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Abstract— Programming a robot in natural language is a long 

time dream.  Today applications, using a simplified vocabulary, 
are still far from really interacting in natural language with a 
robot to ask it to perform actions. Here we investigate why the 
task is still difficult, focusing on the embodied nature of 
language. To improve reasoning on we propose using description 
logics as a way to represent sensory motor information, and 
conclude with a case study using description logics to ask the 
robot for every day actions. 
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I.  INTRODUCTION  
Traditionally the aim of robot programming languages has 
been to create robotic applications. Often robotic applications 
are a mix of robot commands, drag-n-drop interfaces, and 
point-n-click commands. Various programming languages are 
available to create robot applications. At run time unexpected 
situations made the system to stop or to try some reasoning to 
overcome the problems [11].  

Cognitive robotics aims to design systems able to act out of 
structured environments, by mimicking human cognitive 
abilities such as perception, memory and reasoning. Many 
disciplines such as neuroscience, psychology, cognitive 
science, linguistics and computer science are involved for 
producing reliable and efficient models of cognition. It is clear 
that a fully cognitive system is necessary to be able to program 
the robot actions through a dialogue in natural language. 

For humanoid robots, which are expected to cooperate with 
humans, a vocal input has been proposed. For instance, in [8] 
natural language sentences are translated into some robot 
behaviors to move the robot in a cooperative task with humans. 

Often natural language in robotics has been seen as a 
separate problem, which aimed at obtaining a more direct 
interaction between man and machine. However, language is 
not only a powerful mean of communication: it is in fact 
deeply linked to the inner organization of the mind and it 
guides its development. Alan Turing in his test ''Imitation 
Game'' concluded that language manipulation is a necessary 
condition for a machine to be intelligent.  

Nowadays all the applications of NLP in AI are getting 
more and more efficient, but they miss an important factor; 
linguistic skills do not cooperate with all the other cognitive 
mechanisms of the artificial agent but are considered as a stand 
alone module, able to read and translate commands; it is a 

simple human-robot interface and does not contribute to the 
development of the mind of the robot, in contrast to natural 
mechanisms.  

To create in artificial agents such an ability, natural 
language and robots perceptions should be linked together; the 
comprehension of natural language by robots should be based 
on sensory-motor experiences and not on a sort of hard coded 
semantic [7]. In a longer time perspective, a language based on 
the experience of the robot would allow it to autonomously 
extract knowledge about the environment, integrating this 
information with data from its own actions and related 
sensorial feedbacks. 

An important problem in robotics is the symbol-grounding 
problem [13] that concerns the relation between words or 
symbols with their meaning. An interesting study showed that 
sensory-motor integration could improve symbol-grounding 
processes [18]. The stimuli that human beings receive come 
from different sources, thus, in order to replicate our abilities to 
make sense of such a wealth of information, robots should be 
able to integrate them. Embodied robotics uses this finding.  

However the integration of symbolic reasoning with 
sensory motor models is still open. Today robotics is 
approaching more and more the problem of knowledge 
representation and reuse to improve the capabilities of robot 
learning and social interactions. While the robotics problems 
are still dominated by unpredictable interactions with the real 
world, the societal robot is expected to interact with people 
sharing their reasoning and beliefs.  Semantic technologies 
have seen an up-rise in robotics, as indicated by the creation of 
the Autonomous Robots Ontology Subgroup of IEEE RAS, 
and also by large projects, as KnowRob and RoboHow1. 

The use of natural language in robotics involves two sides: 
how the robot masters the language to create and organize its 
knowledge, and how the robot understands human language to 
receive orders. While we have worked in the past on the first 
point [10], here we focus on the second topic. In particular we 
explore the use of Description Logics (DLs) in a cognitive 
architecture as a way to extend data base search through 
reasoning. We discuss about assumptions that should hold in 
robotics for creating semantic representations. Then we use an 
ontology to extract robot commands from natural language. 
The extracted meaning is then matched against the cognitive 
structure of the robot that is organized in behaviors.  
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Our examples are taken considering the test for the iCub 
robot developed in the POETICON and POETICON++ 
projects2: stir the coffee.  Stir the coffee is a simple verbal 
request for people; when addressed to a robot it will call for 
planning (finding a spoon, inserting it in the cup, rotating), for 
a complex motor program  (move the arm so the spoon tip 
slowly circles in a constrained space), and for fully perceptual 
and haptic capabilities. State of the art learning and imitation 
learning techniques are adequate for teaching a robot the 
corresponding behavior, but how to go beyond the learned 
motor program for the specific behavior? Could the robot 
generalize this behavior and be able, for instance, to stir a 
soup? And what tool will be selected in this case? We show 
how our system is able to make this kind of generalization.  

