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Bio-inspired Classification
in the Architecture of Situated Agents

G. Gini, A. Franchi, F. Ferrini, F. Gallo, F. Mutti
and R. Manzotti

Abstract Cognitive development concerns the evolution of human mental capabil-1

ities through experience earned during life. Important features needed to accomplish2

this target are the self-generation of motivations and goals as well as the develop-3

ment of complex behaviors consistent with these goals. Our target is to build such4

a bio-inspired cognitive architecture for situated agents, capable of integrating new5

sensing data from any source. Based on neuroscience assessed concepts, as neural6

plasticity and neural coding, we show how a categorization module built on cascad-7

ing classifiers is able to interpret different sensing data. Moreover, we see how to8

give a biological interpretation to our classification model using the winner-take-all9

paradigm.10

Keywords Bio-inspiration · Perception · Classifiers cascade · One-class classifier ·11

Winner take all12

1 Introduction13

A challenge both for engineers and neuroscientists is to develop a robot that acts and14

thinks like a human; despite this problem is not new and researchers have worked15

on it since the twentieth century, in the last decades we have seen the arising of16

biologically inspired approaches. These kinds of solutions mimic what we know17

about the brain to shape the robots in a similar way. The current aim is to develop18

a complete conceptual and computational framework describing both how the brain19

might work and when the cognition arises.20
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2 G. Gini et al.

During their life humans develop their mental capabilities: this process is called21

cognitive development and concerns how a person perceives, thinks, and gains under-22

standing of the world by the interaction of genetic and learned factors. A fundamen-23

tal aspect in cognitive development is the autonomous generation of new goals and24

behaviors, which allows the individual to adapt to various situations. In order to real-25

ize agents capable of interacting in an effective way with humans, robotics should26

study the processes of human brain that allow the cognitive development [1].27

Our work gives a contribution to the achievement of this objective: its purpose is28

to create a bio-inspired model based on human brain processes that should make the29

agent able to autonomously develop new goals as well as new behaviors consistent30

with these goals. In this broad area, we address an intermediate level of cognition,31

what allows humans to be aware of the surrounding environment and then to interact32

with it. This capability is an essential precondition to create agents able not only to33

act in a consistent manner in response to the changes in the environment, but also to34

develop goals that can emerge [2, 3].35

As a model of the goal generation behaviors, we have chosen the amygdala–36

thalamus–cortical interaction [1]. The cerebral cortex is divided into lobes, each37

having a specific function. The parts of the cortex that receive sensory inputs from38

the thalamus are called primary sensory areas [4]. The thalamus is the primary site39

of relay for the sensory pathways on their way to the cortex [5]. It is partitioned into40

about 50 segments, which do not directly communicate with each other. Instead, each41

one is in synchronized projection with a specific segment of the cortex, and receives42

a projection from the same segment. Therefore, while the cortex is concerned with43

data processing, the thalamus determines which goals have to be pursued. Lastly, the44

amygdala is a group of nuclei in the medial temporal lobes heavily connected to the45

cortex and involved in the generation of somatosensory response taking advantage46

of hardwired criteria [6].47

Our Intentional Distributed Robotic Architecture (IDRA) is a network of ele-48

mentary units, called Intentional Modules (IM) that enables the development of new49

goals, together with a Global Phylogenetic Module (GPM) containing the “innate50

instincts,” as in the amygdala. The network is composed by several layers dynami-51

cally connected in forward or feedback mode. Each IM contains the Categorization52

and the Ontogenetic modules (CM and OM). The CM mimics the cerebral cortex53

and returns a vector that represents the neural activation of the cortex in response to54

the input; the OM receives this vector and through Hebbian learning develops new55

goals, returning also a signal stating whether the current state meets the new goals.56

The IM receives signals from both GPM and OM and returns the more relevant of57

the two and the neural activation computed by the CM.58

Therefore, after all the sensory input has been acquired, filtered, and sent to the59

IM network, each module returns a state vector and a signal indicating how much60

the actual environmental state is satisfying the agent goals. The vector of neural61

activations and the signal computed by IDRA are then used by the Motor System62

(MS) to generate movements consistent with the goal of the agent; each movement63

is a composition of elementary components, called motor primitives [7]. In [1], we64

have shown how to integrate motor primitives in IDRA using the NAO robot.65
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Bio-inspired Classification in the Architecture … 3

In our cognitive architecture, we do not focus on high-level motor skills nor on66

high-level reasoning and planning; instead, we focus on the intermediate level of cog-67

nition that allows mammals and humans to be aware of the surrounding environment.68

