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From learning to new goal generation in a bioinspired robotic setup
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ABSTRACT
In the field of cognitive bioinspired robotics, we focus on autonomous development, and propose
a possible model to explain how humans generate and pursue new goals that are not strictly
dictated by survival. Autonomous lifelong learning is an important ability for robots to make
them able to acquire new skills, and autonomous goal generation is a basic mechanism for
that. The Intentional Distributed Robotic Architecture (IDRA) here presented intends to allow the
autonomous development of new goals in situated agents starting from some simple hard-coded
instincts. It addresses this capability through an imitation of the neural plasticity, the property of
the cerebral cortex supporting learning. Three main brain areas are involved in goal generation,
cerebral cortex, thalamus, and amygdala; these are mimicked at a functional level by the modules
of our computational model, namely Deliberative, Working-Memory, Goal-Generator, and Instincts
Modules, all connected in a network. IDRA has been designed to be robot independent; we have
used it in simulation and on the real Aldebaran NAO humanoid robot. The reported experiments
explore how basic capabilities, as active sensing, are obtained by the architecture.

ARTICLE HISTORY
Received 14 July 2015
Revised 15 January 2016
Accepted 24 March 2016

KEYWORDS
Goal generation; active
perception; learning;
cognitive development;
intrinsic motivation

1. Introduction

Human beings are able to develop several mental abilities
during their life. This process is called cognitive devel-
opment and refers to those mechanisms as perception,
thinking, and understanding of the world; it is a mixture
of both genetic and learned factors.[1] How humans are
able to develop these capabilities during their existence
is not completely understood, but the autonomous gen-
eration of new goals and behaviors upon simple innate
criteria appears as a crucial factor in this evolution, to
allow individuals to adapt their behavior to the various
situations they face everyday.

In order to build artificial agents capable of interacting
in an effective way with humans and to be really inte-
grated in our life, robotics might take inspiration from
those processes that allowour brain to show this cognitive
development. The here presented work intends to con-
tribute to the achievement of this objective: its purpose
is to create a bioinspired agent, based on a simplified
model of the brain functionalities that characterizes the
autonomous development of new goals, and able to learn
new behaviors that could attain these goals.

The problem of robot’s adaptation has been addressed
in several ways in literature. A first attempt is behavior-
based robotics, which states that the agent should adapt
its behavior to the environment in order to accomplish
its goals, but these internal objectives are only the

CONTACT Giuseppina Gini giuseppina.gini@polimi.it

hard-coded ones andnoothersmay be learned during the
agent’s life.[2] On the contrary, developmental robotics
tries to imitate the emergence of cognition in natural
and artificial systems.[3] Developmental robotics aims at
the cognitive development of the agent making it able to
adapt to the environment and to autonomously develop
new motivations that were not present at design time.

Autonomous development and lifelong open-ended
learning are observed in mammals, and especially in hu-
mans, which engage in activities that are not directly
aimed at survival.

Manzotti and Moderato [4] argues about a forthcom-
ing science of intentional changes; it focuses on two
paradigms that have been developed in AI and psychol-
ogy: intrinsic motivation and Hierarchical Open-ended
Architectures (HOA).[5,6] Interesting for our purposes
is that it addresses the issue of learning new motivations.
Intrinstic motivation and HOA are closely related to the
debate among the evolutionary psychology model (that
privileges innateness) versus the social science model,
which endorses the open-ended capacity for change.

Intrinsic motivation aims to model doing something
because it is inherently enjoyable.[7,8] Intrinsically mo-
tivated behaviors can result from innate rules such as
maximizing novelty, or be the outcome of an open-ended
architecture. Machine leaning algorithms (RL), as rein-
forcement learning, are able to incorporate some aspects

© 2016 Taylor & Francis and The Robotics Society of Japan
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2 A. M. FRANCHI ET AL.

of intrinsic motivations; they have been applied in
robotics, in particular for the acquisition of motor skills,
to increase the autonomy of artificial systems with
motivations that can support lifelong autonomous learn-
ing. Bioinspired computational models are linking some
neuroscientific discoveries to specific computational
mechanisms.[7] Fiore et al. [9] proposed a computational
model of the basal ganglia that uses a unique signal to
obtainboth intrinsic and extrinsicmotivations, and tested
it in manipulation tasks.

