(Ik) is the correlation weight of the Ik. The list of InChI attributes was prepared by means of the approach described in Refs. (32,33). Table 4 contains InChI attributes and their correlation weights used for the QSAR analysis (the split 1).

Canonical SMILES and InChI used in this study were generated with ACD/ChemSketch freeware<sup>a</sup>. The optimal SMILES-based descriptors were built by  $CORAL^{d}$ .

#### **Results and Discussion**

Table 5 shows the statistical characteristics of the models for the  $pEC_{50}$ , which have been calculated with the optimal SMILESbased descriptors. The best model (the case of the split 1) for the external validation set is obtained when the threshold is equal to 4. Table 6 shows the statistical characteristics of the models for the  $pEC_{50}$ , which have been calculated with the optimal lnChl-based descriptors. The best model (the case of the split 1) for the external validation set is obtained when the threshold is equal to 2. Figure 1 shows the influence of the threshold on the correlation coefficient between DCW and  $pEC_{50}$  of the SMILES-based and of lnChl-based descriptors. Table 7 gives an example of the DCW(4) calculation for the SMILES-based model. Table 8 shows an example of the DCW(2) calculation for the ln-Chl-based model.

The SMILES-based model for the  $\text{pEC}_{50}$  with threshold equal to 4 (first probe of the Monte Carlo optimization, split 1) is as follows:

$$pEC_{50} = 2.4028(\pm 0.0682) + 0.0857(\pm 0.00225) \times DCW(4)$$
(4)

n = 26,  $r^2 = 0.6330$ ,  $q^2 = 0.5812$ , s = 0.502, F = 41 (training set); n = 10,  $r^2 = 0.7493$ ,  $r^2_{pred} = 0.6235$ ,  $R^2_m = 0.537$ , s = 0.541, F = 24 (validation set)



Figure 1: The statistical quality of the simplified molecular input-line entry system-based and InChl-based models, which are calculated with different thresholds.

**QSAR Analysis of Styrylquinoline Derivatives** 

**Table 7:** Example of a calculation with the correlation weightslisted in Table 2: Compound 2. Simplified molecular input-line entrysystem:0=C(0)c1ccc2ccc(nc2c10)C(=C)c3ccccc3;Threshold = 4;DCW(4) = 32.3107249

| Sk            | CW(Sk)    |
|---------------|-----------|
| Oxxx=xxxCxxx  | 2.4028279 |
| =xxxCxxx (xxx | 1.0209640 |
| Oxxx (xxxCxxx | 1.6497003 |
| (xxxOxxx (xxx | 1.7962853 |
| CXXX (XXXOXXX | 1.4034395 |
| 1xxxcxxx (xxx | 1.2009262 |
| CXXX1XXXCXXX  | 2.3969701 |
| cxxxcxxx1xxx  | 0.3028519 |
| CXXXCXXXCXXX  | 0.2951162 |
| cxxxcxxx2xxx  | 2.1503686 |
| cxxx2xxxcxxx  | 2.1546596 |
| cxxxcxxx2xxx  | 2.1503686 |
| CXXXCXXXCXXX  | 0.2951162 |
| CXXXCXXX (XXX | 0.2981324 |
| nxxx (xxxcxxx | 1.4971106 |
| CXXXNXXX (XXX | 1.0499671 |
| nxxxcxxx2xxx  | 0.3019832 |
| cxxx2xxxcxxx  | 2.1546596 |
| 2xxxcxxx1xxx  | 0.0       |
| CXXX1XXXOXXX  | 0.2998894 |
| 1xxxOxxx (xxx | 0.2969450 |
| Oxxx (xxxCxxx | 1.6497003 |
| (XXXCXXX (XXX | 0.3498468 |
| Cxxx (xxx=xxx | 0.4272772 |
| Cxxx=xxx (xxx | 0.2993007 |
| =xxxCxxx (xxx | 1.0209640 |
| CXXX (XXXCXXX | 0.9463535 |
| 3xxxcxxx (xxx | 0.7204912 |
| схххЗхххсххх  | 0.3019973 |
| схххсхххЗххх  | 0.2955818 |
| CXXXCXXXCXXX  | 0.2951162 |
| CXXXCXXXCXXX  | 0.2951162 |
| CXXXCXXXCXXX  | 0.2951162 |
| схххсхххЗххх  | 0.2955818 |

The InChI-based model for the  $pEC_{50}$  with threshold equal to 2 (first probe of the Monte Carlo optimization, split 1) is as follows:

$$pEC_{50} = -0.2515(\pm 0.0851) + 0.1029(\pm 0.00162) \times DCW(2)$$
 (5)

n = 26,  $r^2 = 0.8673$ ,  $q^2 = 0.8456$ , s = 0.302, F = 157 (training set); n = 10,  $r^2 = 0.8562$ ,  $r_{\text{pred}}^2 = 0.7715$ ,  $R_{\text{m}}^2 = 0.819$ , s = 0.329, F = 48 (validation set).

