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Abstract—This work aims at developing a motor path
generator for applications in mobile robotics based on a
chaotic neural network. The computational paradigm inspired
by the neural structure of microcircuits located in the human
prefrontal cortex is adapted to work in real-time and used
to generate the joints trajectories of a lightweight quadruped
robot. The recurrent neural network was implemented in
Matlab and a software framework was developed to test the
performances of the system with the robot dynamic model.
Preliminary results demonstrate the capability of the neural
controller to learn period signals in a short period of time
allowing adaptation during the robot operation.
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I. INTRODUCTION

In vertebrate the deambulation represents a fundamental
skill that is necessary to move in the environment in order
to find food, to reach locations that offer better life con-
ditions, to escape eventual predators, and to find partners
for reproduction. The motor signals that control each muscle
and joint of the legs are generated by the animal’s nervous
system. In particular, specialized neural circuits called Cen-
tral Pattern Generators (CPGs) are able to form rhythmic
patterns without the need of any sensory feedback [1]. The
CPG paradigm was successfully used in robotics since the
early 1990’s, extensive work regarding the locomotion of
hexapod robots was done by Randall Beer and colleagues
[2], following different other works were inspired by the
locomotion of insects [3][4][5]. In [6] the neural circuit of
a salamander is reproduced in order to obtain both aquatic
and terrestrial gates.

The concept of CGP can also be adapted to mobile
robots that are equipped with wheels, in [7] a controller was
implemented able to perform different concurrent behaviors,
like reaching a sound source, avoiding obstacles and finding
a recharge station.

Of particular interest to generate motor paths are artificial
recurrent neural networks (RNN) that are strongly inspired
by the structure of natural neural circuits, where the recursion
of excitatory and inhibitory feedback connections is exten-
sively present [8]. This bioinspired computation paradigm is
very powerful and can be used for a large variety of complex
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tasks, among them e.g. the approximation of nonlinear
dynamic systems, the recognition of temporally extended
patterns [9], and the learning of precise timing sequences
[10]. The main issue for RNNs dwells in the training phase,
classical learning algorithms tend to be trapped in local
minima, suffer of vanishing learning signal when the error is
propagated “back in time “ [11], and in general their dynamic
behavior and stability is quite complex to study especially
when the architecture comprises more than few neurons.

More recently a new class of RNNs has attracted particular
attention in the scientific community. They are referred
as Liquid State Machine or Echo State Neural Networks
[12] and consist of a relatively big set of hidden neurons
which synaptic connections are randomly initialized and kept
constant during the entire learning phase. It is demonstrated
that if the time constants of the different neural units are
properly initialized and the number of neurons is sufficiently
large (50 — 1000 units) the circuit is endow of rich dynamic
movements that can be harnessed to solve complex non linear
dynamic problems. This is generally performed by readout
units that apply simple linear regressions of pulls of neuronal
outputs.

It has been shown that if the output of the readout units
are feedback to other neurons of the neural circuit it is
possible to learn complex periodic signals [13]. This feature
can be e.g. useful to learn optimal motor paths for mobile
robotic systems. Generally this requires that the target signal
is available to the learning algorithm in order to compute
the adaptation step. However, in [14] it is shown that this
constrain can be removed with the introduction of a reward-
modulated Hebbian learning rule that is based on a weak
information about the performance of the neural network. In
particular, only a binary on-off signal is used to modulate the
synaptic plasticity that is based on the correlation between
the readout neuron output and its inputs. This approach is of
particular interest because resembles what normally happen
in a dynamic biological environment where most of the times
it is not clear which of the past motor actions performed by
the agent (the biological organism) contributed to increase
its actual reward. This is also refereed as temporal credit-
assignment problem [15] and in order to be solved it is
necessary that the agent keeps track not only of its internal
state, but also of the environment state.

With this work we propose a joint trajectories generator
based on a chaotic RNN intended to control the motion
of a light-weigh quadruped robot. In order to allow the
implementation of the control system on relatively small
computational units (e.g. a micro-controller), we simplified



as much as possible the network architecture without los-
ing generality and scalability. The main advantages of this
approach is the possibility to approximate complex spatial
and temporal motor paths, to allow real-time computation of
the adaptation step, to avoid being trapped in local minima
during the training phase, and to allow extending the control
architecture dynamically during the operation of the robot
without completely reconfiguring the network architecture.

The rest of this paper is organized as follow: next section
introduces the network architecture and details the neural
model. Section III presents the robot structure and the simu-
lation environment, section IV reports the chosen parameters
and brings preliminary results. Finally, section V draws
the conclusions and suggests some possible future research
directions.

