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Abstract. Often in robotics natural language processing is used sim-
ply to improve the human-machine interaction. However, language is not
only a powerful communication tool: it is deeply linked to the inner orga-
nization of the mind, and it guides its development. The aim of this paper
is to take a first step towards a model of language which can be inte-
grated with the diverse abilities of the robot, thus leading to its cognitive
development, and eventually speeding up its learning capacity. To this
end we propose and implement the Language Primitives Model (LPM)
to imitate babbling, a phase in the learning process that characterizes
a few months old babies. LPM is based on the same principles dictated
by the Motor Primitives model. The obtained results positively compare
with experimental data and observations about children, so confirming
this interest of the new model.
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1 Introduction

Recently Natural Language Processing (NLP) has developed many voice recog-
nition technologies, such as Apple Siri [17], mostly used for simple tasks like
sending a message. Limitations emerge also in other applications; video games
and robots are often able to recognize a few words, mainly related to a spe-
cific task. Instead language plays an important role in intelligent behaviours, as
initially indicated by Alan Turing in his “Imitation Game” [19]. His final consid-
erations was that language manipulation is a necessary condition for a machine
to be intelligent.

In biology the ability of communicating through sounds is present in several
animal species. However language has evolved differently in humans, mainly due
to the fact that it is more than an external instrument for communicating; it
is intrinsic to the mind itself [3]. Spokeng language is thus the epiphenomenon
of the deep link existing between brain and language. It is known that cerebral
areas dedicated to language are highly connected with motor ones; when one
elaborates a sentence or produces a word both areas are activated [14]. This is a
clue of the presence of common mental mechanisms both for motor or linguistic
skills.
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To recreate in artificial agents such an ability, natural language and percep-
tions should be linked together; the comprehension of natural language by robots
should be based on sensory-motor experiences and not on a sort of hard coded
semantics [2]. In a longer time perspective, a language based on the experience
would help robots to autonomously extract knowledge about the environment,
integrating also this information with those from its own actions and related
sensorial feedbacks [12].

Our research mainly focuses on this relationship between motor learning and
mental abilities development in humans as a way to improve the robot learning
system.

We draw inspiration both from humans and from decades of studies in NLP,
that despite impressive results [17] has still many problems to solve. We start
from the hypothesis that the linguistic apparatus in robotics should be part
of several other biologically inspired mechanisms, cooperating together towards
the cognitive development of the artificial agent. We take inspirations from new-
borns, focusing in particular on the evolutive steps of language. Starting from
data collected during the Speechome Project at M.I.T. [13], we have designed
and implemented a model called the Linguistic Primitive Model (LPM). It aims
at imitating babies in a specific moment of language exploration, the babbling
phase, that takes place from the sixth to the tenth month and is the way they
imitate sounds and words on purpose.

This new model re-uses several concepts typically associated in robots with
movements, creating a parallel between motor and linguistic mechanisms that
is known to exist in humans brain. Learning starts from a simple hard coded
dataset of linguistic primitives; the agent tries to imitate an heard word con-
tinuolsy composing the primitives, and producing new sounds until it succeeds.
Newly learned words are added to the set of primitives ready to be used or com-
posed again to form more complex sounds. Other primitives become useless and
are discarded.

In the rest of the paper we shortly review the related works and introduce our
model of Linguistic Primitives. We make experiments using some data from the
mentioned Speechome data. Results of our experiments are not easily comparable
with state of the art, but they demonstrate that our hypotheses about language
development are correct and that LPM is a basis for further researches. They
highlight also that the use of a typical model for movements is a new promising
point of view for the development of linguistic skills in robotics.

2 Related Works

As we have briefly seen language is strictly connected with mind; its learning
helps the cognitive development, and viceversa [3]. From studies about babies
it is clear that cognitive development in humans is a process parallel to lan-
guage learning. Words are used by infants as powerful instrument for building
an internal representation of the external world; they act as labels for objects in
the environment [11]. New grammatical constructs interact with sensory-motor
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Fig. 1. A schema of the motor primitive composition mechanism

apparatus at a neuronal level [21]: when somebody listens to verbs like “walk” or
“see” its brain activates also neurons of the cortical motor areas. Motor and sen-
sors areas are thus linked togheter: language learning depends strictly on physical
and sensorial experiences, and viceversa. This concept is known as embodiment:
intelligence needs a body and an environment to develop [16].

A biologically inspired approach for language development should help robots
in autonomously extracting simple semantic information from the context; it is
the case of [10] where a moving robot is able to correctly interpret naviga-
tion commands expressed in natural language. Another challenge is the symbol
grounding problem, that concerns the relation between words or symbols with
their meaning [18]. An interesting study showed that sensory-motor integration
can improve symbol grounding processes, just like humans do [9].