The  $R_m^2$  is the measure of predictability of a model (34). According to the report (34), model is predictable if the  $R_m^2 > 0.5$ . Thus, the models that are calculated with eqns 4 and 5 are satisfactory according to the  $R_m^2$ .

Figure 2 shows the  $pEC_{50}$  experimental value and the  $pEC_{50}$  calculated for splits 1–5 with the optimal SMILES-based and the InChI-based descriptors. The InChI model is preferable and sepa-

Chem Biol Drug Des 2011; 77: 343-360

**Table 8:** Example of a calculation with the correlation weights listed in Table 3: Compound **2** ``lnChl=1/C18H13N03/c1-11(12-5-3-2-4-6-12)15-10-8-13-7-9-14(18(21)22)17(20)16(13)19-15/h2-10,20H,1H 2,(H,21,22)'' Threshold = 2; DCW(2) = 55.2464323

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| H13 $2.38$ N $1.42$ 03 $2.38$ / $1.22$ c1 $1.47$ -11 $0.31$ (12 $1.97$ -5 $1.40$ -3 $0.61$ -2 $1.84$ -4 $0.31$ -6 $2.20$ -12 $0.72$ ( $0.75$ 1 $0.76$ 5 $1.76$ -10 $0.43$ -13 $0.31$ -7 $2.37$ -9 $0.84$ -14 $0.30$ (18 $0.56$ (21 $1.30$ ( $0.75$ 2 $0.30$ 2 $0.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74174  |
| N $1.42$ 03 $2.38$ / $1.22$ c1 $1.47$ -11 $0.31$ (12 $1.97$ -5 $1.40$ -3 $0.61$ -2 $1.84$ -4 $0.31$ -6 $2.20$ -12 $0.72$ ( $0.75$ 1 $0.76$ 5 $1.78$ -10 $0.445$ -8 $0.30$ -13 $0.31$ -7 $2.37$ -9 $0.844$ -14 $0.30$ (18 $0.556$ (21 $1.30$ (18 $0.556$ (21 $1.30$ (22 $0.30$ 2 $0.302$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 346044 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 235922 |
| / 1.22<br>c1 1.47<br>-11 0.31<br>(12 1.97<br>-5 1.40<br>-3 0.61<br>-2 1.84<br>-4 0.31<br>-6 2.20<br>-12 0.72<br>( 0.77<br>( 0.77<br>1 0.77<br>1 0.77<br>5 1.77<br>-10 0.43<br>-8 0.30<br>-13 0.31<br>-7 2.37<br>-9 0.84<br>-14 0.30<br>(18 0.56<br>(21 1.30<br>( 0.77<br>2 | 347641 |
| c1 $1.47$ -11 $0.31$ $(12$ $1.97$ -5 $1.40$ -3 $0.61$ -2 $1.84$ -4 $0.31$ -6 $2.20$ -12 $0.72$ ( $0.75$ 1 $0.76$ 5 $1.78$ -10 $0.445$ -8 $0.30$ -13 $0.31$ -7 $2.37$ -9 $0.844$ -14 $0.300$ (18 $0.556$ (21 $1.300$ (18 $0.556$ (21 $0.302$ (22 $0.302$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240344 |
| -11 $0.31$ $(12$ $1.97$ $-5$ $1.40$ $-3$ $0.61$ $-2$ $1.84$ $-4$ $0.31$ $-6$ $2.20$ $-12$ $0.72$ $($ $0.75$ $1$ $0.76$ $5$ $1.78$ $-10$ $0.445$ $-8$ $0.30$ $-13$ $0.31$ $-7$ $2.37$ $-9$ $0.84$ $-14$ $0.306$ $(18$ $0.566$ $(21$ $1.306$ $(12$ $0.775$ $2$ $0.302$ $2$ $0.302$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52837  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49572  |
| -51.40 $-3$ 0.61 $-2$ 1.84 $-4$ 0.31 $-6$ 2.22 $-12$ 0.72(0.7510.7651.78 $-10$ 0.44 $-8$ 0.30 $-13$ 0.31 $-7$ 2.37 $-9$ 0.84 $-14$ 0.30(180.56(211.30(0.7520.3320.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74505  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )68876 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35869  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02775  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47165  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09127  |
| $ \begin{pmatrix} & 0.75 \\ 1 & 0.76 \\ 5 & 1.76 \\ -10 & 0.45 \\ -8 & 0.30 \\ -13 & 0.31 \\ -7 & 2.37 \\ -9 & 0.84 \\ -14 & 0.30 \\ (18 & 0.56 \\ (21 & 1.30 \\ ( & 0.75 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.30 \\ 2 & 0.$                                                                                                                                                                                                                                                                                                               | 299485 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59318  |
| 5       1.76         -10       0.45         -8       0.30         -13       0.31         -7       2.37         -9       0.84         -14       0.30         (18       0.56         (21       1.30         (1       0.775         2       0.30         2       0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 651237 |
| -10       0.45         -8       0.30         -13       0.31         -7       2.37         -9       0.84         -14       0.30         (18       0.58         (21       1.30         (1       0.75         2       0.30         2       0.30         2       0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 320982 |
| -8       0.30         -13       0.31         -7       2.37         -9       0.84         -14       0.30         (18       0.58         (21       1.30         (       0.75         2       0.30         2       0.30         2       0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61746  |
| -13       0.31         -7       2.37         -9       0.84         -14       0.30         (18       0.58         (21       1.30         (       0.75         2       0.33         2       0.33         2       0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )78477 |
| -7 2.37<br>-9 0.84<br>-14 0.30<br>(18 0.58<br>(21 1.30<br>( 0.75<br>2 0.30<br>2 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28622  |
| -9       0.84         -14       0.30         (18       0.58         (21       1.30         (       0.75         2       0.30         2       0.30         2       0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90340  |
| -14 0.30<br>(18 0.58<br>(21 1.30<br>( 0.75<br>2 0.30<br>2 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 153533 |
| (18 0.58<br>(21 1.30<br>( 0.75<br>2 0.30<br>2 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )75480 |
| (21 1.30<br>( 0.75<br>2 0.30<br>2 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 323361 |
| ( 0.75<br>2 0.30<br>2 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )10836 |
| 2 0.30<br>2 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59318  |
| 2 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )56813 |
| 2 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )56813 |
| ( 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59318  |
| 1 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 651237 |
| 7 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )84866 |
| (20 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 235466 |
| ( 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59318  |
| 1 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 651237 |
| 6 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )75810 |
| (13 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29114  |
| ( 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59318  |
| 1 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 651237 |
| 9 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12684  |
| -15 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07120  |
| / 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 240344 |
| h2 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280274 |
| -10 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61746  |
| ,20 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12777  |
| Η 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07745  |
| ,1 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 246861 |
| H2 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47637  |
| , 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 841207 |
| ( 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59318  |
| H 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07745  |
| ,21 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 349163 |
| ,22 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62251  |
| 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |

rates inactive compounds, with the threshold equal to two. The ratio of the number of blocked attributes (Blk) to the total number of attributes (All) is an apparent measure of uncertainty for



**Figure 2:** The  $pEC_{50}$  experimental value versus  $pEC_{50}$  calculated for splits 1–5.

#### **QSAR Analysis of Styrylquinoline Derivatives**

**Table 9:** Experimental values and  $pEC_{50}$  calculated with eqn 4. Blk is the number of simplified molecular input-line entry system (SMILES) attributes that are blocked (Threshold equal to 4), and All is the total number of SMILES attributes for a given compound

| ID | SMILES                                                | DCW(4)     | Exp   | Calc  | Exp-Calc | Blk/All |
|----|-------------------------------------------------------|------------|-------|-------|----------|---------|
|    | Training set                                          |            |       |       |          |         |
| 2  | 0=C(0)c1ccc2ccc(nc2c10)C(=C)c3ccccc3                  | 32.3107249 | 5.280 | 5.172 | 0.108    | 1/34    |
| 3  | 0=C(0)c2ccc1ccc(nc1c20)/C=C/C3CCC03                   | 33.8957488 | 5.720 | 5.308 | 0.412    | 11/33   |
| 4  | O=C(O)c2ccc1ccc(nc1c2O)/C=C\C3CCSC3                   | 32.1996211 | 5.470 | 5.162 | 0.308    | 12/33   |
| 5  | O=C(O)c3ccc2ccc(/C=C/c1cccnc1)nc2c3O                  | 35.9228517 | 5.390 | 5.481 | -0.091   | 8/34    |
| 8  | CC(=0)Nc1ccc(cc1)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0       | 35.2408532 | 5.850 | 5.423 | 0.427    | 5/45    |
| 9  | Oc1ccc(cc1)C(=C)c2ccc3ccc(c(O)c3n2)C(=O)O             | 34.7063371 | 5.800 | 5.377 | 0.423    | 1/39    |
| 11 | Oc1ccc(c(0)c1)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0          | 42.3120428 | 5.430 | 6.029 | -0.599   | 1/42    |
| 12 | Oc1ccc(cc10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)O            | 34.5528364 | 5.620 | 5.364 | 0.256    | 0/40    |
| 14 | COc1ccc(cc10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0           | 34.5528364 | 6.050 | 5.364 | 0.686    | 1/41    |
| 15 | Oc1ccc(c(0)c10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0         | 42.1585421 | 6.520 | 6.016 | 0.504    | 0/43    |
| 16 | Oc1cc(cc(OC)c10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0        | 37.8037199 | 6.150 | 5.643 | 0.507    | 2/44    |
| 17 | COc1cc(cc(OC)c10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0       | 37.8037199 | 5.310 | 5.643 | -0.333   | 3/45    |
| 18 | Brc1cc(cc(Br)c10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0       | 34.9577170 | 5.890 | 5.399 | 0.491    | 4/43    |
| 19 | lc1cc(cc(0)c10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0         | 39.5608813 | 5.400 | 5.793 | -0.393   | 1/43    |
| 20 | Oc1ccc(cc10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)OC           | 34.5528364 | 4.000 | 5.364 | -1.364   | 1/41    |
| 23 | Oc1cccc2ccc(C)nc12                                    | 15.5817819 | 4.000 | 3.738 | 0.262    | 2/16    |
| 24 | COc1ccc(cc1OC)C(=C)C(=O)Oc2cccc3ccc(C)nc23            | 18.0035331 | 4.000 | 3.946 | 0.054    | 9/40    |
| 25 | Oc1ccc(cc10)C(=C)C(=0)Oc2cccc3ccc(C)nc23              | 19.9501784 | 4.000 | 4.113 | -0.113   | 5/38    |
| 27 | Oc1cccc2ccc(nc12)C(=C)c3ccccc3                        | 22.2266759 | 4.000 | 4.308 | -0.308   | 2/28    |
| 28 | Oc2cccc1ccc(nc12)/C=C/c3ccc4cccc(0)c4n3               | 27.5087045 | 4.000 | 4.760 | -0.760   | 12/37   |
| 30 | Oc1ccc(cc10)C(=C)c2ccc3cccc([N+]([0-])=0)c3n2         | 24.3664474 | 4.000 | 4.491 | -0.491   | 11/43   |
| 31 | Oc1ccc(cc10)C(=C)c2ccc3cccc(N)c3n2                    | 22.3595591 | 4.000 | 4.319 | -0.319   | 3/32    |
| 33 | Oc1ccc(cc10)C(=C)c2ccc3cccc(0)c3n2                    | 26.9627234 | 5.130 | 4.714 | 0.416    | 0/32    |
| 34 | Oc1ccc(cc10)C(=C)c2ccc3ccc(nc3c20)C(=C)c4ccc(0)c(0)c4 | 38.4091952 | 5.660 | 5.694 | -0.034   | 8/51    |
| 35 | Oc1ccc(cc10)C(=C)c2ccc3ccc(C#N)c(0)c3n2               | 30.0165602 | 5.520 | 4.975 | 0.545    | 4/37    |
| 36 | 0=C(0)c1cc(ccc10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0       | 43.5307697 | 5.570 | 6.133 | -0.563   | 0/45    |
|    | Validation set                                        |            |       |       |          |         |
| 1  | O=C(O)c1ccc2ccc(C)nc2c1O                              | 24.6204264 | 4.000 | 4.513 | -0.513   | 2/22    |
| 6  | [0-][N+](=0)c1ccc(cc1)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0  | 37.4179417 | 5.920 | 5.610 | 0.310    | 9/50    |
| 7  | Nc1ccc(cc1)C(=C)c2ccc3ccc(c(0)c3n2)C(=O)O             | 34.2101272 | 5.460 | 5.335 | 0.125    | 2/39    |
| 10 | Oc1cc(cc(0)c1)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)0          | 40.2105919 | 5.490 | 5.849 | -0.359   | 1/42    |
| 13 | Oc1ccc(cc1C)C(=C)c2ccc3ccc(c(0)c3n2)C(=O)O            | 32.3063017 | 5.550 | 5.171 | 0.379    | 3/40    |
| 21 | Oc1ccc(cc10)C(=C)c2ccc3c(CI)cc(CI)c(0)c3n2            | 29.4981323 | 4.000 | 4.931 | -0.931   | 6/38    |
| 22 | Oc1ccc(cc10)C(=C)c2ccc3ccc(c(0)c3n2)C(=0)O            | 34.5528364 | 5.640 | 5.364 | 0.276    | 0/40    |
| 26 | CC(=0)Oc1cccc2ccc(nc12)C(=C)c3ccccc3                  | 23.5617910 | 4.000 | 4.422 | -0.422   | 4/34    |
| 29 | Oc1ccc(cc10)C(=C)c2ccc3ccccc3n2                       | 21.9316335 | 4.000 | 4.282 | -0.282   | 0/29    |
| 32 | CC(=0)0c1ccc(cc10C(C)=0)C(=C)c2ccc3cccc(0C(C)=0)c3n2  | 28.9657538 | 4.000 | 4.885 | -0.885   | 8/50    |

a given structure. For instance, in the case of SMILES, this ratio for compound  $\mathbf{2}$  is 11/33, whereas in the case of InChI, it is 2/55. This situation holds for the majority of compounds (Tables 9 and 10). Thus, SMILES-based models have larger uncertainty.

The statistical characteristics of the best model for the pEC<sub>50</sub> described in Ref. (3) are the following: n = 26,  $r^2 = 0.607$ , s = 0.542 for the training set and n = 10,  $r^2 = 0.611$ , s = 0.550 for the validation set. Thus, the model calculated using eqn 5 is better.

In order to use these models for the prediction of  $pEC_{50}$  value for an external substance (a styrylquinoline derivative), one should prepare SMILES or InChI for the above-mentioned substance and calculate SMILES-based DCW(4) descriptor for calculation with eqn 4 (Table 3) or InChI-based DCW(2) descriptor for calculation with eqn 5 (Table 4).

