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Read-across and QSAR have different traditions and drawbacks. We address here two main
questions: (1) How do we solve the issue of the subjectivity in the evaluation of data and
results, which may be particularly critical for read-across, but may have a role also for the
QSAR assessment? (2) How do we take advantage of the results of both approaches to
support each other? The QSAR model starts from the training set. The presence of similar
chemicals with property values close to that predicted can support the result. The approach
in read-across is the opposite. The assessment is focused on the few substances similar to
the target. The data quality of the similar chemicals is fundamental. A risk is poor stan-
dardization in the definition of ‘similarity’, because different approaches may be applied.
Inspired by the principles of high transparency and reproducibility, a new program for
read-across, called ToxRead, has been developed and made freely available (www.toxgate.
eu). The output of ToxRead can be compared and integrated with the output of QSAR,
within a weight-of-evidence strategy. We discuss the evaluation and integration of ToxRead
and QSAR with examples of the assessment of bioconcentration factors of chemicals.

Keywords: read-across; BCF; REACH; QSAR; log P

1. Introduction

The EC regulation Registration, Evaluation, Authorisation and restriction of Chemicals
(REACH) (EC Regulation 1907/2006) requires that the registrant assess if alternative methods
are available, to provide valid results. Among the alternative methods, the so-called non-
testing methods represent a possibility. Non-testing methods include (quantitative) structure–
activity relationship ((Q)SAR) and read-across. However, a main drawback of read-across is
that the evaluation, typically done by the human expert, is quite subjective. The evaluation of
similar compound(s) and the reasoning about similarity are often done manually, on the basis
of a mental process that is often difficult to replicate.

The issue of chemical-to-chemical similarity is not directly present in the case of QSAR
models. In the case of QSAR models the target chemical is in some way compared with the
whole population of chemicals as the basis of the model, and this is addressed within the
so-called applicability domain of the model. Thus, the comparison is done not between one
chemical and another, or a few others, as in the read-across case, but with the whole set of
compounds used for the model.
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However, in QSAR models we should distinguish between models which are statistically
based, for which the above is true, and SAR models which are based on rules, usually called
structural alerts. In the latter case, the overall structure of the model is like a collection of
read-across models, with the special situation that rules for similarity are unequivocally
defined by the presence of the structural alert. Thus, if the target chemical has a certain struc-
tural alert, it belongs to the family characterized by that alert, and thus it is labelled as toxic.
(Within some models there are exception alerts, thus the presence of the exception alert over-
rules the toxic effect; this applies, for instance, to the presence of a sulfonic group which can
cancel the genotoxic activity of the aromatic amine.) The structural alert is the ontology
which defines the family, but in some cases the structural alert is supported by one single
chemical, thus this is conceptually very similar to the one-to-one read-across model. This is
the case, for instance, in the rule for genotoxicity of SA_1: Acyl halides [1].

Thus, SAR models have similarities with read-across models. However, the read-across
approach is typically not so strictly formalized, and thus different results may be obtained
based on expert judgment.

Furthermore, several QSAR include tools to visualize the chemicals used to build up the
model. These tools are used to evaluate the reliability of the model; however, they can be
also used for read-across. For example, VEGA and TEST [2,3], a couple of freely available
platforms for QSAR models, show the most similar compounds to the target chemical, and
this information can be easily used for read-across. These considerations indicate that there is
a certain overlap between QSAR and read-across.

In the case of QSAR, the ‘similarity’ is usually addressed with measurements related to
the chemical structure, such as the presence of certain fragments, or using descriptors as done
within VEGA, TEST and AMBIT [2–4].

However, the way to assess similarity within read-across exceeds the chemical similarity.
Annex XI within REACH specifies some other features which may be addressed, such as a
common functional group. Recently the ECHA published a document with a framework to
address read-across [5]. One of the scenarios described in this document covers the analogue
approach for which the read-across hypothesis is based on different compounds which have
the same type of effect, and the mutagenicity module of ToxRead can be applied to address
this case. Other scenarios cover the category approach, and the bioconcentration factor (BCF)
module of ToxRead can be used for these scenarios.

