
Learning and executing rhythmic movements through chaotic neural
networks: a new method for walking humanoid robots

Matteo Bana, Alessio Mauro Franchi, Giuseppina Gini - DEIB, Politecnico di Milano, piazza L. da
Vinci 32, Milano, Italy
Amina Keldibek, Michele Folgheraiter - School of Science and Technology, Nazarbayev Universi-
ty, 53 Kabanbay Batyr Ave, Astana, Kazakhstan

Abstract
We propose Chaotic Neural Networks (CNN) as an alternative to other models of the Central Pattern Generation (CPG)
circuits, which have been developed in the last years for robotic applications. We develop a new Matlab implementation
of CNN and study their computational and functional performances. We show our results on walking humanoid robots,
both in simulation and on real robots. We discuss our porting of the CNN to the on-board controller of the robot, where
we verify the temporal and spatial performance. In a final comparison against CPG the CNN appear as a promising
method to improve the adaptability of the robot to dynamic situations.

1 Introduction
Artificial Recurrent Neural Networks (RNN) that are
strongly inspired by the structure of natural neural circuits
[1, 2, 3] are of interest to generate periodic motor paths.
Recently a new class of RNNs has attracted the attention:
the chaotic systems, whose evolution depends on the ini-
tial conditions. Those new RNN are referred to as Liquid
State Machine (LSM) or Echo State Networks (ESN) [4],
or Chaotic Neural Networks (CNN), and consist of a big
set of hidden neurons where the synaptic connections are
randomly initialized and kept constant during learning.
Readout units that apply simple linear regressions of
pools of neuronal outputs generate the output. If the out-
puts of the readout units are feedback to other neurons of
the neural circuit it is possible to learn complex periodic
signals [5, 6]. Generally this requires that the target signal
is available to the learning algorithm; however [7] has
shown that this constraint can be removed with the intro-
duction of a reward-modulated Hebbian learning rule, in a
way mimicking the biological organisms [8].
Robotic walking has been already studied as a rhythmic
movement [9, 10, 11, 12] imitating the specialized neural
circuits, called Central Pattern Generators (CPG), that are
able to form rhythmic patterns without the need of any
sensory feedback.
In the past we proposed a joint trajectories generator
based on CNN to control the motion of a light-weigh
quadruped robot [14]. Here we want to investigate the
pros and cons of CPG and CNN in biped walking. To this
end we implement in Matlab the two methods and com-
pare their results on the walking behaviour, both for ro-
bots and humans. We test CPG and CNN in simulation on
bipeds, and then make the porting of CNN to a robot con-
troller to verify its performance. We discuss why CNN
can outperform CPG in solving some hard problems, as
adapting to a changing signal.

2 Rhythmic movements for robots
and Central Pattern generators

Robotic walking has been already studied as a rhythmic
movement [9, 10, 11, 12] imitating the specialized neural
circuits, called Central Pattern Generators (CPG). CPG
are biological neural nets that produce rhythmic signals
without needing a sensorial feedback. They are involved
in many biological activities, and in particular in locomo-
tion. They have some modulation activity to adapt to
changing situations.
Different models of CPG have been proposed for use in
robotics [11]. In our study we consider only abstract
mathematical models, the oscillatory ones, that have al-
ready been applied to 4 or 6 legged robots. They often
suffer from difficult definition of the architecture and
slow learning.
The specific model we chose is the Programmable Central
Pattern Generator (PCPG) characterized by the dynamic
equations as reported in [13]. We define a set of coupled
oscillators, one for each frequency we want to learn, as in
Fig. 1. Each oscillator receives the same input F(t) = P(t)
– Ql(t), in practice the difference between the learned sig-
nal and the target signal to learn.

Figure 1 - Connections between the oscillators in CPG

Beside implementing the PCPG of Righetti [12] we de-
veloped a new implementation of it based on Fourier

transform. It computes a Fast Fourier Transform on data
to extract the parameters of the CPG and improves the
convergence time of the PCPG.
An example of the output of our PCPG is in Fig. 2, where
we can appreciate the high precision of the method.

Figure 2 - In blue the output of our PCPG, in red the tar-
get signal; they are almost superimposed.