#### Conclusions

The optimal descriptors calculated with eqn 4 (representation of the molecular structure by SMILES) and those calculated with eqn 5 (representation of the molecular structure by InChI) give models for the anti-HIV-1 integrase inhibitory activity of styrylquinoline derivatives offering better predictability than the best model described in Ref. (3). The optimal InChI-based descriptors predict for the anti-HIV-1 integrase inhibitory activity of styrylquinoline derivatives against HIV-1 better than the optimal SMILES-based descriptors. These results are reproduced for five examined splits into the training and test sets.

| butes             |        |
|-------------------|--------|
| attri             |        |
| InCh              |        |
| oer of            |        |
| numb              |        |
| total             |        |
| s the             |        |
| All is            |        |
| ), and            |        |
| l to 2            |        |
| edua              |        |
| shold             |        |
| (Thre;            |        |
| icked             |        |
| re blc            |        |
| hat a             |        |
| utes t            |        |
| attrib            |        |
| InChl             |        |
| er of             |        |
| )umb(             |        |
| the I             |        |
| BIK is            |        |
| дп 5.             |        |
| /ith ec           |        |
| ted w             |        |
| alcula            |        |
| C <sup>20</sup> C |        |
| nd pE             |        |
| ues a             |        |
| al val            |        |
| iment             | pr     |
| Exper             | Inodu  |
| 10:               | en col |
| ble               | a givt |
| Ta                | for    |