The multiple choices offer more powerful strategies using read-across, but the drawback
is an increased level of subjectivity. Each expert is guided by his or her past experience;
pieces of information may escape her or his knowledge, the weight assigned to each element
of evidence and value may be different, and expressed in a subjective way, such as likely,
plausible, reasonable, level of concern, etc. Typically, this evaluation is not associated with a
quantitative value, and thus the integration between different results, such as different QSAR
models and read-across, is quite difficult.

Thus, even though examples of integration of results of QSAR and read-across models
have appeared very recently [6], the way to assess read-across is through manual, individual
expert assessment.

We show here the use of non-testing methods in the case of BCF. BCF has a significant
contribution in environmental assessments of the aquatic compartment [7]. BCF expresses the
likelihood of a chemical to concentrate and consequently accumulate in an organism, increas-
ing the risk of adverse effects [8]. REACH requires BCF data, which are usually used within
the Globally Harmonized System. BCF is typically done using the OECD test No. 305 [9].
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The disadvantages of experimental studies for determining the BCF of each chemical are
the high cost and the requirement of hundreds of vertebrate test animals [10]. The duration of
the test is at least 1 month. Considering the methods used by registrants to address BCF in
REACH, this endpoint is one of those with greater use of alternative methods, which have
increased in comparison with the first evaluation deadline [11]. The most used alternative
method to deal with BCF was weight of evidence (where also QSAR estimations are some-
times nested), followed by read-across (whose use has, however, decreased) and QSAR.

We studied an approach that offers the expert a systematic and reproducible way to anal-
yse the reasons for similarity in a guided way, showing data of good quality on similar
chemicals. In order to mitigate the subjectivity problems we developed a program for read-
across, called ToxRead [12,13]. It has been already described for mutagenicity. Here we
extend its use for BCF, and present the integration of its results with QSAR results.

2. Materials and methods

2.1 Experimental BCF data

Data for ToxRead have been derived from the set of compounds available within VEGA
[14]. The source of these data has been described in the literature, referring to the VEGA
models on BCF [15,16]; basically they derive from data considered of good quality, such as
the EURAS database [17], with the addition of further compounds from the literature [8,18].
When multiple data for the same compounds were available the arithmetic mean value was
used in the database for the read-across. In total there are 860 chemicals in the database
supporting the read-across.

2.2 The log P values

The log P values derive from two sources. One source is the experimental data obtained from
the EPI Suite KOWWIN model [19]. When the experimental value is not available, it is
calculated using the VEGA KOWWIN model [3].

2.3 The algorithm for visualization

The algorithm for the visualization of similar compounds has been adapted from the ToxRead
model for mutagenicity, with some modifications necessary to deal with a continuous end-
point as the BCF rather than a categorical one, as described within the results section. The
algorithm for measuring similarity is the same used within VEGA [20].

2.4 The rules for BCF

For the BCF endpoint, four sets of rules have been used. The first set of rules already exists
within the CAESAR model of the VEGA platform [3]; these rules, obtained with SARpy
software [21], specify if a chemical has a high probability of having a low BCF value, despite
its high log P value. The second set is a couple of new rules, also obtained with SARpy,
which identify compounds with high log P and BCF values. The third set of rules has been
obtained with the istChemFeat software developed by KODE within the CALEIDOS project
[22,23]; istChemFeat identifies if, in a given molecule, there is an atom/fragment, from a list
of about 700, representing chemical classes and atom-centred fragments. ToxRead finds if the
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target chemical has any of these atom-centred fragments, and on this basis it shows the
expected range of BCF value. Thus, families of compounds with the same fragment can be
evaluated. In this case, ToxRead indicates if the BCF value of chemicals within a family is
homogeneous, and this family is characterized by its mean value and standard deviation.
Finally, the fourth set of rules is related to empirical observation and reasoning, such as the
correlation among molecular weight, log P and BCF values, which is higher within the range
of log P values between 2 and 6.