II. SEMANTIC TECHNOLOGIES AND ROBOTICS 

A. Sematic technologies 
The renewed interest in using symbolic systems in robotics 

has been driven by the growing applications of semantic web 
technologies and ontologies. Ontologies have emerged as a 
way to provide a structured representation of knowledge. They 
are deterministic in nature, consisting of concepts and facts 
about a domain and their relationships. 

Description logics (DL)[4] define a logic-based framework 
for knowledge representation and reasoning, complemented by 
semantic query languages, which constitute the semantic 
counterpart of query languages for databases.  Since their 
introduction in the 1980s DLs have seen a large research effort 
to make them expressive and decidable. DLs are used for 
building ontologies and knowledge bases, which are collections 
of statements regarding concepts (also called classes), roles 
(also known as properties) and individuals (denoted also as 
instances or objects) organized in a Terminological Box 
(TBox), containing axioms describing concepts and their 
relations, and an Assertional Box (ABox), containing axioms 
describing individuals and their relations with concepts and 
other individuals. Such statements can be represented as triples 
(subject-predicate-object) and stored in relational databases, 
queried using languages as SPARQL [4]. 

TBox axioms, that usually define a hierarchy of concepts, 
can be used also as consistency checks: if tables need to have 
four legs and a specific instance of a table has five, the 
knowledge base is inconsistent. Additionally, TBox axioms can 
be used to infer general knowledge related to a whole class: for 
instance, if the class of stable objects is defined as the class of 
“objects having at least three legs”, tables described with four 
legs will be inferred as stable, and this will hold for all the 
instances of the class.  

On the other hand, instances can be used like entries in a 
database: ABox queries can be executed to retrieve from the 
knowledge base objects having the attributes of interest. For 
instance, if we are looking for objects having four long square-
based legs and a square top, the instance table will be retrieved; 
anyway, when performing this kind of queries, one has to be 
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aware of the Open World Assumption of DL which can give 
unexpected results. 

A common choice in robotics is to use concepts to represent 
classes of objects and individuals to model single objects. 
Complex concepts like a table has four legs and a surface and 
a table is either made of wood or of plastic can be formed 
using intersection, union and other available constructs. It is 
important to note that concepts can only have a tree-like 
representation in OWL, which means that axioms as a table 
has four legs parallel to each other cannot be expressed. More 
in general, it is difficult to write a TBox formalization if it has 
to include parts, topology axioms, constraints using reflexive 
and transitive roles and so on; in the robotic domain this can be 
a concern when attempting to model places, objects or 
kinematic chains as classes.  

Imagine to model red objects. What differences the three 
possible formulations Red, hasColor.Red hasColor.{red}? A 
class Red of red objects can be convenient when there are 
many entities that need to be partitioned according to this 
characteristics, otherwise it might be more convenient to use an 
attribute, like color, and a value, such as red. From an 
implementation point of view, the first form requires the use of 
a class Red to which red-colored objects belong; the second 
form requires a property has-Color having objects as its 
domain and a color as its range, thus an object would have a 
property linking it to another object which is the color (in this 
case belonging to the subclass Red) and requiring the full 
existential quantification construct; the third form would link 
the object to a specific instance red (possibly belonging to the 
Color class) entitled to represent the red color itself, requiring a 
specific construct O for enumerated classes. 

The current standard language for building ontologies is 
OWL 2. Sometimes it is not necessary to make use of the full 
OWL 2, so to optimize the performance some fragments, called 
profiles, have been created: EL for large TBoxes, QL for large 
ABoxes, and RL as a compromise. They differ in the constructs 
(intersection, union, negation, inverse, existential quantifier) 
that can be used within a subsumption axiom of the kind C ⊆ 
D. The right level of expressivity of a DL has to be assessed 
having in mind the final application, because it restricts the 
choice of reasoning engines and of storage systems that can be 
used. When robot ontologies are used to represent general 
world and action knowledge, their connection to real 
experimental data and low-level sensor data is still minimal. In 
fact sensor data are usually stochastic, and are better 
interpreted in a probabilistic framework.  We have proposed a 
solution in  [23, 24]. 