Considering its internal status and also the implicit
motivation of fulfilling innate instincts, the robot should
carry out the selection of the action; this kind of internal
motivation has been widely covered in [10]. An interest-
ing study tried to model both curiosity andmanipulation
in a robotic setup to drive the robot in understanding the
dynamic of objects [11]; the explorative behavior shown
by the robot is motivated by novel phenomena and is
modeled as a probability system. Other computational
mechanisms related to intrinstic motivation are being
proposed in the field of active learning, in particular
in relation to supervised learning systems.[12] Another
different approach exploits the theory ofMotivatedRL, in
conjunction with different models of attention and goal-
oriented behaviors; [13] presents an architecture able to
learn both an introspective policy for when an agent
should create and delete goals, activate or suspend skills,
and amultiple-optionpolicy formapping states to actions
for those skills. An implementation for controlling non-
player characters in computer games has demonstrated
that the addition of introspection helps in focusing atten-
tion on more complex goals and in learning quickly, but
no tests on robots have been performed.

Let us now go back to HOA. Many psychological
approaches apply traditional learning paradigms (as the
operant conditioning) to explain how an intentional cog-
nitive agent may produce a new goal. Being motivated
and developing new goals are different, but both involve
learning. Here is howHOA plays a role: to take decisions
an agent must be able to represent external stimuli and
states, in an unlimited hierarchy, where new concepts
and motivations could be developed. Openess is a key
property for a cognitive architecture to generate new
goals.

Our approach here is different in some ways from
those previous works. We want to define a system
using some kind of internal motivation and able to
autonomously generate new goal or interests starting
from a simple set of innate instincts and imitating the
functionalities of the brain. Our theory is loosely
inspired by the perceptual control theory (PCT), an early
social science model for human behavior stating that ‘it
is perception which gives form to behavior’.[14] PCT

experiments have shown that an organism controls nei-
ther its own behavior, nor external environmental vari-
ables, but rather its own perceptions of those variables.
In our experiments, we indeed see a natural emergence
of an active perception like behavior, which is known
to be fundamental in robotics since the landmark paper
by Bajcsy [15]; active sensing means that the perception
process integrates purposeful actions and sensing so to
improve data interpretation according to the task.[15]

With our research we specifically address an interme-
diate level of cognition aimed at allowing mammals and
humans to be aware of the surrounding environment,
and then to interact with it, even without very complex
reasoning. We want to focus on how to make cognition
emerge in agents and robots, not caring about how and
where to drive them, a concept called ‘artificial curiosity’;
this terms implies that artificial agents should explore and
discover how the external worldworks, interactingwith it
through the sensor-motor interface.[16]Afirst attempt of
embodying the concept of curiosity in a humanoid robot
showed that it can improve and accelerate the learning of
its configuration space.[17]

We claim that the capability of goal generation is an
essential precondition to enable robots to fit into humans
everyday life; what is missing nowadays in robots is this
skill of acting in a consistent manner with respect to
changes in both the surrounding environment and their
own structure; agents able to develop new goals emerging
from manipulating the environment would be able to
effectively interact with people.

Our work takes inspiration from nature, in particular
from the high-level structure and communication flow of
data in the human brain: three areas of the brain and their
interconnections are involved in the cognitive develop-
ment process: cortex, thalamus, and amygdala.[18] See
Figure 1 for a schematic representation of the brain and
its transposition to the proposed model. Our Intentional
Distributed Robotic Architecture (IDRA) is an open net-
work of elementary units, called deliberative modules
(DM), which enables this active learning process. The
network is open, and is composed by several layers con-
nected both in feedforward and feedback mode.

Concepts developed in machine learning (ML) seem
to find their correspondence in the brain, from structural
organization to the neuronal level. The ML perspective
deals with states and values, whereas the neuronal per-
spective works on finding and interpreting neuronal sig-
nals. Take the example of reinforcement learning (RL);
the agent learns from the consequences of its actions, and
it selects its actions on the basis of its past experiences as
well as for trying new choices. For ML the reinforcement
signal is a numerical reward,which encodes the success of
an action’s outcome. Looking for a biological mechanism
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ADVANCED ROBOTICS 3

for reward, we expect that the reward information be pro-
cessed by specific neurons in specific brain areas. Some of
the individuate neurons are indeed in the cortex and in
the amygdala; we are not modeling their activation, but
instead only their connections.