3 Chaotic Neural Networks
Recurrent neural networks (RNN) are a learning paradigm
that has not yet been fully applied to the generation of
rhythmic movements in robotics. Here we introduce a
special kind of RNN that present interesting properties in
learning and that we intend to exploit for rhythmic
movements.
Both ESN and LSM are unified under the name Reservoir
Computing (RC); their common feature is the subdivision
of the recurrent network into two parts: the reservoir that
contains the recurrent connections and the readout that
produces the output, as in Fig. 3.

Figure 3 - The reservoir computing architecture

3.1 The CNN implemented model
The dynamics of the network is described by the follow-
ing equations as given in [7]:

where: N is the dimension of the reservoir, M is the num-
ber of outputs, L is the number of inputs, τ is the mem-
brane time constant, λ is a chaos parameter, ξ (t) is the
noise, xi(t) are activations, ri(t) are firing rates, while Rij,
Win

ij , and Wfb
ij respectively denote the synaptic weights

for the recurrent connections, the connections from inputs
to the network, and the feedback connections. The equation
used is written as the following matrix equation:

 (2)
3.2 Matlab implementation of CNN
We had to decide how to implement the CNN, either ex-
novo or using available libraries. Only two libraries have
been found for reservoir computing:
- CISM/PCSIM, developed by Maas, old and no more
maintained.
- Aureservoir, developed in the Echo State Network, and
no more maintained since 2008.
For general RNN, the rnn library is a standard tool. It is
also able to delegate computations to a graphical board;
however this solution is not feasible for our final porting
of the net on the robot controller. So we decided to devel-
op ex-novo our implementation.
The chosen architecture is based on the construction of
functional blocks to implement the algorithms, where the
output of a block is given as input to the following blocks.
This idea is compatible with the principle of reservoir
computing, where the flow of information is not unidirec-
tional. We have chosen MATLAB as the implementation
software, for its facility in managing matrices and alge-
braic operations; it may reduce the performance due to the
function calls, but we will take care of it in the following
porting on the real controller.
The high level view of our implementation is similar to
the rnn library. Each component is a class that provides
the single method simulate() that computes the output of
the current layer and goes one step further in the simula-
tion.
Our choice of implementing the reservoir differs from
others available. In fact neither aureservoir nor rnn have a
separate implementation of the reservoir, while CSIM im-
plements the single neurons that make it. The first choice
improves the efficiency, since we do not have to imple-
ment the read out, but reduces the generality since it is
impossible to change the neuron type of the reservoir. The
second choice makes the system slow and more memory
hungry but allows different kinds of neurons.
In our implementation we use a combination of the two,
so we implement the reservoir in matrix form. When con-
structing the reservoir we have to indicate as parameters
the dimensions of input and feed back, the connection
rate, a chaos coefficient and time step. The constructor
makes the initialization and sets the weight matrices.
The feedback network represents the model obtained from
learning. Its constructor takes as parameters the connected
reservoir, the weights of readout, and the noise distribu-
tion on the output. Its simulation can be controlled step by
step or until termination.
Other implementation choices are:

- The noise is uniformly distributed in the interval
(-ξ , +ξ);

- Input and output are column vectors, combined
in a matrix, where each column represents an in-
put or output and each row represents a time in-
stant.

- The reservoir is implemented in matrix form.
- The noise distribution on the output is assumed

as normal.
Two training methods have been implemented: regression
and EH rule [7].
Training in regression consists in simulating the net for a
time, saving the values of the neurons in the reservoir, and
computing the new weights to minimize the error. Two
methods, Recursive Least Squares and Force Learning
rule [15] (which is able to work with few data) have been
implemented for regression.
Regression is a supervised training; to avoid the need to
receive the correct trajectory to follow, the EH rule based
on Hebbian Learning has been also implemented.

3.2.1 Time performance analysis
To be compatible with the real time constraints of a robot
controller we checked the time and space complexity of
our implementation
Three parameters mainly influence the computation time:
the dimension of the reservoir, the rate of sparsely con-
nected neurons in the matrix, the simulation length. We
checked their role considering a net with 1000 neurons in
the reservoir and simulating its evolution for a time of 10
seconds for different sparse matrices. We observed a line-
ar relationship between sparse rate and execution time,
after removing about 2 seconds from the execution time
that are the overhead for function calls. Table 1 reports
the simulation times for 10000 neurons in the reservoir.