The main idea is thus that robots, just like living beings, must play an active
role in their cognitive development and learning, interacting through their body
with the environment. Also language emergence should follow this paradigm and
should be grounded on sensorial experiences. Several evidences show that motor
and linguistic learning share the same mechanisms. Nowadays a validated theory
for movement learning is the motor primitive mechanism [7]; motor primitives
are the “smallest” entity of voluntary movement, that activate a single muscle.
Composition and coordination of several motor primitives, one for each muscle
involved, result in a final complex movement Fig. 1. This theory seems to clearly
explain how infants go from instinctive to voluntary movements, and may also
hold for language development: babbling is for babies the mechanism to start
from simple innate sounds and get to complex and intentional words by their
composition [20].

3 Our Approach: Language Primitives

Understanding and producing language is a multisensory process; it is grounded
on the visual, musculoskeletal and proprioceptive systems; we use our ears to
listen to spoken words but several studies demonstrated that we also exploit
sight for facial expression analysis or body movements recognition [1]. In the
same way the production of language involves the muscular and proprioceptive
systems; these should be seen as two significant hints of the relation between
linguistic and motor skills.
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In their first months of life, babies are not able to pronounce and to dis-
tinguish words, but can determine their phonetic differences. This mechanism
leads to the so called “phonetic attunement”, that is a greater sensitivity to
the contrasts and to the specific tones of a particular language, that eventually
leads babies to distinguish the first words. In the same time they start also to
distinguish the repeated language patterns, mainly by a statistical approach. It
is not necessary for a child to segment a sentence, but he is able to create early
phonetic categories simply listening to sounds. This statistical approach is part
of the distributional learning mechanism and it represents the origin of language
learning: the information concerning the distribution of the frequencies of tones
is merged with the visual information, contributing to the creation of a speech
context.

This first stage paths the way for the following ones in language learn-
ing: the recognition of vowels (6–8 month), of consonants (8–12 month) and
finally of phonemes duration. These phases in children follow very rapidly one
another, more quickly than the only auditory inputs would allow; this gap may
be explained by cross-modal association [4]. Language development is a very
complex phenomenon, but also a universal process and it is the same across
different environmental condition and experiences [6].

We propose a model focused mainly on the basic mechanism through which
words are formed in the first months of life; the term “babbling” refers to the
sounds uttered by newborns when they still aren’t able to pronounce complete
words. Researchers agree that this phenomenon plays a key role in the correct
cognitive development of the baby. Actually, the first movements of the limbs
and of the mouth of newborns are the product of involuntary reflexes. During
the first two months of life, the baby utters sounds that are called protophones,
which already have some features of vowels; these develop until, around the sixth
month, babbling starts.

With time the protophones become no longer involuntary sounds and are
intentionally produced. This voluntary act is part of a more global cognitive
development of the baby, which maps the movements of the vocal tract and the
resultant sounds, allowing babies to replicate a sound. This mapping leads them
to voluntarily utter a word [8]. Other researches have highlighted how these
basic mechanisms for language learning are in common with those for movement
learning and both modules communicate to strengthen each other [13].

The Speechome Project is our main inspiration. Among the huge amount of
collected data, several audio files recorded a baby repeating the same word in
different instants and house places, starting from the very first trials of imitation
to its voluntary pronunciation. As an example we report a brief transcription of
the word “water”:

“gaga” - “gata” - “wata” - “wate” - “water”

From the analysis of these registrations has emerged that each single consonant-
vocal couple may be considered as the most similar particle to a linguistic prim-
itive we can extract. In nature a baby tries to imitate the sound he is listening
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to composing all the “linguistic primitives” he has, in a similar way to motor
learning mechanism. In the above example the baby starts repeating the innate
“ga” particle; as his vocal tract and facial muscles modify in time he learns more
complex sounds such as “ta” or “wa”, replacing simpler particles and resulting
in a more accurate reproduction of the target word. The baby finally learns the
“r” and succeeds in pronouncing “water”.

Our linguistic primitives model aims at reproducing this process of imitation
of a spoken word starting from a hard coded dataset of linguistic primitives;
this set has a direct equivalent in humans as the internal mapping between a
sound and a specific movement of the mouth and of the diaphragm. We consider
linguistic primitives as innate, as they are a direct consequence of non-voluntary
changes, and are independent from the language family and context.

To generate the primitives dataset we have analyzed various registrations
reproducing sounds made by babies during their babbling stages. We have first
discarded videos not tagged with the age of the baby and then classified those
selected into the five different stages of language learning [8]:

1. Cooing (1st–4th month), repetition of single sound, e.g.: ooooooo, aaaaaaah;
2. Consonant-Vowel (CV) or Vowel-Consonant (VC) sounds combinations (4th–

6th month), e.g.: maaaa, uuuum, baaaa ;
3. Reduplicated babbling (6th–10th month), e.g.: babababa, gagagaga,

dadadada;
4. Non-reduplicated babbling (6th–10th month), e.g.: bama, gagamee
5. Quasiwords (10th–12th month), e.g.: watee.