2.5 Using the ToxRead software

The user has to choose the property of interest, in this case BCF. In the current version there
are only two properties. A previous paper discussed the use of the ToxRead software for
mutagenicity [13]. The chemical structure is introduced as SMILES. The user has to choose
the number of similar chemicals to be shown. This is the only option allowed.

3. Results

3.1 The visualization scheme of ToxRead for BCF

The target chemical is shown as a circle at the centre of the graph. The chemical structure
(with the SMILES: O=[N+]([O-])c1c(c(cc(c1Cl)Cl)Cl)) of the target chemical is shown in a
box on the right (see Figure 1). The target chemical shown in blue is linked to three other cir-
cles, which represent the most similar chemicals, in a number chosen by the user. The typical
number is three, but depending on the chemical it may be useful to explore a larger number.

Figure 1. ToxRead screen showing the similar molecules and the rules found in the analysis of the
molecule: O=[N+]([O-])c1c(c(cc(c1Cl)Cl)Cl).

4 E. Benfenati et al.
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Below we provide an example of using different number of similar chemicals. The similarity
is measured as described in the material and methods section. This provides only a first level
of evidence. Further information is obtained through the analysis of the rules. The rules are
endpoint specific, and allow more insights to be obtained on the likely property value,
depending on the endpoints. In other words, the first level of evaluation through chemical
similarity is purely on a structural basis, and it is the same approach applied to all properties.
It allows a rough assessment of the likely property value, on the basis of property values of
the most similar compounds. It is conceptually a kind of kNN approach, purely done on
chemometric, general features. This approach is suitable in case of poor availability of speci-
fic rules, which are endpoint specific, and provides simple information related to similar com-
pounds assessed on the general chemical structure.

In addition to this level of information there is a second level of information, which is
endpoint specific. The rules are specific features that can be useful for the evaluation of the
property value of the target compound; the rules are endpoint specific. For BCF the rules
indicate that within the chemical’s structure the software identified a special residue, which
can be useful for the evaluation of the property value. Associated with each rule there are
again similar chemicals, in this case the ones most similar to the target compound, and in
addition containing the residue at the basis of the rule.

The colours of the rule and of the similar chemicals are associated to a BCF scale, from
red to green, which is reported in the output graph (see Figure 1). Figure 2 summarizes the
graphical symbols used within the BCF module of ToxRead. Circles always represent chemi-
cals. The size of the circle is proportional to the similarity of the chemical; the largest is the
most similar.

The colour of the circle refers to the same scale of BCF values used for the rules. Yellow
means that the chemical has a BCF value of about 3, and thus it is close to the 3.3 threshold.
Red means a BCF value exceeding the 3.3 threshold, while green means a BCF value far
from that threshold. Of course different thresholds apply depending on the regulation, and the
exact experimental value of the similar chemicals is given by clicking on the circle.

Figure 2. The graphical elements used by ToxRead.
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Moving the mouse on the circles, if the same chemical appears more than once, the
software identifies all the occurrences with a yellow ring around the chemical. Indeed, the
same similar chemical may be similar simply from a chemical point of view, but it may also
contain one or more of the rules applicable to the target compound, and thus the same chemi-
cal may appear several times. For instance, in Figure 1 the chemical with the CAS number
18708-70-8 appears three times.

Figure 2 also shows that there are two different symbols for rules. Indeed, some rules,
indicated by rectangles, show that the target chemical has a residue that usually is present in
chemicals with a certain average BCF value. Again, the colour of the rule represents the BCF
value of the rule according to the scale. The rules drawn as triangles represent the empirical
set of rules dealing with physico-chemical property values associated to BCF value. A log P/
BCF interpolation chart is available for the target molecule and for each rule.