B. Robot cognitive architectures 
Several cognitive architectures have been developed, the 

oldest being SOAR [15], a symbolic architecture extended to 
include sub-symbolic processing, and ACT-R [1], which has its 
roots in cognitive psychology. There are several problems in 
adopting such general architectures in robotics, from 
generating the right symbols to using low-level information.  

Cognitive architectures can be enriched with a semantic 
memory, which can be considered as a long-term concept-
based memory containing general knowledge.  Often this 



module makes only use of lexical information, meaning that it 
does not provide any grounding or reference to the real objects 
they refer to but rather to their descriptions. Common 
knowledge resources such as Cyc [16] or ConceptNet [17] are 
respectively too broad or lacking a formal model, thus are not 
actual candidates for robotics problems. 

From a cognitive point of view it is not useful to rely only 
on symbolic models on the one hand or statistical models on 
the other. The problem becomes how to derive knowledge 
directly from perception and how to organizing the conceptual 
system. In perceptual symbol systems [5] perception through 
sensory-motor systems is stored as patterns of activations in the 
brain, so that perceptual symbols associated to single 
perceptual components (such as color and shape) can be later 
retrieved and organized as concepts in a conceptual system. In 
this case perceptual information is not just “attached" to 
symbols by means of a translation in a different language, 
because this would bring back the symbol-grounding problem 
[13]; on the contrary, symbols are amodal and represent subsets 
of a perceptual state. 

In order to be effectively usable, such representation should 
not only record perceptual information but also interpret it to 
distinguish specific instances (instances) from general 
categories (classes). Perceptual symbols are not immutable as 
they can change over time; as they are componential rather 
than holistic, in the sense that they regard “parts" of a 
perception, they are intrinsically qualitative and can represent 
classes of such entities. Perceptual symbols are multimodal, 
including all the sensory channels, introspection, and 
proprioception. They offer a different approach to 
categorization: an instance is decided to belong to a category if 
it can be simulated by the concept related to such category 
using its own representation. In [5] the decision on whether a 
real entity can be categorized by a certain concept is not taken 
on a logical basis but by comparing low-level representations 
of perceptions, and linguistic symbols are used to index and 
control simulations. 

A consequence is the need to find out which features can be 
derived from perception and used as symbols; such features 
should be nameable in order to be communicated, but they 
should not be decided “a priori". The identification of useful 
semantic features is an open research issue [4]. Ways to obtain 
knowledge from perception and experience can use a 
dynamical system approach [14], behavioral models [26], or a 
developmental perspective [12]. 

The study of language together with action and perception 
has recently seen a large research effort focusing on integrating 
them within a unified cognitive model [6, 7, 21, 22]. 

C. The PRAXICON database 
POETICON relies on the theoretical premise that meaning 

emerges from the integration of sensorimotor and symbolic 
representations, both of which contribute equally. POETICON 
developed a core database, called PRAXICON [19, 20], with 
the role of bridging a conceptual structure to low-level 
sensorimotor representations through the use of embodied 
concepts. The term praxicon [3], (from the Greek praxis = 
action), was introduced by Liepman in 1908 to define motor 

representations perceived and stored in the parietal cortex for 
motor production. The PRAXICONs are embodied concept 
representations of perceptual, motoric, linguistic or symbolic 
nature, perceived and stored in memory. The PRAXICON 
database is a 3rd normal form database centered on the 
definition of actions. It has been populated with 120,000 
concepts from WordNet, and from results of cognitive 
experiments [22]. It represents concepts as entities having 
relations with other entities; a concept is retrieved by giving its 
representation in terms of language or of any other modality. 
[2] has demonstrated PRAXICON commanding the iCub 
robot.  

Concepts in PRAXICON can have four types: Entity, 
Movement, Feature and Abstract. Abstract concepts are basic 
level only if they derive from entities or movement. For 
instance “cup” is an abstract concept, connected with various 
other concepts. It is either of type “container” or “dishware” 
and has a number of different realizations, like “coffee_cup”, 
etc. It can be used as an artifact in the action 
“cup_with_dummy_artifact_the_dummy_object” (i.e. put 
something in a cup) and is also the container of something 
(“dummy_content_cup”). It has features size and shape. 

Relations among concepts are in Table I and Fig. 1. The 
type-token relation defines a taxonomy among concepts; “A 
type-token B” means that A is a “father concept" for B. 
Relations can be arranged in chains, intersections (relations 
which have to hold at the same time) and unions (possible 
alternatives). A combination of relations can be inherent if it 
defines a necessary and sufficient condition for the entity it 
refers to (an intersection of three relations artifact-use, action-
object, action-purpose is inherent for movement concepts).  For 
example, the ‘cut_dummyTool_bread’#movement concept is 
inherently related with a ‘tool’ entity concept. The reasoner 
searches for an ‘entity’ concept to fill in this variable for the 
specific concept. Many entities could take up such role (e.g. 
knife, hands etc.); therefore more solutions can be found.  