| 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                |                  |                 |               |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------------|-----------------|---------------|
| Q        | SMILES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DCW(2)                   | Expr           | Calc             | Expr-Calc       | BIK/AII       |
| 6        | Training set<br>Inchi–1.7C18H13ND3.7c1_11113.5c-&-2.4L6.12D15c-10.8c13-72-0c14118/211220117120116113119.15 / b2.10 20H 1H2 (H 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55 746A373               | 5 28N          | 5 433            | -0153           | 0 /53         |
| 1 က      | Inch =1/C16H15N04/c18-15-13(16(19)20)8-4-10-3-5-11(17-14(10)15)6-7-12-2-1-9-21-12/h3-8,12,18H,1-2,9H2,(H,19,20)/b7-6+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60.4720503               | 5.720          | 5.971            | -0.251          | 2/55          |
| 4 1      | InChI=1/C16H15NO3S/c18-15-13(16(19)20)6-3-11-2-5-12(17-14(11)15(4-1-10-7-8-21-9-10/h1-6,10,18H,7-9H2(H,19,20)/b4-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.6352893               | 5.470          | 5.473            | -0.003          | 5/55          |
| ກແ       | Incn=1/ С1/Н12N2U3/ С2U-16-14(1/(Z1)Z2B-5-1Z-4-/-13)19-15(1Z)16)6-3-11-Z-1-9-18-10-11/Л11-10/2UH,(H,Z1,Z2//Ъ6-3-<br>Incn=1/ С7ОРН16ND0A /-1-1113-3-7-15(8-4-13)21-12/02317-10-6-14-6-24-15/01/95(961)40/2A1)8114129-17/h3-10-241 1H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52./690591<br>57 9209635 | 5.39U<br>5.850 | 5.1/8<br>5.700   | U.Z1Z<br>0 141  | 1.672<br>1768 |
| റ        | mon-ry demonstration (19.5.4, 19/11-19/11-19/11-19/12-3-11)15-9-5-12-4-8-14(18/22/23)17(21)16(12)19-15/h2-9.20-2111,114.2(14.22/23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.6710957               | 5.800          | 5.477            | 0.323           | 0/56          |
| 11       | InChi=1/C18H13N05/c1-9(12-6-4-11(20)8-15(12)21)14-7-3-10-2-5-13(18(23)24)17(22)16(10)19-14/h2-8,20-22H,1H2,(H,23,24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.1187516               | 5.430          | 5.626            | -0.196          | 0/59          |
| 12       | InChi=1/C18H13N05/c1-9(11-4-7-14(20)15(21)8-11)13-6-3-10-2-5-12(18(23)24)17(22)16(10)19-13/h2-8,20-22H,1H2,(H,23,24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.3767062               | 5.620          | 5.653            | -0.033          | 0/59          |
| 14       | InChi=1/C19H15N05/c1-10(12-5-8-16(25-2)15(21)9-12)14-7-4-11-3-6-13(19(23)24)18(22)17(11)20-14/h3-9,21-22H,1H2,2H3,(H,23,24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57.0625394               | 6.050          | 5.620            | 0.430           | 0/62          |
| 15       | InChi=1/C18H13N06/c1-8(10-5-7-13/20)17(23)16(10)22)12-6-3-9-2-4-11(18/24/25)15(21)14(9)19-12/h2-7,20-23H,1H2,(H,24,25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62.9432930               | 6.520          | 6.225            | 0.295           | 0/63          |
| 16       | InChi=1/C19H15N06/c1-9(11-7-14(21)18(23)15(8-11)26-2)13-6-4-10-3-5-12(19(24)25)17(22)16(10)20-13/h3-8,21-23H,1H2,2H3,(H,24,25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.4590457               | 6.150          | 5.867            | 0.283           | 0/66          |
| 17       | InChI=1/C20H17N06/c1-10(12-8-15(26-2)19(23)16(9-12)Z7-3)14-7-5-11-4-6-13(20(24)25)18(22)17(11)21-14/h4-9,22-23H,1H2,2-3H3,(H,24,25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56.7813359               | 5.310          | 5.591            | -0.281          | 2/68          |
| 81       | Inchi=17c18H11Bf2N04/c1-810-6-12[19]1/[23]13[20/-10]14-5-35-24-11[18[24[25]16][20]20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.4291109               | 5.89U          | 1.0/.c           | 0.129           | 2/164         |
| 19       | nch=1/2/BH12ND2/61-8110-6121/91/10-2131/421/1-01/13-5-5-2-6-1/1(18/24/261)61/211/91/92-120/20-120/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20-20/20- | 59.0441369               | 5.400          | 5.824<br>1 5 2 4 | -0.424          | 1/63          |
| 07       | m.dii=1.5(19H15NO261-10(12-5-5-15)2(1)16279+12(1)14-74-11-3-5-13(19(24)25-2)18(23)1/(11)20-14/N3-9/21-23H,1H2,2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.5400162               | 4.000          | 4.538            | -0.538          | qc/n          |
| 23       | Inch=1/C10H9N0/C1-7-5-6-8-3-2-49(12)10(8)11-7/h2-6,12H,1H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.3670825               | 4.000          | 3.696            | 0.304           | 2/30          |
| 24       | InCh=1/C21H19N04/c1-13-8-9-15-6-5-7-18/20(15)22-13)26-21(23)14(2)16-10-11-17(24-3)19(12-16)25-4/h5-12H,2H2,1,3-4H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.5630368               | 4.000          | 4.128            | -0.128          | 3/56          |
| 25       | InCh=1/C19H15N04/c1-11-6-7-13-4-3-5-17(18(13)20-11)24-19(23)12(2)14-8-9-15(21)16(22)10-14/h3-10,21-22H,2H2,1H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.9298774               | 4.000          | 3.857            | 0.143           | 0/54          |