Stages 4 and 5 see the first attempts to compose these primitives intentionally.
Since during these stages the dataset of primitives is quite limited, babies are
not able to compose real words but only simple terms such as “mama” or “dad”,
made of two or three primitives concatenated. The continuous enrichment of this
internal dataset eventually leads to the production of complex sounds.

Fig. 2. The involuntary subsystem. Fig. 3. The voluntary subsystem.
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4 The Implemented System

An artificial architecture able to simulate the language development skills as seen
above should comprehend both the innate mental abilities and all the mecha-
nisms of voluntary learning that rely on multi-modal sensorial inputs. Such an
architecture is a long term goal; in our model we will consider only those aspects
related to canonical babbling and to the auditory stimulus processing.

Two subsystems compose our model: the involuntary (ISS) Fig. 2 and volun-
tary (VSS) Fig. 3. The first reproduces all the aspects related to the physiologic
growth of the body, starting from the earlier months of life until first volun-
tary mechanisms of imitation starts. It receives as input several examples of
babbling and extracts the linguistic primitives; all the possible combinations of
two primitives are then generated, a mechanism that corresponds to the innate
development of the proto-word. A Sound-State table is generated, which recre-
ates the natural mapping between “words” and “states” each baby learns during
time.

The second subsystem deals with babbling, a phase of learning that emerges
in parallel to the acquirement of new words and to the first voluntary imitations
of heard sounds. The VSS receives as input a sound representing the word to
be learned and the architecture starts to “babble”, i.e. it produces sounds by
composing linguistic primitives. The first type of composition we implemented
consists in the concatenation of two or more linguistic primitives; more advanced
mechanism may be added in the future. These sounds are compared with the tar-
get input and the learning process is stopped when the similarity is greater than a
fixed threshold; this event triggers the activation of the Sound-State Table, mim-
icking the neural activation it is known to appear when a baby accomplishes his
imitation task [15].

Fig. 4. The six features extracted in the short-term processing from the sound “ga”
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4.1 Involuntary Subsystem

The main task accomplished by the ISS is the generation of the “hard-coded”
dataset of linguistic primitives. The ISS receives as input several segmented
audio signals, each containing exactly one “babble”, i.e. a vocal-consonant cou-
ple. Every signal is processed with the following filters: stereo-to-mono con-
verter, sampling frequency normalizator, pitch shifter and an RMS equalizator.
This process equalizes signals coming from different sources. A second module is
responsible for the concatenation of these primitives by a cross-fading technique.
This process can be considered part of the involuntary subsystem as in babies
the generation of first linguistic primitives appears as a direct consequence of
their physical development more than of an a-posteriori learning.

The last step is the selection of the “States” for the table. A state is a compact
representation of the environment; it is actually composed by the sound the
robot has listened to. For state selection we perform two kinds of elaboration
on the signals, mid-term windowing and short-term processing: both make use
of a framing mechanism for trimming primitives into very short segments which
are then analyzed independently from each other. Several features are extracted;
their mean and variance form the vector of features we use in classification for
the state selection and for similarity computation Fig. 4.

4.2 Voluntary Subsystem

The second module deals with the babbling and learning phase; it receives in
input a target word, the Sound-State Table and the dataset of primitives. The
features vector of the input word is computed and projected onto the collection
of states and the most similar one is selected.

The States-Sounds Table is used as a sort of neural network to register each
tentative of imitation; rows are dedicated to states, columns correspond to pro-
duced sounds. For each tentative the system will do, the similarity values between
the target and the produced sound is computed and stored in the corresponding
entry of the table; this process is repeated until the imitation performance is
satisfying. As the number of trials grows, the mean number of tentatives needed
by the agent significantly decreases, indicating that the system is learning new
words.

5 Experimental Results

For validating the proposed model we defined different experiments; stated the
innovative approach here presented a direct comparison with other works is
very difficult. Our goal is not to improve others’ models, but to propose a new
point of view for language learning that is bio-inspired, grounded on the agent’s
experience, and that shares its mechanisms with those of the motor system.

Experiments are intended to evaluate the ability of the system both to correctly
imitate an input sound and to learn them as the number of tentatives grows. Two
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metrics are evaluated. The first is similarity, that describes how much the produced
word is similar to the listened one and is computed as the distance between the
features vectors of both sounds, normalized in the range [0..1]:

similarity = tanh
(

1
vectorsDistance

)
(1)

where vectorsDistance is the squared norm of the difference between the two
vectors; similarity is thus the probability that two sounds represent the same
word.