Beside the DMs a single instincts module (IM) con-
tains the hard-coded objectives, i.e. the innate instincts,
exactly as in the amygdala. The IM spreads all over the
network a signal which reflects the emotional state of
the agent with respect to genetic criteria: the more the
current state of the robot meets its own innate goals,
the higher is the signal. Each DM is in turn composed
of two sub-modules: working-memory (WM) and goal-
generator (GM) module. WM acts as the cerebral cortex
and returns the cortex activation in response to the actual
sensorial input. The GM finally performs the generation
of newgoals; it receives the values fromWM, and through
Hebbian learning it lets new objectives emerge; this mod-
ule generates a scalar signal in the [0 1] range indicating
how much the current state meets these new goals.

To execute the goals, the motor system (MS) may be
activated. At each cycle, the network of DMs outputs a
couple composed by a vector and a scalar; it is sent to the
MS, which should generate movements consistent with
the goals of the agent. A movement is a composition of
a series of elementary signals, called motor primitives
(MPs), which represent muscular activations over time;
this muscular synergy leads to the execution of complex
movements.[19,20]

We already illustrated the potentiality of IDRA in
classification tasks, both on visual and audio signals [21];
in the present paper insteadwe devise two experiments to
verify its goal generation capability as well as its ability in
learning how to adapt its behavior to new objectives. In
the first experiment, the robot learns how to distinguish
a particular shape starting from an innate instinct to
be attracted by highly saturated figures; in the second
experiment, we focus on the active-sensing tasks: the
NAO robot has to autonomously explore and learn new
movements of its arm in order to satisfy its instincts.

The main contributions of this work are:

• the design and full implementation of a cognitive ar-
chitecture based on an amygdala-thalamo-cortical
model, as proposed in [22];

• the integration of an Intentional Architecture and a
MS;

• the exploration of active-sensing paradigm for
learning;

• the validation of the architecture by testing it on
robotics tasks.

Our proposal is a step in the direction of trying to inte-
grate psychological and computational methods, and to
investigate how it can impact the design of autonomous
robots.

2. A computational model of the
Amygdala-Thalamo-Cortical structure

The IDRA architecture takes inspiration from the
amygdala-thalamo-cortical circuit in the brain at its func-
tional level. Several studies in literature have shown the
importance of these brain areas in cognitive develop-
ment, which is a network phenomenon, and does not
exist in synapses or single neurons.[24] In the following,
we sketch out themost significant functionalities of those
three involved areas and their interconnections (see Fig-
ure 1).

The cortex is the external part of the brain; it is di-
vided into two hemispheres and receives signals from the
sensory organs. There is a specific section connected to
each sensory input, e.g. the visual cortex or the auditory
cortex, however different cortical areas can properly react
to different stimuli sources,[6,25] since the statistics of
the incoming signal is the key for the cortex to adapt
to new inputs.[26] The whole cortex is composed of
the same kind of cells and therefore each cortical area
has the ability to virtually implement any computational
skill.[27,28] For imitating this interesting capability of
the cortex we sought for a general approach for repre-
senting stimuli that valid candidate for this high-level
representation.[29] ICA is a powerful way to analyze
multi-variate data, as sensorial inputs are, and is able
to learn a generic decomposition of sources based on
their statistical properties, exactly as it happens in human
brain; this data-driven analysis can be used to describe
data at an higher level.[30]

The thalamus is located deep in the brain; it plays
a central role for mammals in the development of new
motivations, as well in the choice of what goal to pursue.
The thalamus is a ‘central, convergent, compact minia-
ture map of the cortex’ [31]; its structure is partitioned
into segments, each one in synchronized projection to a
specific sub-area of the cortex. Since the latter carries on
most of the data processing, storing and distribution, the
thalamusmust provide to the corresponding cortical area
which goal have to be pursued.[32]

The amygdala is located within the medial temporal
lobes; it is heavily connected to the cortical areas and
is involved in the generation of somatosensory response
on the basis of innate goals.[33] Experimental evidences
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4 A. M. FRANCHI ET AL.