TABLE I.  THE PRAXICON RELATIONS 

 



 
Fig. 1. Example of PRAXICON relations and their arrangement. 

III. LOGICS REPRESENTATION OF PRAXICON 
The advantage in using a semantic approach is its ability to 

formalize and provide standard reasoning services to a 
conceptual system; anyway this approach has several 
conceptual and technical shortcomings and presents some new 
challenges. More specifically, the advantages of using semantic 
languages over data base search are: 

- not only data instances but also data models can be queried, 
which means that the relationships among data can be 
discovered and extended by means of suitable queries; 

- several knowledge bases can be queried with a single 
simple query, which can be seen as a graph instead than as 
a series of joins; 

- it is possible to use structured and semi-structured data; 
- it is not necessary to explicitly encode all the domain 

knowledge, since the reasoner can infer new facts. 

Possible problems exist too in defining which aspects a 
concept is supposed to capture. Moreover, when knowledge is 
derived from “common sense" there might be a problem related 
to typicality and exceptions: DL do not allow for “partial 
inheritance", hence classes cannot be used directly for 
representing concepts.  

Regarding the level of information to represent, a possible 
problem lies in the comparison between features: while a 
general solution involving concepts such as  “comparison type" 
and “dimension of comparison" is more general, a DL-inspired 

solution (i.e. the use of specific properties) is more easily 
implemented. For example, when comparing two colors for 
deciding which one is “more red", in the first case the 
comparison would be of the type “more than" and the 
dimension would be the red channel in the RGB representation, 
while in the second case a moreRedThan property would be 
needed. The choice depends on the level at which the 
comparison is performed, in this case on whether the equality 
check is performed within the ontology (using SPARQL 
queries) or not. 

We show now the construction of a knowledge base built 
on top of the PRAXICON database. The formalization of 
PRAXICON using DLs makes use of instances rather than 
classes for representing concepts because: 

- Transforming thousands of concepts in classes would make 
it difficult to use a standard reasoner (the only reasoner 
which can handle such number is Snorocket, but it reasons 
on the OWL2 EL, where several constructs are not 
available). 

- Partial queries on the concepts for checking the “degree of 
satisfaction" (such as in intersections of relations) should be 
possible. 

- The path between two concepts and its length should be 
known (or decided beforehand), so it is possible using 
property paths on instances with SPARQL 1.1. 

- It is easier to extend concept’s definitions and to 
create/modify them automatically as relations with new 
instances. 

- It is possible to “count" things (e.g. the number of relations 
which hold etc.) 

So we added the following constraints to the original 
PRAXICON database: 

- only AbstractType concepts can be basic or non basic; 
- a concept is “fully abstract" if it is non basic and it does not 

have any origin; 
- the type of a template derives from the type of the 

associated movement concept; 
- only movements are templates; 
- concepts having origin in an entity can have the status of a 

variable or a constant; concepts having origin in a 
movement can have the status of a constant or a template; 
concepts with no origin can only be constant. 

The concepts in the DL implementation have been renamed 
using a hash of the representation present in the original 
database as obtained from WordNet; for example, the concept 
butter knife%1:06:00:: becomes butter knife 1477250444 in the 
ontology. Object properties are used to represent relations 
between concepts. The token-type relation is used as a subclass 
axiom: although it would need to be transitive, this is not 
necessary since SPARQL property paths are used. We added a 
role hierarchy with a general top property relatedTo as an 
ancestor property of all the PRAXICON relations, a 
HasFeature superproperty covering concept features (having 
entities as a domain and features as a range), and its inverse 
FeatureOf.  



By adding domain and range axioms, subclasses of features 
are automatically created from the PRAXICON properties (e.g. 
the feature class Shape is created as the range of the HasShape 
property) so that PRAXICON feature concepts can be 
classified using more specific classes. 

We used OWLIM 5.23 as semantic repository because it is 
suitable for big ABoxes, provides reasoning within OWL 2 RL 
and QL, and supports SPARQL 1.1 queries. The conversion 
from database to ontology has been done with the OWLAPI 
library4. The class structure has been fully implemented; only a 
part of the PRAXICON including stir, spread and cut actions, 
foods, kitchen tools and containers has been converted. For 
visualization and testing we used Protégé 4.2 (see Fig 2).  