More information is available by clicking on the symbols. Clicking on the rule, the soft-
ware shows the average BCF value of chemicals containing that rule, the number of chemi-
cals with that rule within the software database, and the standard deviation of the BCF values
for the defined family of substances (see Figure 3). For instance, for the rule reported in
Figure 3 the software tool indicates that there is an aromatic nitro group, that there are 62

Figure 3. An example of the rules found for the target molecule (upper part of the figure) and the first
two of the similar molecules containing the rule (lower part of the figure).

6 E. Benfenati et al.
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compounds with that rule, and that the average value is 1.43 and the standard deviation is
1.09. There is also a button to click, if the user wants to see or download the 100 most simi-
lar compounds containing that rule.

Clicking on the similar chemical (circle), the software shows in a box its structure (see
Figure 4), with its experimental values (not only BCF, also other property values are reported
if available). The similarity value is also indicated; it ranges from 1 (identity to the target
compound) to 0. A good similarity value is higher than 0.85. If the similarity is lower than
0.7, there are many atoms and fragments which are different between the target compound
and the similar one.

Clicking on the interpolation chart, a figure reports the most similar molecules with their
log P value (experimental, if available, otherwise predicted with the VEGA model; if the
value is experimental the colour of the chemical is dark in the chart) versus their experimental
BCF value (see Figure 5). A dotted vertical line is drawn in correspondence with the log P
value of the target compound. The area between the highest and lowest BCF value is white,
indicating that the BCF value of the target compound should be within this area. Such a chart
can be useful to evaluate the relationship and the trend between the log P and BCF values
for the most similar compounds. There is also a table reporting the log P and BCF values of
the similar compounds.

3.2 Using the information given by the ToxRead software

The figures of the similar compounds give an example of how the software can help in the
assessment based on read-across. In Figure 1 the similar compounds have values ‘green’ or
‘yellow’, i.e. close to 3 or lower than 3. There are two rules associated with the target com-
pound, and both are ‘green’, indicating that generally this kind of chemical is safe. One rule,
rule 1.0, is related to aromatic nitro compounds, and its explanation is shown in Figure 3.
Rule 2.0 identifies if there is an atom that can accept H-bonds (N, O, F).

This kind of overview provides the first framework to assess the nature of the target sub-
stance. In this case there is no major concern (no ‘red’ rule, no ‘red’ similar compound), but
some chemicals may have a BCF value close to 3. Thus, a closer look at the similar com-
pounds allows a more detailed view. This is offered by the graph, as in Figure 5. The target
compound has an aromatic ring with a nitro group and three chlorine atoms linked to it. The

Figure 4. The three most similar molecules to the target chemical (as in Figure 1).
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most similar compound has the same kind of substituent groups, only in different positions.
The most similar compound has 2.72 log units as experimental BCF value. If we look at the
other two most similar compounds, one of them has only two chlorine atoms, while the sec-
ond one has four chlorine atoms. Chlorine brings a hydrophobic contribution, and indeed we
see that a BCF of dichloronitrobenzene has the BCF of 1.92 log units, while the tetrachloro
analogue has the BCF of 3.26 log units. If we look at the graph in Figure 5 there is quite a
nice trend with log P.

Figure 6 shows the same picture analysing a larger number of similar compounds. In this
case there are more compounds, and the trend with log P is confirmed. The new most similar
compounds now introduced show lower BCF values; indeed, one of them has an amine
group, which introduces hydrophilicity. The second new similar compound is a phenol, with
an expected lower BCF value. The third new similar compound has only one chlorine atom,
and as we have already commented this reduces the BCF value, also compared with the
dichloro analogue. Thus, the new similar compounds, all of them with a nitro group, confirm
the line of reasoning we had before. The new similar compound confirms the trend, but their
similarity is lower, compared with the first ones.