Figure 1. A simplified structure of the human brain [23] and its transposition in our architecture.

Figure 2. Several DMs are interconnected in a layered network;
each DM is composed by two sub-modules: WM and GM; a IM
feed each DMwith an emotional signal.

show that the brain bootstraps the generation of new
goals taking advantage of the innate criteria located in
the amygdala.[34]

Asides from these three areas, this work approaches
basic concepts toward the generation of motion for en-
abling the so called sensorimotor circuit. That includes
the cerebellum [35] and the spinal cord.[36] The motor
primitives model is widely referred to as the most valid
model for explaining motor learning; it refers to the gen-
eration of complex trajectory by combining a limited set
of waveform modules.[37]

3. The IDRA architecture

The simplified functional model presented in the pre-
vious section has been transposed in a ‘goal-generating’
architecture, that is the IDRAarchitecture.[22] It is essen-
tially a network of DMs plus a single IM, which simulates
connections and interactions between the cerebral cortex,
the thalamus and the amygdala.[38] Figure 2 shows a
schema of the whole architecture.

Each DM is in turn composed by one WM and one
GM, modeling the interaction between the thalamus and
a single sub-area of the cortex. All the DMsmay be linked
in any way, while the IM broadcasts its signal to all the
DMs, without receiving data back. This network has one
or more input coming from all the available sensors,
possibly filtered to extract meaningful features, and two
outputs: one vector representing the level of activation of
the WM generated by the current sensory input, and a
scalar signal stating how much the actual input satisfies
both instincts and generated goals.

The architecture, thanks to the GM (that emulate the
functionalities of the thalamus), is able to autonomously
generate new goals upon some simple innate criteria;
these lasts are called instincts and are implemented as
hard-coded functions in the IM (the amygdala of the
system), whose output signal tells the agent its emotional
state with respect to instincts.

The WM acts as the cerebral cortex; it receives input
from sensors or from other DMs and performs unsuper-
vised categorization. The input is elaborated twice: first
with independent component analysis (ICA),[29] then
with a clustering algorithm. ICA allows to abstract from
the type of the incoming stimuli. During a training stage
several input data examples are presented to the robot so
that it learns a decomposition of that particular type of
input (i.e. several independent components are extracted
from data); at runtime each new input is projected in
the n-dimensional space of the previously created inde-
pendent components to both reduce the dimension of
the problem and build a general representation of the
incoming data. Equation (1) formalizes this projection:

W = IC × I (1)

whereW is a set of weights representing the projection of
the raw vector input I , and IC is the matrix of indepen-
dent components. The next step, i.e. clustering of input
data, is performed on this set of weights W instead of
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ADVANCED ROBOTICS 5

on raw data; the result is a code of the input. During this
process, each vectorW is assigned to an existing cluster if
its distance from that is below a previously-set threshold,
otherwise a new cluster is created, and the newly acquired
vector is its centroids. A maximum number of cluster for
each WM is set a priori to 128 in out tests. The output of
the WM is a vector containing the activations of each
stored clusters, which is inversely proportional to the
distances of the new input data from the each centroids
as in Equation (2):

yi = ρ(x,Ci) (2)

where yi is the distance of the input x from the centerCi of
cluster i. The generation of new categories depends also
on the internal relevant signal; only relevant inputs are
categorized, so that the module learns only meaningful
information. With the term relevant we are referring
to input data that excite the most either the IM or the
GM, meaning, respectively, that they satisfy hard-coded
criteria or generated goals. Only input that generate an
internal signal greater than a fixed threshold are consid-
ered relevant; the threshold value is set empirically so
to have a good trade-off between speed and quality of
learning.

Finally, the GM is closely connected to theWM and it
uses the activations of categories computed by the WM
and an Hebbian learning function to develop new goals.
It returns a signal os stating how much these new goals
are satisfied, calculated as in Equation (3):

os = max
i

(yiwi) (3)

where yi is the activation of the ith category in the WM
andwi is its corresponding gating weight (wi ∈ [0 . . . 1]).