Table 1 - Simulation time for a reservoir of 10000 neu-
rons and different sparsity

Connection rate Time (sec)
0.01 2.703
0.05 3.344
0.1 4.708
0.2 8.100
0.5 15.459
1 21.699

3.2.2 Asymptotic complexity analysis of the im-
plementation

The theoretical time complexity of the reservoir is domi-
nated by the product between the sparse matrix and vec-
tors, so it is Θ(N2), where N is the number of neurons.
The complexity of the readout is linear in N. Training in
regression is again Θ(N2). The complexity of the training
algorithm with the EH rule is almost linear in N, but the
computation has to be repeated for many time steps, so it
is again Θ(N2).
Figure 4 reports the experimental time values for differ-
ent numbers of neurons; they are in agreement with the
theoretical complexity.

Figure 4 - Time complexity for different numbers of neu-
rons in the reservoir.

4 Experiments and Results
4.1 In simulation
The simulations are done in V-REP, an open system
available from www.coppeliarobotics.com. We developed
in simulation the analysis of the walking considering all
the variants of PCPG and CNN before illustrated.
The considered biped is Asti, a medium size virtual hu-
manoid robot, having a mass of 20Kg and similar to
ASIMO. Asti has 12 degrees of freedom in the legs, so
our target was to generate 12 outputs.
To check how PCPG and CNN compare to be a controller
for a legged robot, we made the following tests:

- take a registration of the legs movements;
- learn the trajectory using each CNN and PCPG

available;
- use the network to generate new trajectories;
- use the model back on the robot position control-

ler to evaluate it.
The means square error is the main parameter considered
to evaluate the trajectory. In Table 2 we show the MSE
for all the methods on Asti.

Table 2 - MSE computed with different methods on the
Asti robot; in bold the best value for each joint.
joint PCPG FPCPG CNN-

EH
CNN re-
gression

CNN
force

1 0.1 0.149 0.889 0.248 0.116
2 0.191 0.091 0.749 0.173 0.081
3 0.133 0.273 1.068 0.340 0.149
4 0.491 0.937 1.572 1.042 0.602
5 0,287 0.114 0.751 0.173 0.081
6 0.148 0.228 1.116 0.398 0.169
7 0.098 0.153 0.849 0.277 0.135
8 0.277 0.087 0.760 0.171 0.083
9 0.131 0.256 1.045 0.368 0.184
10 0.478 0.881 1.521 1.063 0.687
11 0.286 0.114 0.758 0.171 0.084
12 0.152 0.225 1.083 0.423 0.209

To obtain those values various parameters settings have
been tested, and the final values are the following:

- For PCPG and FPCPG, ε = 0.9, η = 0.5, starting values
for integration are x(0) =[1, 1, 1, 1, 1]; y(0) = a(0) = φ =
[0, 0, 0, 0, 0]; w = [4, 8, 12, 16, 20]; training time 500 se-
conds.
- For CNN, sampling time δ = 1 ms, N = 1000, p = 0.1,
λ = 1.9, τ = 100 ms; for EH training is 500 seconds, for
regression is 60 seconds.
We observe that PCPG and Force are the first or the se-
cond best in most of the joints, with Fourier PCPG second
in a few cases. Other properties are relevant. For instance
the training time is very effective for FPCPG and regres-
sion, one order of magnitude longer in PCPG and EH
rule. We observe that in general the greater error in using
the EH against the PCPG is due to a phenomenon of slow
phase changing that appears after some time of simula-
tion.
Similar experiments have been done using the NAO ro-
bot. They obtained similar results.
From the CMU graphics lab (mocap.cs.cmu.edu/) we used
a free library of data taken from a human walker. The
CNN in regression works quite well on those data, repro-
ducing the step as illustrated in Fig. 5.

Figure 5 - Simulation of the data from CMU.

The second important experiment is to evaluate how the
methods can be applied to modulate a trajectory. Modula-
tion means to reproduce the learned trajectory with differ-
ent velocity or amplitude of the signal, or to adapt to ex-
ternal forces, for instance when moving on a different ter-
rain.
Changing the velocity is possible with all kinds of CPG;
however for a real biped robot changing the velocity is
not enough, so only the CNN can be tested on all the
modulations; it has been done using again Asti, where it is
possible to set the velocity and the step amplitude.
The first tested modulation is the on/off signal, as illus-
trated in Fig. 6, where there is a result using the EH rule;
we observe that the signal is quite correctly reproduced,
but when the signal is off the network still maintains a
residual activity.