This awareness is supposed to be not a direct product of sensations, the “phenomeno-69

logical mind,” nor a product of high-level conceptual thoughts, the “computational70

mind,” but to be a product of several intermediate levels of representation [8]. This71

point of view has some interesting features related to consciousness: it underlines72

how we can interpret the surrounding environment without the need for high-level73

conceptualizations; therefore, solving the grounding problem of a semantic interpre-74

tation of a symbol system that is intrinsic to the system itself.75

In this paper, we focus on the categorical representation that is the learned and76

innate capability to pick out the invariant features of objects and of events from their77

sensory projections. Categorization is the first step in building cognitive functions78

for language, prediction, and action. We avoid any ontological problem of defining79

categories lists if, according to Kant, we consider that categories are due to the nature80

of the mind, not to intrinsic divisions in the reality. Recently work on ontological81

categories has attracted interest also in cognitive science, where the goal is to define82

the means by which humans group things into categories. In [9], two basic principles83

of categorization are introduced: the task of category systems is to provide maxi-84

mum information with the least cognitive effort, and the perceived world comes as85

structured information rather than as arbitrary or unpredictable attributes. Thus, the86

maximum information with the least cognitive effort is achieved if categories map87

the perceived world structures.88

Our categorization makes use of two main bio-inspired principles: population89

coding and neuroplasticity. Exploiting these two concepts, we designed a classifier90

working the same on any kind of sensing input, mimicking the different layers of the91

nets that decompose and analyze the sensing data [10]. Our classifier is a cascade of92

simple classifiers that work more and more on the same data to boost its predictivity,93

in a paradigm that has been successfully applied in literature [11]. The new aspect94

here is that we show how this paradigm is compatible with the neural substrate of95

our system; the experiments we report are about vision and audio signals.96

In Sect. 2, we present the biological aspects related to our classification system. In97

Sect. 3, we develop the bio-inspired classifier. In Sect. 4, we report on the experiments.98

Section 5 contains the conclusions.99

2 Key Biological Inspiration100

Cognitive neuroscience focuses on the development of a theoretical framework to fill101

the gap between the neural activity and the complex behavioral traits of the brain such102

as memory, learning, high vision processing, emotion, and higher cognitive functions.103

The underlying features, widespread among these brain functionalities, define the104

information processing, i.e., how the brain encodes and propagates information [12].105

According to the classical view, the brain workflow is composed by at least three106
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4 G. Gini et al.

phases: perception, cognition, and action. Cognitive functions are separated from107

the sensor-motor system but recent works show that they are not localized in high108

specialized brain areas but are managed by the same sensor–motor neural populations109

[13].110

The neural circuitry is organized in several functional areas responsible to solve111

specific subtasks [14]; this implies that a high level of synchronization among dif-112

ferent areas is needed. This functional organization follows the divide-et-impera113

paradigm: the anatomical separation of the brain areas leads to a hierarchical orga-114

nization of the brain functionalities. Given a sensory source, information is filtered115

along different brain areas, mixed with other sensory information, and used to take an116

action decision; this information flow through different areas for achieving a specific117

objective is called pathway.118

Widespread computational mechanisms are interesting for creating a computer119

model of the brain; brain models infer the organization of the neuronal population in120

order to produce a neural activity with the same properties of the biological counter-121

part. These populations have a computational mechanism that cannot be inferred by122

the single neuron activities; two examples are models of the primary visual cortex123

[15], and of the posterior parietal cortex [16].124

There are at least six general mechanisms in the brain that should be taken into125

account: population coding, gain modulation, normalization, statistical coding, feed-126

back connections, and neural plasticity.127

Population coding is the mechanism used in the brain to represent sensory infor-128

mation through a group of neurons organized in such a way that neighboring neurons129

have similar activity [17]; one of the advantages of using a population of neurons to130

represent a single variable is its robustness to neural noise [18].131

Gain modulation is an encoding strategy for population of neurons where the sin-132

gle neuron response amplitude is varying without a change in the neuron selectivity.133

This modulation, also known as gain field, can arise from either multiplicative or134

nonlinear additive responses and is a key mechanism in coordinate transformations135

[19].136

Normalization is a widespread mechanism in several sensory systems where the137

neural responses are divided by the summed activity of a population of neurons to138

decode a distributed neural representation [20].139

Statistical coding is a kind of population coding especially used for sensory data140

[10]; it seems to be widespread in the brain areas devoted to the preprocessing of the141

sensory data and it offers two advantages: it reduces the dimensionality of the input142

space and it gives an interpretation to the topological organization and emergence143

of the neuron receptive fields. An approach that takes into account the statistical144

properties of the sensory input is the Independent Component Analysis (ICA) [21].145