These weights are updated at each iteration using an
Hebbian learning function (Equation (4)):

wi = wi + η(hsyi − (wiy2i )) (4)

where η is the learning rate and hs is a control hebbian
signal we fixed to one in our experiments.We expect that
the os signal after random small variations will increase
according to the action taken by the robot. High values
of os denote the emergence of new goal.

The output of the network is the vector produced by
WM and the scalar produced by GM; they are sent to
the MS. Here we propose a solution based on the ‘State-
Action’ table for movement evaluation and on the con-
cept of Motor Primitives for the composition of complex
movements.

Several scientific evidences have led to the idea that
movements are composed of elementary building blocks,

Figure 3.Motor primitives composition: each Gaussian function is
a motor primitive; the weighted sum of all these primitives is the
finalmovement; learning amovements is thus learning an optima
set of weights.

called motor primitives and voluntary actions are gen-
erated by bonding them to each other either simulta-
neously or serially in time (Figure 3).[19,20] Following
this idea, we use motor primitives to create complex
muscular activations. A motor primitive could be seen
as the activation of a muscle during time: the higher the
value of the primitive, the stronger the muscle activation.
We implement primitives as Gaussian functions delayed
in time (Equation (5)):

p = e
−(x−c)2

2σ2 (5)

where c is the center of motor primitive p and σ is its
amplitude. Then a movement m may be described as in
Equation (6), where wi is the ith weight:

m =
∑

i

wipi (6)

The first step for movement generation is a new clus-
tering of the input state via a K-means algorithm, using
the clusters defined during a training phase. Given the
current state Y , the ‘State-Action’ table is able to learn
and select the best movement to be performed; this table
associates a state Y and a movement (in term of weights
wi of motor primitives) to the relevant signal coming
from the architecture (see Figure 4). When the system is
in a certain state and performs a particular movement,
the output relevant signal is stored in the table; this signal
is treated as a simple reward for an action. There are three
different possibilities when a new input is read:

(1) if there is a movement associated with a relevant
signal above a defined threshold, that movement
is selected (memory skill);

(2) if there is a movement not yet performed, that
movement is selected (bootstrapping);

(3) if all movements have already been performed at
least once and no one is associated with an high
relevant signal a new random movement is added
to the list (explorative behavior).
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6 A. M. FRANCHI ET AL.

Figure 4. The State-Action Table; Y1, · · · , Yn represents the actual
state, Wm1, . . . ,Wmn are the weights for movement generation;
each entry is the reward of the action, i.e. the Relevant Signal.

The proposed model has been implemented in the
‘IDRA Software’; a brief outline of its structure is pre-
sented in the Appendix 1. The software is open and may
be freely examined and used; for any question please refer
to the first author of this paper.

4. Experimental results

This section describes the experimental phase; the pur-
pose of these tests is to check whether the IDRA archi-
tecture here described is able to generate new goals and
to learn consistent behaviors (i.e. movements), starting
from simple hard-coded criteria. The IDRA architecture
may potentially be used for controlling any kind of robot,
regardless its type, its available sensors and actuators;
we select the NAO, a humanoid robot by Aldebaran
Robotics, with 25 degrees of freedom (DOF) and many
sensors, including two cameras, four microphones and
two sonars.

Two experimental setups have been prepared: the first
focuses on sensing and deals with shapes and colors, as
reported in [18,22], the second explores the creation of
new movements in response to a specific sensorial input.
Tests have been repeated several times eachwith different
parameters: initial states and robot initial head and arm
position to avoid bias. Statistics about the convergence
of the learning phase have been collected; since it always
appears at about 1000 internal cycles of the sensing-acting
loop, we do not list all these data.

4.1. Learning from sensing

For the first experiment IDRA has a single DM and two
filters in the input stage, the first computing the log-
polar transform1 of the visual input from NAO’s top
camera, the second extracting the overall saturation of
the same image. The only innate instinct hard-coded in
the amygdala is the attraction for colors, i.e. the robot

is excited when it clearly sees high saturated figures or
objects. As DOF we select the head movements, namely
HeadPitch andHeadYaw. A simple attentionmechanism
is active: the greater is the interest of the robot for what it
is looking at, the smaller is the angular head rotation in
both the directions. The visual input for this experiment
is made of two boards alternatively put in front of the top
Nao’s camera: the first board presents a series of black
shapes, among which there is a black star; the second
board presents only stars filled with three different highly
saturated colors.