Figure 6 - Results of EH rule for the on-off signal on
joint 6 of Asti. In red the target signal, in blue the learned
one.

To modulate the amplitude of the step, both EH and force
give good results, as illustrated in Figure 7, where we see
the modulation of the joint 3 of ASTI using EH.

Figure 7 - The amplitude modulation for the joint 3: in
blue the network output with EH rule, in red the reference
signal.

To modulate the velocity, force learning produces a good
result, as illustrated in Figure 8 for the joint 5 of Asti.

Figure 8 - The velocity modulation for the joint 5: in blue
the network output with force, in red the reference signal.

4.2 On a real robot controller
Our goal is to develop a bio-inspired control strategy ca-
pable to govern the joints of a humanoid robot while per-
forming a dynamic walking. As a requirement the control
system needs to run in real time (control frequency
≥100Hz) and should be capable to react and adapt to the
robot environment.
We target different humanoid robots having different ar-
chitectures, besides we are currently developing our own
robotic system.
The lower body, see Fig. 9B, consists of two limbs having
5DOFs each, more specifically three in the hip, one in the
knee and two in the ankle. Each joint mounts a brushless
DC motor integrating the power electronics, a speed con-
troller, and a planetary gearbox. Furthermore, each axis is
connected to a potentiometer that allows measuring and
regulating the angular position of the joint. To keep the
robot as light as possible we developed its frame in ABS
material using a 3D printer. The parts required to hold
high stresses where instead built using aluminium. Over-
all the lower body measures 47cm in height and has a
weight of 3.7Kg.

Figure 9 - A: Asti humanoid robot available in V-REP
simulator. B: Lower limbs of the robot prototype under
development at Nazarbayev University

In order to test the CNN on a real-time capable hardware
we translated the Matlab scripts, necessary to allocate the
data structures and implement the learning algorithm, in
Python language. Our main goal was to demonstrate that
despite the considerable spatial complexity of the imple-
mented CNN, it is still feasible to compute the network
output and to perform the learning step on relatively small
computational units like a Raspberry Pi or a Beaglebone.
In particular, in our experiments we used a Raspberry Pi2
version B equipped with 1GB of RAM and a Cortex A7
processor running at 900MHz. According to different
benchmarks [16] the board has a computational power of
1538 DMIPS. In comparison, a high-end low consump-
tion micro-controller belonging to the STM32F4 family
(from ST-Microelectronic company) performs 225
DMIPS.
To train the CNN we used a dataset generated with the V-
REP simulator. In this case, we considered again the
model of the Asti robot. While the robot was walking
straight with a linear velocity of 0.2m/s the angular posi-
tion of the six joints of the right leg were acquired for
120s with a sampling time of 5ms. In total 24000 samples
were collected for each joint and exported in a text file.
Before running the learning algorithm on the Raspberry
Pi2 the trajectories where scaled in the range [-1, +1].
The first plot of Fig. 10 and Fig 11 show two exemplary
joint trajectories reproduced by the CNN after the training
phase was successfully completed. It is possible to notice
that the trajectories are quite noisy and cannot be used as
references for the position controllers. In order to smooth
the signals we applied a moving average filter with a win-
dow size of 18 samples, as in the second plot of Fig. 10
and Fig.11.
To evaluate the time complexity of the training algorithm
running on the Raspberry Pi2 we performed different tests
where the CNN was each time initialized with an increas-
ing number of neurons. As in Fig. 12 the computation
time increases quadratically with the network dimension
N. In particular for a CNN of 1000 neurons it takes 9s to
train 5 joint trajectories lasting a real time of 100s. This
shows that it is feasible to train the robot while it is oper-
ating

Figure 10 - Unfiltered and filtered joint 6 trajectory gen-
erated by the CNN after the training phase.

Figure 11 - Unfiltered and filtered joint 3 trajectory gen-
erated by the CNN after the training phase.

Figure 12 - Time required to train the CNN as a function
of the number of neurons, Raspberry implementation.