II. THE NEURAL MODEL

A very important feature for a mobile robot is the ca-
pability to learn new behaviors by detecting and modeling
new associations between the stimuli received by its sensory
system and the actions performed by its actuation system.
This task can be carry out by a neural network and a proper
learning algorithm and generally it is quite straightforward
when the action and the correlated stimuli are temporally
near.

The implemented recurrent neural network (see Fig. 1)
consists of N neurons modeled by a first order differential
equation 1 where x; represents the membrane potential, 7;
the time constant, C' a parameter that modulates the dynamic
regime of the entire ANN from ordered to chaotic, r; and
u;, the output and input of the jt" neuron respectively, and
z; the signal generated by the readout unit. In particular a
sigmoidal activation function (Eq. 3) is used as non linear
element in the neuron’s model that limits the output in the
range [—1,1].
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Gaussian noise with zero average and variance var = 0.05
is added to the neurons output and the readout units (Eq.
2 and Eq. 4 respectively) as a mechanism of probabilistic
inference [16].

ri(t) = ®(z;(t)) + GNoise;(t) (2)
1—e ke
P(z) = [P (3)

The connections between the N neurons were represented
by a N—by—N sparse matrix of real numbers. The probability
of connection between two neurons is P = 0.1 and the
weights were randomly initialized in the range [—1,1] with
20% of inhibitory synapses and 80% of excitatory one. The

neural network has two kind of inputs: the external input
u(t) that influences the neuron potentials according to the
weights vector Wit € R and the signal feedback from the
readout neurons that is scaled by a L-by— N matrix WP,
The readout units z(t) compute a linear combination (Eq. 4)
of the neurons output r(¢) by using a N-by— L matrix W44,
This is the only parameter of the RNN that is adapted during
learning.
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Fig. 1. The architecture of the chaotic recurrent neural network.

Learning is implemented with a simple rule that is based
on the error calculated by the difference between the filtered
version z(t) of the readout unit vector and the target vector
Z(t) at the instant ¢ as in equation 5.

Err(t) = Fl(z(t)) - 2(1) )

Where the filter F'(s) is defined as the transfer function in
Eq. 6, that has unit gain and where a allows to set a proper
cutting frequency.

a
F(s) = 6
(s) = ©
The weight matrix WA is adapted according to rule

represented in equation 7

WALt 1) = WAL(t) + F(r(t))Err(t) (7)

,where 7 defines the speed of the learning process that
can be kept constant during the training phase or can decay
over time. Particular attention should be paid to initialize
this parameter, too large values will make the readout units



to follow rapidly the target, but without allowing the RNN to
learn from the data. On the contrary too small values of 1 will
make the learning process very slow avoiding the converge
to the target signal in a reasonable amount of time.

I1I. THE TARGET ROBOT AND THE SIMULATION
ENVIRONMENT

The robot we developed consists of four legs with three
degrees of freedom each (Fig. 2). The mechanical parts were
made of polylactide (PLA) and they were developed using a
3D printing process. Each of the proximal joints are equipped
with bearings in order to reduce the friction and the load at
the servomotor output shaft. Distal joints (knees) are directly
connected to very light digital servomotors (weighting 3
grams each). The motors are controlled with a 32 — bit
micro-controller belonging to the family STM32F4zzx
produced by the STMicroelectronics company and running
at 180M H z with a computational power of 225DMIPS.

Fig. 2. The robot has a total of 12DOFs, three rotational joints for each
leg which angular positions are defined by 61, 02, 03. The servomotors are
located in the base and in the knee of each leg. Thanks to the usage of
very light materials and motors the weight of the entire system, including
the electronics, is 0.4Kg. The legs have an extension of 0.4m allowing the
robot to overcome obstacles up to 0.1m in height.

The direct kinematic model of a single leg can be easily
obtained by applying the Denavit-Hartenberg (D-H) conven-
tion. In particular, to affix the frames to the robot links and
to obtain the D-H parameters we used the method described
in [17]. Fig. 2 includes four reference systems: frame {0}
attached to the center of the robot’s body is used as main
reference system, the frame {1} is attached to the Link-1
of the leg, and the frames {2} and {3} are attached to the
Link-2 and Link-3 respectively. Finally, the foot’s tip of the
robot can be described as a point vector relative to frame
{3}.

The D-H parameters relative to a single leg are reported
in the table L.