This setup allows the robot to explore the environment
moving its head, looking for something interesting, either
from innate or learned point of view: an active sensing
behavior is created.

The test consists in three consecutive phases. Initially
we present to the NAO the first board with only black
figures; the interest of the robot is equally spread all
over the board, not showing any particular interest for
a specific shape. Both internal signals are very low and
no interesting input data are clustered in the WM. Then
the second board is shown; the robot, driven by its innate
attraction for colors, focuses on the three star-shaped
figures; the IM signal is now high and 128 categories (the
maximum allowed) are created in the WM after 1000
cycles;moreover theGMsignal grows indicating that new
objective are starting to be generated. Lastly, the board is
switched again to the first one and the interest of the
robot is now mostly focused on the star-shaped figure,
even if it is totally black. Figure 5 shows the result; in the
top half blue dots showwhere the robot is looking at with
respect to the board; in the bottomhalf, for each stage, the
red signal is the output of the IM and tells us how much
instincts are satisfied, while blue signal comes from the
GM and describes when new goals are generated. In the
third phase, we observe that the red and blue signals are,
respectively, low and high, confirming that the robot is
acting only according to new goals, specifically an interest
in the shapes of thefigures that adds to theprevious innate
interest for colors. The figure shows the two signals from
0 to 2000 cycles.

4.2. Action for sensing

For the second experiment, we add theMS since we want
the robot to make more complex movements; yaw and
pitch of the head are nowfixed andwe consider themove-
ment of the four joints of the right arm, namely RShoul-
derPitch, RShoulderRoll, RElbowRoll, RElbowYaw. The
attraction for coloured objects is the innate instinct in the
IM. For moving the arm we define five motor primitives
as in Equation (5), setting ρ = 6.7 (empirically a priori
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ADVANCED ROBOTICS 7

Figure 5. From left to right the results of the three phases of the first experiment; blue dots represents where the robot was pointing at,
red and blue signals are, respectively, from the IM and the GM.

Figure 6. In the three-dimensional (3D) graph blue dots represent the positions of the right hand at each cycle, while in red are highlight
those corresponding to good positions (as shown in the right part of the image); the higher concentration of dots in these three areas
demonstrates that the robot has learnt various movements to accomplish its goal.

evaluated) and amean value computed in order to equally
distribute these functions on a scale from 0 to 100.

The log-polar and a saturation filter as in the first
experiment, plus a third filter for proprioceptive data,
called ‘rightArmPosition’, to retrieve joints values are
used. Two layers compose the IDRA network: in the first
there are two DMs, one for processing log-polar images,
the other for receiving proprioceptive data; both send
their output to the third DM in the second layer and its
output is sent to the MS.

From this experiment, we expect the robot to start
exploring itsmotion skills for fulfilling its goals randomly
composing movements of its arm, and eventually learn-
ing how to perform appropriate complex movements in

response to sensing. The attention is now mainly toward
the robot exploiting this active sensing loop.

We set a simple objective: the robot has to look at
the red toy it holds in its right hand; we do not hard-
code any movement for the right arm, but its innate
interest for colored objects should drive him in learning
the rightmovement composition to get the red heart near
the camera.

Each trial of the experiment starts with the right armof
the robot in a random position; the State-Action table is
initially empty and movements are consequently chosen
and executed randomly for bootstrapping the system. For
each trial the system records in the table the associated
os signal; after several movements the table starts filling
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up and several categories (about 100) are collected. The
system may now choose movements coherently with the
os signal received from the architecture; in our trials this
bootstrap process took a few tens iterations, a variable
value due to initial random action selection.

Going on with repeating this schema, the table is filled
and sobestmovements start to be frequently repeated; the
more a movement is performed, the more it is reinforced
by the architecture.

Figure 6 shows the positions of the end effector of the
robot in a 3D space during a thousand iterations; the
frame of reference is centered in the body of the robot.
We can see the emergence of several clusters; the red
ones, associated with the highest relevant signal, have
a visual 3D representation of the NAO. We can notice
that for these configurations the ball is roughly at the
center of the visual field of the robot, meaning that the
movement was appropriate. The highest concentration
of points in these three clusters means that the robot has
autonomously learnt to move accordingly to its instincts.