The second is the number of cycles the system needs to produce a “good”
output, where good means above a predefined similarity threshold we empirically
evaluated. For all the following experiment we split our dataset of sounds into
training and testing subset, composed of 600 and 300 signals respectively.

5.1 Preliminary Step

In a preliminary step we had to optimize the open parameters of the system;
the most fundamental is the similarity threshold, that is the minimum value of
similarity we require to consider an imitation as valid.

The setup for this preliminary experiment is:

– training dataset: 600 words;
– testing dataset: 300 words;
– number of tests: 20;

Fig. 5. The graph shows the combined result and the optimal values for the similarity
threshold is highlighted
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– threshold value step: 0.05 (from 0.05 to 0.95);
– input words per test: 200 words (selected randomly from the 300 words).

For each threshold value in the range, the mean number of cycles necessary to
correctly imitate the input word is logged; as Fig. 5 shows this value is low (<15)
for threshold lower than 0.85, a value corresponding to a very accurate imitation of
the input word. Moreover the mean value of the actual similarity is always greater
that the defined treshold. The combination of these two considerations defines a
range of optimal similarity threshold in [0.65, 0.8], a good trade-off that guarantees
a similarity above 0.8 and a mean number of cycles lower than 10.

5.2 First Experiment

We firstly evaluated the importance of the number of words in input to the
system; by this parameter we can copy the natural tendency of caregivers to use
a simplified lexicon, with non-conjugate verbs and a restricted vocabulary.

We thus reduced the number of words in the testing dataset down to only
20, keeping other parameters unaltered:

– training dataset: 600 words;
– testing dataset: 20 words;
– number of tests: 19;
– threshold value step: 0.05 (from 0.05 to 0.95);
– input words per test: 200 words (selected randomly from the 20 words).

By comparing experimental data with previous results it emerges that our
system is able to correctly imitate and learn words in a lower number of cycles,
especially in cases of high similarity threshold values Fig. 6. Moreover the quality
of learning is good even if the number of input word decreases Fig. 7.

This behavior is biologically validated by results from the Speechome Project:
in nature the learning of a new word happens as caregivers repeat it more fre-
quently and homogeneusly.

5.3 Second Experiment

The second experiment is mostly focused on the ability of the system to learn
new words. We have analyzed the trend of the learning rate as input words follow
each other and we expect it to decrease in time.

The parameters for this second experiment are:

– training dataset: 600 words;
– testing dataset: 300 words;
– number of test: 1;
– threshold values: 0.8;
– input words per test: 200 words (selected randomly from the 300 words).
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Fig. 6. The number of cycles needed to reproduce a word decrease if a reduced input
set of word is used

Fig. 7. The trend of the similarity values is not affected by the number of input words

From this experiment we have extracted the number of cycles necessary to
imitate each single word sent as input to the system, computing then the moving
average to remove noise in data. The decreasing mean number of cycles and the
frequency of input words requiring a single tentative to be correctly imitated
show an ongoing learning of novel words or proto-words Fig. 8. This result is
supported by scientific evidence showing that babies speed up language learning
by memorizing the correct imitation tentatives they make and reusing words
already learned.
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Fig. 8. The moving average of the mean number of tentatives the system need to
imitate the target word

6 Conclusion

The use of natural language in robotics has always been an independent field
of research that was born with the aim to obtain intelligent and immediate
interaction between men and machines. However, the importance of language
does not exclusively lie in the field of communication: it actually represents the
very image of the mind, it is deeply linked to its inner structure, and it guides
its development through innumerable phases.

The aim of this work is to take a first step towards a model of language
that can be integrated with the other cognitive abilities of the robot, with the
purpose of contributing and collaborating towards a faster and more reliable
development of its mind and of its learning ability.

We focused our attention on the initial stages of language development, which
takes place in babies during their first years of life during which they switch
from an involuntary production of sounds to the voluntary use of vowels and
syllables: the babbling phase. We consequently elaborated the Model of Language
Primitives (LPM), which is based on the same principles lying under the motor
primitives, transposed into the language learning process.

In order to test the LPM we performed some experiments with the aim to eval-
uate its imitation ability and to test whether the system is effectively able to learn.
The obtained results not only validate this model, but also show a behavior very
similar to the one observed in babies. This supports the idea of the strict parallelism
between language and motor primitives, the core of the proposed model.

This preliminary results are encouraging but several open problems still exist.
The next step we want to explore is the integration of this model into our inten-
tional architecture IDRA [5], to exploit its potentiality in processing different
types of sensorial input, in learning associations, and in the autonomous gen-
eration of new objectives starting from innate instincts. The integration of the
LPM in IDRA should strengthen their learning abilities.
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