The forward kinematic can be obtained substituting the
D-H parameters in the homogeneous transform TZH that

(Jointi [ a1 [ai—1 [ di [ 6 ]
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3 00 Ly 0 03
TABLE I

D-H PARAMETERS OF THE KINEMATIC MODEL OF A ROBOT’S LEG.

describes frame {i 4 1} with respect to frame {i}. Applying
the pre-multiplication rule and from simple algebraic
passages it is possible to obtain the matrix 73 as in Eq. 8.
This represents the orientation and the position of frame
{3} relative to frame {0}. Where L, and Ly are the length
of the two leg’s segments (see Fig. 2) and ag and d; the
parameters that define the relative position of the frame {1}
origin with respect to frame {0}.

T9 =
C1C2C3 — C18283 —C10283 —c182¢3  —S1 Licica +ag
C351C2 — 515283 —83C253 — 5152C3 1 Lisico

—S89C3 — C2S83 +8283 — C2C3 0 L182 + d1
0 0 0 1
(®)

In order to test the neural architecture before the final
implementation a simulation environment was developed
in Matlab/Simulink (Fig. 3). The kinematic and dynamic
properties of the robot’s legs are represented with the
toolbox SimMechanics. The joints are controlled in position
using a set of PID controllers that receive as input the
position error and generate as output the reference torque
for the actuator. Virtual sensors are integrated to allow
monitoring different kinematic quantities like the position,
the velocity, and the acceleration of each joint. Furthermore,
additional sensors are added to detect the Cartesian position
of different points of the kinematic structure. The possibility
to measure the torques and the velocities at each joint allow
us to calculate the power consumed to produce specific
trajectories. This is important if the adaptation mechanism
has as target the minimization of the energy consumption
and therefore the improvement of the walking efficiency.

The SimMechanics toolbox does not allow to detect and to
simulate the contact between objects; however, this feature is
particularly important to study different robot gaits and the
adaptation behaviors. In order to overcome this limitation
we implemented the contact model using the possibility to
apply external forces and torques to different points of the
kinematic structure. In particular the floor and the obstacles
were modeled with equation 9 where PSo°t, Pfoot and
V /oot represent the z coordinate of the actual and reference
position and the actual velocity of the foot respectively. The
constant Kp and Ky set the elastic and damping behavior
of the contact respectively. By choosing proper combinations
of these parameters it is possible to simulate different kind
of materials, i.e. from soft to very rigid one.
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TABLE I
THE NEURAL NETWORK PARAMETERS.

Fig. 3. Dynamic model developed with the toolbox SimMechanics.

F, = KP(PZfoot o szoot) _ KV(VZfoot) )

The implementation of the software for the robot prototype
will be based on the Simulink toolboxes “RapidSTM32”
and “Real Time Workshop”. By using these tools it will be
possible to convert the symbolic code developed in Simulink
directly into binary code suitable to be flashed in the micro-
controller. This is very important in order to bootstrap the
developing phase and to allow an easy tuning of the control
system.

IV. PARAMETERS TUNING AND PRELIMINARY
RESULTS

In order to test the RNN and to fine-tuning the main
parameters of the neural circuit we defined a set of periodic
trajectories that resemble a possible motor path for the joints
of the robot. In particular, as a target function a possibility
is to choose a non linear combination of k sinusoidal signals
having different frequencies w; and phases ¢; (Eq. 10).

K
zi(t) =) my(sin(w;t + ¢,))) (10)

j=1
The main network’s parameters are represented in table II.
As integration method for the neuron’s potential we chose
Dormand — Prince (available in the Simulink library)
with a variable integration step. However, it is worth to
mention here that for the final real-time implementation it
will be necessary to choose a fixed integration step that
will be comparable with the chosen computational time. The
computational time is a very important parameter for the
learning algorithm. This represents the frequency with which
the adaptable synapses are updated and strongly depends on
the rapidity of the signals we want to reproduce (in our case

represented by the periodic signals we want to learn).