The implemented MS is just a starting point to check
our hypothesis on movement generation; actually there
are some drawbacks, especially for the limited power of
the State-Action table, and it misses some biologically
aspects that has been proven to be important for human,
such as the associative memory of sequence patterns.[25]
But preliminary results confirm what we expected from
the robot: the motor primitive paradigm is a good can-
didate for movement learning and generation, and the
implemented cognitive architecture exploits well for the
integration of perception and action for learning a sen-
sorimotor map.

5. Conclusion

This paper deals with a novel approach to developmental
robotics; it presents an intentional ‘Goal- generating’ ar-
chitecture, namely IDRA, which simulates the structure
and the interaction among three brain areas, the amyg-
dala, the thalamus, and the cortex, which are known to
play a key role in the human cognitive development, in
terms of information processing, conceptual resources
and perceptual skill. We integrate this architecture with a
MS, which allows implementing the active sensing
paradigm in combination with themotor primitives con-
cept for the generation of new movements. In short, the
three mentioned cerebral areas are translated with three
corresponding modules, the WM for the cortex, the IM
for the amygdala, and the GM for the thalamus.WM and
GM are grouped in a fourth module, the DM, making
the strict interaction between the thalamus and a single
sub-area of the cortex. Several DMs are grouped in a
layered open network, based on the principles of HOA:

its input is coming from sensors and two outputs are sent
to the MS, which is in charge of selecting and composing
a movement to fulfill the actual goal, whether innate or
acquired.

The proposed model wants to specifically consider
basic sensing and actuation, two activities required for
learning and for cognitive development. Our model is
able to adapt to virtually any kind of sensory input, ex-
ploiting the statistic structure of data exactly as the hu-
man brain does; for actuation a simple motor primitive
paradigm has been adopted.

The two sets of experiments here reported aredesigned
to test the validity of the model, in particular its ability
to learn new goals (as in the first experiment where the
robot learns to distinguish shapes) and to compose new
behaviors, consistent with these goals (as in the second
experiment). These two skills compose the active sensing
activity. The results show that the agent is able to take
sensorial input and to learn how to compose movements
for fulfilling its instincts.

Overall our results confirm the basic choices illus-
trated in the introduction; here we discuss some aspects
of them with reference to other relevant literature.

The open-ended development of motor skills has at-
tracted research in robotics due to the obvious role that
the sensory-MS has in planning and action executing. As
pointed out in [39] on the question about which inter-
nal motivations signals are best suited to decide which
skills to learn, the best signals are those based on mecha-
nisms that measure the improvement in the competence
rather than the errors. Our conclusions are similar; even
thoughwe arenot considering the classic action-planning
paradigm, but only a preliminary phase where the action
is taken to fulfill an innate instinct, errors are not directly
used for learning where only the measure of the instinct
fulfillment is considered.

Law et al. [40] presents a system based on internal
motivation to acquire eye-arm reaching skills. We do
not discuss here the reaching task, for which we have
demonstrated in past research [41] that it can be obtained
by a purely unsupervised learning method starting from
a system that reconstructs images encoded with sparse-
coding features. Even though a system that uses neural
coding as basic representation could be integrated in
IDRA we have opted for directly using the high-level
representation of the neural functions. Learning in IDRA
is only based on the capability of clustering incoming
signals andusingHebbian rule.Other learningparadigms
need to be integrated to consider other emerging
properties of the biological system. We have introduced
a neuronal-inspired RL in IDRA in amore advancedMS,
where the Actor-critic architecture has been
selected.[42]
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An interesting extension of the cognitive architecture
is about language acquisition. Intrinsic motivation has
been the driver in the model of [43] of the initial devel-
opment of speech in infants. We are also experimenting
IDRA in learning simple words from the babbling phase,
considering this task as a special case ofmotor primitives.