We also measured the required memory to instantiate the
data structure to represent the CNN. Also in this case the
memory usage increases quadratically with the number of
neurons (Fig. 13).

Figure 13 - Memory usage versus numbers of neurons,
Raspberry implementation.

5 Conclusions
We conclude with the assessment of our new proposal for
walking bipeds.
From our compared experiments we verified that CPG are
efficient; but they cannot be easily modulated and require
data without noise.
The CNNs may solve both these problems. They may
modulate trajectories, and performs well even in the pres-
ence of noisy data, as seen in the case of CMU human da-
ta. Moreover they represent a more general and flexible
solution. Their implementation has been checked both on
simulated and on a real robotic controller and the results
are encouraging; performances allow real time control of
the joints.
The open problem of our proposed model concerns the
high number of parameters the model requires; an optimi-
zation technique should be adopted to find the best set-
ting. In fact, due to their nonlinear dynamic behaviour,
CNNs are quite complex to simulate and setting their pa-
rameters requires many trials.

Acknowledgments
Part of this work was supported by the Ministry of Educa-
tion and Science of the Republic of Kazakhstan under the
grant and target funding scheme agreement #220/073-
2015.

6 Literature
[1] Hopfield, J. J.: Learning algorithms and probability

distributions in feed-forward and feed-back networks.
Proceedings of the National Academy of Sciences,
vol. 84, n. 23, 1987, pp. 8429–8433.

[2] Schmidhuber, S. H. J.: Lstm can solve hard long time
lag problems. in Advances in Neural Information Pro-
cessing Systems 9: Proceedings of the 1996 Confer-
ence, vol. 9. MIT Press (1997) 473.

[3] F. A. Gers, Schraudolph, N. N., Schmidhuber, J.:
Learning precise timing with lstm recurrent networks.
The Journal of Machine Learning Research, vol. 3,
2003, pp. 115–143.

[4] Jaeger, H H.: Harnessing nonlinearity: predicting cha-
otic systems and saving energy in wireless communi-
cation. Science, 2004.

[5] Maass, W, Joshi, P., Sontag, E. D.: Computational as-
pects of feedback in neural circuits. PLoS Comput Bi-
ol, vol. 3, n. 1, 2007.

[6] Maass, W.: Noise as a resource for computation and
learning in networks of spiking neurons. Proceedings
of the IEEE, vol. 102, n. 5, 2014, pp. 860–880.

[7] Hoerzer, G. M., Legenstein, R., Maass, W.: Emer-
gence of complex computational structures from cha-
otic neural networks through reward modulated hebbi-
an learning. Cerebral Cortex, vol. 24, n. 3, 2012, pp.
677–690.

[8] Sutton, R.: Temporal Credit Assignment in Rein-
forcement Learning. ser. COINS technical report.
UMI (1984).

[9] Delcomyn, F.: Neural basis of rhythmic behavior in
animals. Science, n. 210, 1980, pp. 492–498,.

[10] Beer, R. D., Chiel, H. J., Quinn, R. D., Espenschied,
K. S., Larsson, P.: A distributed neural network archi-
tecture for hexapod robot locomotion. Neural Compu-
tation, vol. 4, n. 3, 1992, pp. 356–365.

[11] Ijspeert, A., J.: A connectionist central pattern gener-
ator for the aquatic and terrestrial gaits of a simulated
salamander. Biological Cybernetics, vol. 84, n. 5,
2001, pp. 331–348.

[12] Righetti, L., Ijspeert, A. J. : Programmable Central
Pattern Generators: an application to biped locomotion
control. Proc IEEE ICRA 2006, pp. 1585-1590.

[13] Folgheraiter, M., Gini, G., Nava, A., Mottola, N.: A
bioinspired neural controller for a mobile robot. Proc.
IEEE Robio06 (2006), pp. 1646-1651.

[14] Folgheraiter, M., Gini, G.: A chaotic neural network
as motor path generator for mobile robotics. Proc
IEEE ROBIO (2014) pp. 64-69.

[15] Sussillo, D., Abbott, L. F.: Generating coherent pat-
terns of activity from chaotic neural networks. Neuron
63: 4, 2009, pp. 544-557.

[16] Official Raspberry Pi website, Roy Longbottom’s
Raspberry Pi & Raspberry Pi 2 Benchmarks,
https://www.raspberrypi.org/.