Quantity Value
Number of Neurons N 10-50
Number of External Inputs 2
Number of ReadOut Units L 1
Computational Time variable
Neuron Time Constants 7 0.01-2.5

Learning Constant 7
Filters Constant a
Chaos-Modulation Constant C

0.00001-0.0001
1
0.5-2

The first test we conducted on the implemented RNN
was to verify the capability to modulate the level of the
chaotic behavior. For this particular experiment we changed
the constant C in a range of values between 0.5 (completely
ordered) to 2 (chaotic). According to our experiments the
more the network is chaotic the richer is the dynamics it
can exhibit. However, for very small networks, like the one
we simulated, it will result more difficult to learn periodic
signals due to the fact that the state of the network is always
changing.
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Fig. 4. Neurons Potential with chaos-modulation constant C=0.5

In figure 4 we can see the potential of the neurons. In this
example a network consisting of 20—neurons was simulated
where the chaos-modulation constant was settled at a low
value C' = 0.5 and only a sinusoidal input with frequency
f = 0.01lrad/s was used to stimulate the dynamic system.
How it is possible to notice the neurons’ potential oscillate
with almost constant amplitudes.

Figure 5 depicts instead the state of the network in the
case the value of the chaos-modulation constant is increased
to C' = 2. Due to the fact that now the recurrent feedbacks
of the neurons is amplified the RNN assumes a more chaotic
behavior, it is possible to notice how this time the neurons
potential oscillate with more irregularity. Notice also that
this time the range of the potential amplitudes is larger in
comparison with the previous case. This does not represent a
problem due to the fact that thanks to the activation function
the neurons output is limited in the range [—1, 1]. Figure 6
reports the outputs of the 20 neurons overlapped with the
Gaussian noise.
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Fig. 6. Neurons Output with chaos-modulation C=2

To test the capability of the RNN to learn and reproduce
periodic signals we started using a simple target periodic
function as in equation 11.

Z(t) = 0.5sin(0.2t) + 0.5sin(0.22t) an

The dimension of the network this time was increased
to N = 50, the training period was fixed to 600s and
the learning constant was chosen as 77 = 0.0001. The only
readout unit collects and adapts the last 45 neural outputs.
After the training the RNN was tested to verify the ability
to reproduce autonomously the periodic signal. How it is
possible to notice in figure 7 the synapses of the readout
unit are converging toward a stable value. Small oscillations
are present during the learning process, and generally this
should be avoided reducing the learning constant. However,
for this first set of simulations we were more concerned in
assessing the model functionality rather than optimizing its
parameters.

From the simulation it is also clear that not all the synapses
are in this case needed to approximate the target function,
this is due to the fact that the complexity of the periodic
signal we want to reproduce is relatively low. From the graph
it appears that when the adaptation was stopped the synapses
did not reach their optimal values, indeed a residual error
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Fig. 7. Synapses adaptation.

still exist from the comparison with the target signal. Finally
figure 8 depicts the output of the readout unit, its filtered
version (red line in Fig. 8) and the target signals. How it
is possible to notice after the learning phase terminates the
neural network is still able to reproduce the target signal.
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Fig. 8. Readout output (red line), target function (black line).

Another experiment we tried was to modify the learning
mechanism (see Eq. 14). This time, instead of using an
adaptation rule based only on the error (calculated as in Eq.
7) we introduced an additional modulating signal M which
can assume a binary value that is calculated as in equation
13 and according to the performance criterion evaluated as
in 12. Notice that the performance criterion is calculated
on the base of the unfiltered readout output, this has the
effect to introduce a stochastic behavior also in the synapses
adaptation.

Perf = —(z(t) — z(t))? (12)

The network dimension this time was reduced to 10 neural
units, the learning time interval extended to 1400s, the
learning constant reduced to n = 0.00001, and the chaos-
modulation constant set to C' = 1.5. How it is shown in
Fig. 9 the synapses are now converging more smoothly to
the final value. This reflects also in a better approximation
of the target signal as it is shown in Fig. 10.



if (Perf > F(Perf))
M=1

else
M=0

(13)
WALt 4 1) = WAL(t) + nr(t)Err(t) M (14)
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V. CONCLUSIONS AND FUTURE WORK

In this work we applied a chaotic RNN to develop a con-
trol system for a quadruped robot. This new computational
paradigm reproduces the structure of neural microcircuits
present in the vertebrates cortex. The main advantages in
comparison with more classical RNN architectures is repre-
sented by the fact that the ANN is easy to train and less prone
to get trapped in local minima of the error function. The con-
trol system of the robot can be adapted and optimized in real-
time without requiring a off-line training phase. Furthermore,
thanks to a very simple learning mechanism new readout
units can be added dynamically during the robot operation
and without requiring to modify the ANN main architecture.
Preliminary results demonstrated that even in the case of

small networks it is possible to reproduce period signals that
can be used as reference joint trajectories for walking. Future
work will be dedicated to more complex control tasks that
may require as additional inputs the information coming from
sensors capable to detect the contact of the leg with the floor
and/or eventual obstacles.
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