If we further extend our view to a larger set of similar compounds, as shown in Figure 7,
we see again a kind of trend, but more noise is present. In this case there are similar chemi-
cals which do not contain the nitro group.

3.3 Integrating results from QSAR models

We used the VEGA software, which provides three QSAR models for BCF: one is the
Meylan model, as developed within EPI Suite, the second is the CAESAR model [15],

Figure 5. Interpolation chart representing the three most similar molecules to the target molecule as in
Figure 1, with their log P versus log BCF values.
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and the third is a kNN model. VEGA provides an assessment of the applicability domain
in a quantitative manner, through the Applicability Domain Index (ADI), whose value
ranges from 1 to 0, and is based on a series of sub-factors. Briefly, the software evaluates
the similarity of the most similar compounds, and compares the predicted BCF value with
the experimental BCF values of the most similar compounds. Furthermore, it evaluates the

Figure 6. Interpolation chart representing the six most similar molecules, with their log P versus log
BCF values.

Figure 7. Interpolation chart representing the 15 most similar molecules, with their log P versus log
BCF values.
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correctness of the predictions of the most similar values. Other checks are done, consider-
ing the occurrence of unusual fragments in the molecule, and (for the CAESAR model)
perturbing the values of the descriptors, checking if these changes of the descriptor values
(up to 10%) provoke a much higher BCF value change. All these checks are used within
the ADI, and offer a good way to assess the model reliability for the specific chemical
and property.

In our first example the predictions of the three models are in a good agreement: values
range from 1.6 to 2.47 log units. The ADI values of the three models are good: they range
from 0.7 to 1. Thus, overall the likely BCF value is lower than 3, and is in line with the con-
clusions derived from ToxRead. The most similar compound, CAS number 18708-70-8, a
trichloronitrobenzene, has a BCF of about 2.7.

Thus, overall, these two parallel approaches, read-across and QSAR, can be used within a
weight-of-evidence strategy, and they reinforce each other. This is the ideal situation, because
the uncertainty of the overall evaluation is reduced, through a consensus process.

3.4 The example of a chemical with more uncertain and conflicting evidences

Another example is presented in Figure 8 (with the SMILES: CCCNCc1cc(Cl)c(cc1Cl)-c1cc
(Cl)c(Cl)cc1Cl), where there are two red rules and one green. Similarly, some chemicals are
red while others are green. Thus, there is a higher level of uncertainty, compared with the
previous example. The most similar compounds are those connected to the red rules; similar-
ity value: 0.863 for the three most similar compounds (Figure 9). Their experimental BCF
values vary from 4.02 to 5.69 log units. The compounds connected to the green rule are less
similar, with similarity value that varies from 0.784 to 0.849. These chemicals have a lower
number of chlorine atoms, and more polar groups. Thus, it may be more reasonable to refer
to the chemicals that are more similar.

Figure 8. ToxRead screen showing the similar molecules and the rules found in the analysis of the
molecule: CCCNCc1cc(Cl)c(cc1Cl)-c1cc(Cl)c(Cl)cc1Cl.
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3.5 Integrating read-across and QSAR for the second case study

The three models within VEGA provide values close to or higher than 4, so the prediction is
very bioaccumulative. The ADI of the three models are acceptable. Overall, the main pieces
of evidence for each QSAR model indicate that the chemical has a BCF value in the range
4–4.5. Combining the overall QSAR results, they support the conclusion that the rule for low
BCF value (Rule 1, related to donor atoms for H-bonds) in this case is overruled by the two
other rules, both associated with the biphenyl structure linked to two chlorine atoms (in dif-
ferent positions). The BCF value is probably above 4, but there is a higher level of uncer-
tainty, compared with the previous example, for the higher uncertainty associated with the
read-across evaluation. In this case the expert may get conflicting results from the read-across
evaluation provided by ToxRead, but the QSAR model helps in supporting the preference for
rules 2 and 3, which indicate the high log P value.