| 27       | InChi≡1/C17H13NO/c1-12(13-6-3-2-4-7-13)15-11-10-14-8-5-9-16(19)17(14)18-15/h2-11,19H,1H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.4653651               | 4.000          | 4.118            | -0.118          | 0/40          |
| 28       | InChi=1/C20H14N202/c23-17-5-1-3-13-7-9-15(21-19(13)17)11-12-16-10-8-14-4-2-6-18(24)20(14)22-16/h1-12.23-24H/b12-11+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.7119710               | 4.000          | 4.144            | -0.144          | 2/51          |
| 30       | InCh=1/C17H12N204/c1-10(12-6-8-15(20)16(21)9-12)13-7-5-11-3-2-4-14(19(22)23)17(11)18-13/h2-9,20-21H,1H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46.4713181               | 4.000          | 4.530            | -0.530          | 0/20          |
| 31       | InCh=1/C17H14N202/C1-10(12-6-8-15(20)16(21)9-12)14-7-5-11-3-2-4-13(18)17(11)19-14/h2-9,20-21H,1,18H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.9936062               | 4.000          | 3.967            | 0.033           | 0/47          |
| 33       | Inchi=1/C17H13N03/c1-10(12-6-8-14(19)16(21)9-12)13-7-5-11-3-2-4-15(20)17(11)18-13/h2-9,19-21H,1H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.2577301               | 5.130          | 4.714            | 0.416           | 0/46          |
| 34       | InChI=1/C25H19N05/c1-13(16-5-9-20(27)22(29)11-16)18-7-3-15-4-8-19(26-24(15)26(18)31)14(2)17-6-10-21(28)23(30)12-17/h3-12,27-31H,1-2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.0243483               | 5.660          | 5.513            | 0.147           | 8/67          |
| 35       | InChI=1/C18H12N2O3/c1-10(12-5-7-15(21)16(22)8-12)14-6-4-11-2-3-13(9-19)18(23)17(11)20-14/12-8,21-23H,1H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.0398555               | 5.520          | 5.103            | 0.417           | 0/20          |
| 36       | InCh=1/C19H13NU6/C1-9/11-4-7-15/21/13(8-11)19/25/26/14-6-3-10-2-5-12/18/23/24/17/22/16/10/20-14//h2-8/21-22/H,1H2/(H,23,24/H,25,26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.4842/65               | 5.570          | 6/0.9            | -0.505          | 0/63          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | 000            |                  |                 |               |
| - 0      | nch=1/2/11H9N03/61-6-2:3-74-5-801/114/15)101/39//1/2-6/75-5, 3H.1H31/114,15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.2422546               | 4.000          | 3.889            | 0.111           | 6/42          |
| i Q      | nch=1/c18H12N229 <ci-1011-2-6-131 3-1120(24z6)15-9-5-12-4-8-14108zz31="" 72101612)19-15="" h2="" r2-9.21h,1h2="" td="" z233<=""><td>55.266//81</td><td>5.920<br/>5.20</td><td>5.435<br/></td><td>0.485</td><td>1/60</td></ci-1011-2-6-131>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.266//81               | 5.920<br>5.20  | 5.435<br>        | 0.485           | 1/60          |
| <u> </u> | Inch=17/C18H14N2O3/C1-10(11-2-6-13(19)/-3-11)15-9-5-12-4-6-14(18(22/23)1/(21)16)12/20-15/M2-9,21H,1,19H2(H,22,23)<br>Level 3 224 ani internet 23 243 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55./422221<br>F4.0200240 | 5.460          | 5.484<br>r 202   | -0.024          | 0/56          |
| 0;       | ПІСПЕТСТОРП 30020 СТЭЙТТ-0-ТАХОЮ-ТАХТ/1-11 70-3-5-11/2-24-14(10(2)2/24)1/(ZZ100110))9-12/12-62-22-224)4/17/2(12<br>1-04-1-22004)4/12/200404/12/200404/12/200404/200404/200404/200404/200404/200404/200404/200404/200404/200404/200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 0.430          | 7.00/ T          | 0.103           | 00/0          |
| ci<br>12 | ШоШ=17 613013004761-10-5-13(3-0-10(10)z 1)11(z)13-7-4-12-3-6-14(13(z)24)10(z2)17(12)z0-137 I)3-3/z I-2z0,zпz, Iпадп,zа,z4)<br>InCh=17C17H11C12ND37c1-849-5-5-14/2115(27)6-91(3-4-3-10-11(18)7-17(19)17/2316(10)0-13762-7 71-23H 1H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45 1037243               | 0.000<br>4 000 | 0.000<br>4.390   | 0.10/<br>-0.390 | 7 /53         |
| 22       | InChi=1/C18H13N05/c1-9(11-4-7-14/20)15(21)8-11)13-6-3-10-2-5-12(18(23)24)17(22)16(10)19-13/h2-8,20-22H,1H2,(H,23,24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.3767062               | 5.640          | 5.653            | -0.013          | 0/59          |
| 26       | InChi=1/C19H15N02/c1-13(15-7-4-3-5-8-15)17-12-11-16-9-6-10-18(19(16)20-17)22-14(2)21/h3-12H,1H2,2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.4937913               | 4.000          | 3.607            | 0.393           | 0/46          |
| 29       | InChI=1/C17H13N02/c1-11(13-7-9-16(19)17/20)10-13)14-8-6-12-4-2-3-5-15(12)18-14/h2-10,19-20H,1H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42.4362954               | 4.000          | 4.115            | -0.115          | 1/44          |
| 32       | InChi=1/C23H19N06/c1-13(18-9-11-20(28-14(2)25)22(12-18)30-16(4)27)19-10-8-17-6-5-7-21(23(17)24-19)29-15(3)26/h5-12H,1H2,2-4H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.9730495               | 4.000          | 4.582            | -0.582          | 6/63          |
|          | s simulified moleculer intuit line outre sustem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                |                  |                 |               |