Neuroplasticity is the lifelong ability of the brain to reorganize neural pathways146

based on new experiences; it works at different levels, from the single neuron to whole147

brain areas. The Hebbian learning is the commonly accepted learning principle at148

network level.149

Perception from different sensors is managed in a similar way in the brain [14].150

At first, the receptors specific to react to a given stimulus, decompose the stimulus151
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Bio-inspired Classification in the Architecture … 5

into elementary components; when the receptors are activated they propagate data to152

nonspecific areas in the cortex where different sensorial modalities are represented153

and signals are integrated. In the case of vision, information from the retina is sepa-154

rated in two by the ganglia cells M and P, which project onto different layers of the155

thalamus; the two paths analyze different aspects of the image and the information156

is then recombined in the cortex. In the case of auditory data, the ear through ciliate157

cells identifies the single frequencies and codifies them through the spike frequen-158

cies of the acoustic nerve; this information is then transmitted to the cochlear nuclei159

which codify both frequency and intensity; finally, the information is sent to the audio160

cortex. As already observed, most areas of the cortex receive signals from specific161

regions but can manage different signals using normalization and population coding162

[10].163

3 One-Class Classifiers and Winner-takes-all164

Our IDRA system [1] is a layered net of Intentional Modules (IM) simulating con-165

nections and interactions between the cerebral cortex (CM) and the thalamus (OM);166

beside there is a Global Phylogenetic Module (GPM), representing the amygdala,167

which is connected to all IMs. Each IM (Fig. 1) contains a CM and an OM. Incoming168

data are directly sent to the CM and the categories it creates are sent to the OM.169

The GPM contains the hard-coded instincts [22] and broadcasts its signal to all170

the IMs. Input to GPM comes from sensors; output from GPM is normalized in171

B
&
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T

Fig. 1 Structure of the
intentional module (IM)
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6 G. Gini et al.

<zero-one> and tells how much the incoming stimulus is important according to172

the a priori stored criteria;173

CM has the function of extracting different kinds of features from sensorial data174

and of categorizing interesting stimuli into a sort of memory of relevant events;175

OM uses the categories from CM, performs Hebbian learning to develop new176

goals and returns the Ontogenetic Signal expressing how much these new goals are177

satisfied178

The output of each IM is a vector, representing the neural activation generated by179

sensory input, plus a scalar signal representing how much the actual input satisfies180

both hard-coded goals and new developed goals.181

These values of neural activations from CM are computed using a vector of182

weights, producing the ontogenetic signal Os as the maximum between the eval-183

uated neural activations:184

Os = maxi (yi · wi ) (1)185

where yi is the activation of neuron i and wi is the vector of normalized weights186

associated to neuron i. The weights are updated for every iteration using a Hebbian187

learning function:188

wi = wi + η(hs · yi − (wi · w2
i )) (2)189

where η is the learning rate and hs is the Hebbian control signal coming from the IM.190

In order to learn there must be persistent functional changes in the brain so that the191

IMs can adapt to changes in sensory input: if we send to an IM input from a video192

sensor it will specialize to it; the interesting ability is that if we switch its input to193

different types of stimuli, the module will gradually adapt.194

In the preliminary IDRA system, categorization was obtained in two steps: first,195

the input is projected in the space of the independent components of the input,196

collected a priori in an offline training stage197

W = I C × I (3)198

where W is the resulting vector of weights, IC is the matrix of independent compo-199

nents, and I is the input vector; second, a clustering is performed on the vector of200

weights W. Clustering is a good way to get the neural code of the input regardless201

its type. The result of the Categorization Module is a vector containing the activa-202

tions of cluster which depends on the distance of the input stimuli from the center of203

each cluster (e.g., How much the current input is similar to something I have already204

experienced?). This vector corresponds to the activation of a neuron centered in each205

cluster:206

yi = ρ(x, Ci ) (4)207

where yi is the distance of the actual input from the center of the cluster i, x is the208

input and Ci is the center of the cluster i.209

The main drawback of this approach is that data passed to the following IMs lacks210

of meaning and that it does not mimic the known steps of sensory data analysis [23].211
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Bio-inspired Classification in the Architecture … 7