3.6 Discussion

As we have shown, the availability of tools like ToxRead opens the way to a deeper integra-
tion between the results of QSAR models and read-across. Thus, ToxRead increases the
possible integration of these two approaches. A first level of integration is the extent of agree-
ment between the results. Of course, if there is good agreement, it is easy to get a decision,
but problems may arise in the case of conflicting results. In our case the user can easily verify
this possible agreement. What we suggest is to arrive at an assessment on the basis of the
QSAR result(s) (each model should be assessed individually, if more than one is available,
and then the consistency of the results should be evaluated), separately to obtain a conclusion
for the read-across, and only finally to evaluate the agreement or disagreement between read-
across and QSAR(s).

The transparency and documentation offered by VEGA and ToxRead can provide valid
support to integrate the results of the models, evaluating the reliability of individual results
and thus facilitating the decision in case of conflicting results. We have shown here how to
proceed for the read-across case, reasoning about conflicting evidence. The relevance assigned
to each result can be established on that basis. This increases the flexibility and robustness of
the integration of the results of the two approaches. The integration, as we have seen, is not

Figure 9. The three most similar molecules to the target molecule of the Figure 8.
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the simple mathematical average of different results. Conversely, the chemical information on
the similarity of the chemicals and the presence of specific rules improve the possibility to
improve the overall assessment. The user has presented different pieces of evidence, which
can help in the process of reasoning (currently the user should save the preferred graph with
the chosen number of similar substances and related information. A future version of Tox-
Read will simplify the reporting process). The same rules are shown to all users, which do
not select them a priori. The evaluation is based on elements that are automatically shown,
and this increases the transparency and reproducibility of the process. Furthermore, the soft-
ware is based on parameters that are processed through simple mathematical equations. This
opens the possibilities to further integration of the results within the same platform, in an
automatic way, which may process and integrate results from QSAR and read-across. This is
not implemented yet, but this objective is greatly facilitated by the fact that each result is
based on parameters, which are produced by the software through quantitative parameters,
with a possible use within a unified program.

4. Conclusions

There are more and more cases of read-across done for practical use to register chemicals for
regulations such as REACH and the Cosmetics Directive. However, papers discussing the use
of read-across are less frequent, and even less frequent are papers on software for read-across.
In most cases, human experts perform the evaluation using their personal experience. This
opens the question of the possible subjectivity of the evaluation.

In order to offer a more systematic way to address read-across, we developed the publicly
available tool ToxRead, which has already been downloaded by hundreds of users. The
approach we adopted offers a general overview of possible reasons of concern, or the
expected behaviour of the target compound, on the basis of a collection of rules. These rules
can be analysed, and the most similar chemicals that are associated with the rules can be seen
and evaluated, also through the use of graphs summarizing the different scenarios. In this
way the multiple factors to be evaluated are represented in an overall visual scheme, and the
user should navigate and analyse them, assessing the levels of uncertainty (also through the
quantitative similarity scores of the related compounds) and the trend analysis representations;
greater care should be given to cases with conflicting elements (similar chemicals or rules
with large differences in values).

Within ToxRead it is clear that the read-across strategy is endpoint specific, since it refers
to specific rules which apply for BCF for instance, as shown here, and is not based on a sim-
ple chemical similarity on the related compounds.

QSAR is often criticized as a black-box approach, since it operates at the abstract level of
descriptors, not always easily related to simple reasoning. ToxRead addresses this kind of
need, to represent reasons of concern directly related to chemical structures, which are orga-
nized according to rules. Combining the two non-testing methods may reciprocally support
the individual assessment.

ToxRead is based on a diagnostic philosophy, while the QSAR approach is typically prog-
nostic. In other words, in the current version of ToxRead no prediction of the property for the
target compound is attempted. Prediction is left to the QSAR models, which are present for
instance within VEGA (www.vega-qsar.eu).

12 E. Benfenati et al.
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