SIMILES, simplified molecular input-line entry system.

# Toropova et al.

#### **QSAR Analysis of Styrylquinoline Derivatives**

# Acknowledgments

The authors thank the Marie Curie Fellowship for financial support (the contract ID 39036, CHEMPREDICT). The authors also express their gratitude to Dr J. Baggot for the English revision.

#### References

- Vidal D., Thormann M., Pons M. (2005) LINGO, an efficient holographic text based method to calculate biophysical properties and intermolecular similarities. J Chem Inf Model;45:386– 393.
- Toropov A.A., Toropova A.P., Raska I. Jr (2008) QSPR modeling of octanol/water partition coefficient for vitamins by optimal descriptors calculated with SMILES. Eur J Med Chem;43:714– 740.
- Leonard J.T., Roy K. (2008) Exploring molecular shape analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors. Eur J Med Chem;43:81–92.
- Liu B., Gutman I. (2007) On general Randic indices. MATCH Commun Math Comput Chem; 58: 147–154.
- Gutman I., Durdevic J. (2008) Fluoranthene and its congeners a graph theoretical study. MATCH Commun Math Comput Chem;60:659–670.
- Kuz'min V.E., Muratov E.N., Artemenko A.G., Gorb L., Qasim M., Leszczynski J. (2008) The effect of nitroaromatics' composition on their toxicity *in vivo*: novel, efficient non-additive 1D QSAR analysis. Chemosphere;72:1373–1380.
- Marrero-Ponce Y., Castillo-Garit J.A., Castro E.A., Torrens F., Rotondo R. (2008) 3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: theory and QSAR applications to central chirality codification. J Math Chem;44:755–786.
- Duchowicz P.R., Talevi A., Bruno-Blanch L.E., Castro E.A. (2008) New QSPR study for the prediction of aqueous solubility of drug-like compounds. Bioorg Med Chem;16:7944–7955.
- Duchowicz P.R., Vitale M.G., Castro E.A. (2008) Partial Order Ranking for the aqueous toxicity of aromatic mixtures. J Math Chem;44:541–549.
- Afantitis A., Melagraki G., Sarimveis H., Koutentis P.A., Markopoulos J., Igglessi-Markopoulou O. (2006) A novel QSAR model for evaluating and predicting the inhibition activity of dipeptidyl aspartyl fluoromethylketones. QSAR Comb Sci;25:928– 935.
- Afantitis A., Melagraki G., Sarimveis H., Koutentis P.A., Markopoulos J., Igglessi-Markopoulou O. (2006) Prediction of intrinsic viscosity in polymer-solvent combinations using a QSPR model. Polymer;47:3240–3248.
- Puzyn T., Mostrag A., Suzuki N., Falandysz J. (2008) QSPR-based estimation of the atmospheric persistence for chloronaphthalene congeners. Atmos Environ;42:6627–6636.
- Puzyn T., Suzuki N., Haranczyk M. (2008) How do the partitioning properties of polyhalogenated POPs change when chlorine is replaced with bromine?. Environ Sci Technol;42:5189–5195.
- Puzyn T., Suzuki N., Haranczyk M., Rak J. (2008) Calculation of quantum-mechanical descriptors for QSPR at the DFT level: is it necessary?. J Chem Inf Model;48:1174–1180.