Our new categorization system integrates machine learning and neural population212

coding. In machine learning, One-Class Classifiers (OCC) are used when the problem213

is to distinguish target objects from outliers; to improve the performances of the214

classifier, different combination techniques can be adopted; for instance, ensembling215

different classifiers or using classifiers that use different features [24]. The particular216

ensembling method we chose is the classifier cascade [11] where the same dataset is217

presented more and more to the classifier to boost its response.218

In case of multiclass classification, the so called one-versus-all (OVA) classifica-219

tion paradigm [25] guarantees an higher accuracy making the multiclass classifier220

as the result of calling many OCC; moreover, our solution is compatible with the221

winner-takes-all strategy (WTA) [26], a model of the neurons in response to a stim-222

ulus; according to WTA, the neuron with the highest activation value is chosen and223

the other inhibited.224

Here we combine the cascade of different OCC with OVA to get a sort of WTA225

strategy; the categorization module uses all the signals produced by the initial filters226

and analyzes them in different layers of IM. All the IMs receive in input the same227

signal sent to the previous layer; this way, the architecture reproduces the mechanism228

that integrates the unimodal regions in the multimodal areas [26].229

The categorization activity, spread through different cortex areas [23], starts with230

an initial filtering stage which decomposes the input stimulus into several signals each231

focused on a particular feature; all of these signals are then transformed by ICA which232

projects them onto independent components collected a priori for every single CM.233

Lastly, the resulting weights of activation are clustered and stored if “interesting.”234

This way, the input signal is transformed into a neuronal activity which is independent235

from data type and dimension. To mimic the mechanism of population coding, each236

layer of the architecture contains a number of IM, each modeling a small group of237

neurons, according to the equation238

| I Mx |=
∑|I Mx−1)|

j=1

(| I M(x−1) |
j

)
(5)239

where the number of IMs in the x layer is computed from the number of IMs in the240

previous layer. Normalization is mimicked taking the average of the output signals241

of all the last-level IMs.242

Our implemented architecture is so structured; the network is feed-forward on243

three layers with a fixed number of IMs; the first layer contains two IMs each con-244

nected to a specific filter (eventually filters can be equal). The second layer has three245

IMs, one for each input combination; the third layer contains seven IMs to take again246

all the combinations of previous input. From this last layer, the result is normalized247

and extracted (Fig. 2).248

For experimenting with video input, we defined a filtering stage that extracts three249

different features, namely the image saturation, its edges, and the black and white250

image. All these transformations are easily implemented using Matlab. These signals251

are sent into the architecture: the first is used only by the GPM which uses the hard-252
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8 G. Gini et al.
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Fig. 2 The classifier architecture with the forward signals

coded instincts of the attraction for colors; the two last ones are the input of the IMs253

in the first layer of the network.254

We used two identical filters when working with audio signals to perform Fast255

Fourier Transform (FFT). It is important to note that the output of the filtering stage256

is always a vector with variable lengths regardless the input stimuli.257

4 Experimental Results258

The experimental step has highlighted the performances of the classifier here259

depicted. Two experiments with visual data have been performed: the first dealing260

with Optical Character Recognition (OCR) and the second with face recognition. The261
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Bio-inspired Classification in the Architecture … 9

reason we have chosen these two tasks is double: on one hand, they can be performed262

using common online datasets so that their performances are comparable to state of263

art; on the other hand, it is interesting to compare the behavior of our architecture264

with the way our brain deals with these two tasks. A simple third experiment was265

about voice recognition.266

We used the classical four indices as experimental metrics: accuracy, as the per-267

centage of correct classifications (both positive and negative) over the total number268

of tests; precision, as the number of correct positive classifications over the total269

number of positive classifications (both true positive and false positive); recall, as270

the percentage of correct positive classifications over the total number of correct271

classifications; specificity, as the number of negative elements correctly classified272

over the sum of true negative and false positive.273

4.1 Optical Character Recognition274

The chosen dataset was extracted from UCI Machine Learning Repository letter275

dataset; we have selected ten characters, including those very similar like “P” and276

“R,” each one represented in 800 black and white images of 128 × 128 pixels (Fig. 3). AQ1277

We have randomly split our dataset into 640 images for training and 160 for testing;278

as input filtering we have implemented a standard Canny filter for edge extraction279

and a black/white transformation.280

The first step has been the training of the architecture for each letter, getting ten281

different networks each one able to distinguish a particular character (e.g., the “A”).282

During testing, we have presented each character sample to each of these networks;283

the result is a series of ten output values between 0 and 1 which tell us how much284

the architecture is confident to classify the input as the character associated with the285

network currently loaded in the system. We collected all values into a 2D matrix,286

containing one column for each image and one row for each network; the final287

classification output for each input was extracted looking in each column for the288

highest value and taking the corresponding row as the recognized character. The289

results on the test set are reported in Table 1.290

Using 1600 images (160 per each letter) we got only 13 errors, resulting thus in a291

percentage of error lower than 0.8 %; among the most easily misclassified characters292

there are “R” and “D”; “I” or “K” have always been correctly guessed. Good results293

are in line with other empirical evaluation [27]. Authors of [28] empirically compared294

different methods of multiclass classification using SVM as basic classifier and found295

on the letter dataset an accuracy between 97.98 and 97.68. However, we have to296

underline two important aspects: first the number of classes in our dataset is much297

Fig. 3 Different examples
of the character “K” in the
dataset
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10 G. Gini et al.