In the investigation about the possible role of IDRA
in defining higher level functions, we have already app-
roached the categorization problem and experimented
how to cascade different DMs to recognize images and
sounds.[21]

Several more concepts will be further explored in the
future. An important aspect for long-life learning is neu-
ral plasticity, a property of the human brain related to
the endless processing of sensorial input necessary for
cognitive development. In IDRA, we can maintain an
active network with a workingmemory of the agent state,
its motivations, its skills, but we do not have a forget-
ting mechanism needed to reduce the complexity of the
network.

Note

1. The log-polar images allow faster sampling rates on
artificial vision systems without reducing the size of the
field of view and the resolution on the central part of the
retina.
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Appendix 1. Implementation

The biological model and the architecture here presented are im-
plemented in the IDRA software; the main idea behind the real-
ization of this system was to create readable and modular source
code, so that users may ‘Plug&Play’ their own robots in few simple
steps, regardless its type, its structure or the available sensors. The
entire project is written in Microsoft .NET C#, with the use of the
IDE Visual Studio 2012 (VS 2012).

We started from the definition of all the classes and the library
needed, collecting them in an UML class diagram; a simplified
schema is reported in Figure A1.

The flow of information in the architecture is fairly simple: it
starts with the ‘Body Class’ retrieving data from all the enabled
sensors installed on the robot; these signals are passed to the ‘Filter
Class’, which elaborates raw data to extract meaningful informa-
tion (e.g. colors, lines or edges); then the ‘Intentional Architecture’
class receives this filtered information; in here it is defined the
network of DMs and the IM, and when a new input is ready the
system starts the computation, making the information flow from
one layer of the network to the following. The two final outputs are
sent back to the ‘Body Class’, where a set of available ‘Behaviours’
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Figure A1. An abstraction of the UML diagram of the IDRA
architecture.

(i.e. a list of actuators to be used) is defined and a propermovement
is generated.

Going down into further details, the definitions of all the
implemented robots are in the ‘AgentsLib’ folder; all the .cs files
describing a new robot must respect the ‘RobotInterface’, which
imposes the presence of all thenecessary functions for this architec-
ture to communicate with the agents (e.g. macros for connecting to
robot or for reading sensors). All the data manipulation functions
are defined in the ‘InputLib’ project; it contains an ‘inputProcess-
ing’ class which instantiates all the filters necessary to deal with
raw data; these filters are clustered into different classes, one for
each type of sensor (e.g. audio, video, or tactile) and they contain
specific filtering algorithm and methods for encapsulating data
into predefined formats; this re-formatting of raw sensory data
into an high-level structure is the key that makes the Intentional
Architecture independent form the number and the type of sensors

implemented on the robot. On the opposite side there is an ‘Out-
putLib’ project, which is necessary for the ‘BodyLib’ to knowwhich
actuators and behaviours are available on the robot in use. As
soon as the Intentional Architecture has finished a cycle, the two
outputs are sent to the ‘outputSynthesis’ class, which contains all
the ‘Behaviours’ for the generation of robot’s movements, each
one with its list of actuators to be used and a State-Action table
for the choice of the best movement. The ‘outputSynthesis’ class
forwards its input to each Behavior, which returns the movements
to apply to a specific actuator; a total list of movements is created
and sent back to the Body class and then again to the Robot class
for movement actuation.

The brain of the architecture is the ‘IntentionalArchitecture-
Lib’, that is the actual implementation of the amydala-thalamo-
cortical model previously presented; it contains the definition of
all the modules: ‘WorkingMemoryModule’, ‘DeliberativeModule’,
‘Goal-generatorModule’ and ‘InstinctsModule’, which is in turn a
collection of subclasses (the hard-coded instincts) each one dealing
with a specific sensor type. The ‘IntentionalArchitectureLib’ is
responsible for creating andmanaging the network of DMs, taking
care of synchronization, data forwarding, inter-DMs communica-
tions and input/output retrieving.

All the software here detailed makes use of several XML files
for saving and restoring all the configuration settings of the system;
they are stored in a fixed directory structure and are editable both
by hand and via the GUI for the most complex ones. In particular
the ‘Robot Folder’ contains one XML file for each available robot,
which describes for example its IP address for communication, its
name, all the on board sensors and actuators.

Note that all the source code is available for free for testing
purposes, collaboration or for experimenting with other robots.
Please refer to the authors of this paper for more information.
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