- Kusic H., Rasulev B., Leszczynska D., Leszczynski J., Koprivanac N. (2009) Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study. Chemosphere;75:1128–1134.
- Gini G., Benfenati E. (2007) E-modelling: foundations and cases for applying AI to life sciences. Int J Artif Intell Tools;16: 243–268.
- Gini G., Garg T., Stefanelli M. (2009) Ensembling regression models to improve their predictivity: a case study in qsar (quantitative structure activity relationships) with computational chemometrics. Appl Artif Intell;23:261–281.
- Gutman I., Rucker C., Rucker G. (2001) On walks in molecular graphs. J Chem Inf Comput Sci;41:739–745.
- Weininger D. (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci;28:31–36.
- Weininger D., Weininger A., Weininger J.L. (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci;29:97–101.
- Weininger D. (1990) Smiles. 3. Depict. Graphical depiction of chemical structures. J Chem Inf Comput Sci;30:237–243.
- Coles S.J., Day N.E., Murray-Rust P., Rzepa H.S., Zhang Y. (2005) Enhancement of the chemical semantic web through the use of InChl identifiers. Org Biomol Chem;3:1832–1834.
- Murray-Rust P., Rzepa H.S., Stewart J.J.P., Zhang Y. (2005) A global resource for computational chemistry. J Mol Model;11:532–541.
- Randic M., Basak S.C. (1999) Optimal molecular descriptors based on weighted path numbers. J Chem Inf Comput Sci;39:261–266.
- Randic M., Pompe M. (2001) The variable connectivity index 1Xf versus the traditional molecular descriptors: a comparative study of <sup>1</sup>X<sup>f</sup> against descriptors of CODESSA. J Chem Inf Comput Sci;41:631–638.
- Randic M., Basak S.C. (2001) New descriptor for structure-property and structure-activity correlations. J Chem Inf Comput Sci;41:650–656.
- Da Silva Junkes B., Arruda A.C.S., Yunes R.A., Porto L.C., Heinzen V.E.F. (2005) Semi-empirical topological index: a tool for QSPR/QSAR studies. J Mol Model;11:128–134.
- Arruda A.C.S., Da Silva Junkes B., Souza E.S., Yunes R.A., Heinzen V.E.F. (2008) Semi-empirical topological index to predict properties of halogenated aliphatic compounds. J Chemometr;22:186–194.
- Porto L.C., Souza E.S., da Silva Junkes B., Yunes R.A., Heinzen V.E.F. (2008) Semi-empirical topological index: development of QSPR/QSRR and optimization for alkylbenzenes. Talanta;76:407–412.
- 30. Toropov A.A., Benfenati E. (2007) SMILES in QSPR/QSAR modeling: results and perspectives. Curr Drug Discov Technol;4:77–116.
- Toropov A.A., Rasulev B.F., Leszczynski J. (2008) QSAR modeling of acute toxicity by balance of correlations. Bioorg Med Chem;16:5999–6008.
- Toropov A.A., Toropova A.P., Benfenati E. (2009) QSPR modeling of octanol water partition coefficient of platinum complexes by InChl-based optimal descriptors. J Math Chem;46:1060–1073.

- Toropov A.A., Toropova A.P., Benfenati E., Leszczynska D., Leszczynski J. (2009) Additive InChI-based optimal descriptors: QSPR modeling of fullerene C60 solubility in organic solvents. J Math Chem;46:1232–1251.
- Roy P.P., Roy K. (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci;27:302–313.

# Notes

<sup>a</sup>ACD/ChemSketch Freeware, version 11.00, Advanced Chemistry Development, Inc., Toronto, ON, Canada, available at: http://www.acdlabs.com, 2007.

<sup>b</sup>U.S. Library of Medicine (2008) available at: http://toxnet. nlm.nih.gov/.

<sup>c</sup>National Institute of Standard and Technology (2008) available at: http://webbook.nist.gov/chemistry/.

<sup>d</sup>CHEMPREDICT, CORAL freeware, available at: http://www. insilico.eu/coral/.