Table 1 Accuracy, precision, recall, and specificity for each letter in our test set

Letters Accuracy (%) Precision (%) Recall (%) Specificity (%)

A 100 100 100 100

B 99.63 96.95 99.38 99.65

D 99.69 99.36 97.5 99.93

E 99.94 100 99.38 100

I 100 100 100 100

K 100 100 100 100

P 99.63 97.53 98.75 99.72

R 99.63 98.73 97.5 99.86

S 99.94 99.38 100 99.93

T 99.94 100 99.38 100

smaller than the complete set of symbols; second, our dataset is composed of sharp298

black white images, not considering for example illumination problems that can299

emerge in real applications.1300

4.2 Face Recognition301

The second experiment focuses on the recognition of faces which is a slightly302

more complex task. We have used the Yale University dataset available online for303

researches purposes; this is composed of two sets of images (A and B), where the304

first (A) contains photos of faces from the chin to the forehead, in the second (B)305

all the images also show small portions of the foreground. We selected only the A306

set in order to constrain images dimension to 168 × 192 pixels for computational307

issues; we split the dataset into training and testing sets as done before. Since the308

number of images was very low, we decided to generate more samples by copying309

and modifying some of the images for the training set; as test set, we randomly chose310

10 images for each of the 11 marked subjects, for a total of 110 samples (Fig. 4).311

We trained our architecture for every single subject as illustrated before, getting 11312

different networks each one fitted on a specific subject; during the following testing313

stage, we presented each of the 110 samples to all of the trained networks; the result314

is a series of values between 0 and 1 describing the confidence the architecture has315

in classifying the input. All these results have been collected in a matrix composed316

by one row for each trained network and a column for each test sample; the row with317

the highest value in each column is the recognized face.318

1In questa parte ci sono due/tre frasi da rivedere; non ho capito bene le correzioni!
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Bio-inspired Classification in the Architecture … 11

Fig. 4 An example of the Yale dataset; faces on the left correspond to faces on the right

Our system performed very well, without any classification error; this good result319

may arise from the fact that faces have many more details for performing classification320

(e.g., eye distance, beard, nose, etc.) and perhaps also from the quality of the dataset.2321

4.3 Audio Recognition322

We also wanted to test whether our architecture could adapt to different kinds of323

input, a fundamental ability shown by human brain.324

We chose to use various registrations of the English word “sure” made by different325

persons all with different intonations and accents. Here a significant difference with326

vision concerns data structure: our architecture needs all the input to be the same327

length after the filtering stage; if this holds for images as they all have the same328

dimension, audio files may differ in length and thus we applied FFT and only one329

amplitude filter, discarding any processing on signal phase [29]. We have thus created330

a dataset composed by 200 audio files, split in 150 samples for training and 50 for331

testing.332

For this last experiment, we used a simple linear binary classifier only to recognize333

or not the word. Results on the test set are reported in Table 2; the best threshold value334

is 0.4, which gives an accuracy of 81 % and a recall of 92 %.335

Considering these results, we can state that our architecture performs quite well336

also with audio input even though our dataset was not large enough for a robust337

training.338

2http://vis-www.cs.umass.edu/lfw/results.html.
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12 G. Gini et al.

Table 2 Accuracy, precision, recall, and specificity for each face in out test set

Threshold Accuracy (%) Precision (%) Recall (%) Specificity (%)

0.8 52 100 4 100

0.7 56 89 16 96

0.6 60 72.73 32 88

0.5 62 67.65 46 78

0.4 81 75.41 92 70

0.3 78 69.44 100 56

5 Conclusions339

Our aim is the creation of a bio-inspired software architecture based on the processes340

that take place in the human brain; this architecture must be able to learn new goals,341

as well as to learn new actions to achieve such goals.342

Crucial part of this architecture is the categorization module; here we have devel-343

oped a classifier that takes inspiration from basic brain mechanisms.344

Our experiments have shown that the agent is able to analyze data, clustering345

different kinds of features and to obtain results in classification that are very similar346

to those obtained by specialized classifiers as found in the literature. The important347

result is that the generic classifier based on a simple neural architecture can perform348

well on a few different dataset; further, experiments are needed to validate these349

promising results with respect to several kinds of sensory data.350
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