IV. THE EXPERIMENTS 
To test the generalization capabilities, we ran several 

SPARQL queries against the ontology. Although we worked 
on the topic of semantic interpretation of sentences [25], and in 
POETICON a module is available for understanding a request 
expressed in natural language, for the time being we ignore the 
syntactic and semantic analysis of the sentence, thus focusing 
on the structure of the knowledge base. We suppose the 
available vision system could provide any level of detail to 
match entries in the knowledge base (e.g. it can find teaspoons, 
not only spoons). The experiments conducted are composed of: 

- a verbal request for an action expressed as a triplet 
(movement; tool; object) where tool and object can be empty; 

- a set of objects in the scene, whose type can be specific 
(e.g. butterknife, teaspoon) or generic (e.g. knife, spoon); 

The decision is in the form of a triplet (movement; tool; 
object) defining the kind of movement to execute, the tool to 
use and the object affected. We do not currently score multiple 
solutions but we list all the possible solutions. Future 
implementations on a real robot would select the best solution 
according perhaps to external criteria, as kinematics constraints 
or reachability.  

 

Fig. 2. The interface window of DL-PRAXICON; on the left the class 
hierarchy, on the right the variable characteristics. 
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In the following we illustrate the reasoning on five simple 
commands. 

1. Spread the butter with a butter knife. The search is for 
the three lemmas spread, butter and butterknife; the instances 
found are: spread 456537824, butter 519714614, butter knife 
1477250444. Looking for the possible intersections of relations 
containing them, the concept spread 971071545 related to the 
movement of “spreading the butter with a butter knife" is 
retrieved and the search ends with the resulting triplet (spread; 
butter; butterknife). No inference is needed. 

2. Spread the butter with a knife. The search is the same as 
before, but no results are obtained. The search is extended 
using a generalization of the tool, thus finding out that such a 
movement exists when it is performed with a butterknife, 
making it a possible substitute. In this case the only 
information used is the taxonomy of the objects knife and 
butterknife (property paths with the relations TokenType and 
TypeToken). The result is then (spread; butter; knife). 

3. Spread the butter with a dull/small object. Here dull is 
not an entity but a feature, thus the search has to find entity 
having such a feature. The feature concepts having as linguistic 
representations dull and small are searched, then concepts 
related to such features through any sub-property of the 
property HasFeature are searched. Finally the butterknife is 
found, along with the exact relations linking it to its features 
(HasShape and HasSize respectively). The result is then  
(spread; butter; butterknife). 

4. Cut the turkey wing. This example is interesting because 
it shows how to generalize using a relation not entailing a 
feature but another entity; the turkey wing is a part of a turkey, 
so the relation HasPart is used. For finding a concept linking 
cut and turkey, turkey itself has to be generalized. The only 
concept found is cut the staff of life with bread knife, and the 
only common ancestor for turkey and staff of life is solid food, 
which is a non-basic level abstract concept, together with its 
descendants meat, bird and poultry. In this case the search in 
PRAXICON database would not go up all the chain, because it 
would stop to the first basic level abstract concept. 

5. Stir the soup. The objects ontology we used for this last 
test was extended to contain 380 objects arranged in 19 
categories, and able to reason on dimensions [24]. The tools 
available in the scene are only a teaspoon, a screwdriver, and a 
wrench, as in Fig. 3 and Table II that contains the measures for 
the relevant objects in the ontology. The movement concept 
containing both stir and soup is Stir the soup with a spoon. 
While the teaspoon is semantically close to the spoon, if the 
dimensions of the object are considered as more important, a 
screwdriver and a wrench could have a size  “closer" to a 
serving spoon than a teaspoon. In this case, the comparison is 
checked on the metric features with a level of “closeness" that 
inversely depends on the difference in their features values. It 
is questionable how to assign the weights to semantic closeness 
and geometric closeness. Without this decision, as in this case, 
all the three available objects are reported as of possible use.  



   
Fig. 3.  The 3D models of the objects considered: teaspoon, screwdriver, 
wrench. 

TABLE II.  FEATURE VALUES OF THE OBJECTS 

 
A further step of knowledge extraction from examples or 

the inclusion of common sense knowledge would be required 
to make the best choice. In this example it might help to know 
that for stirring movements, long objects are needed 
(information possibly extracted analyzing the semantic features 
of the objects used for stirring), so avoiding the use of a 
wrench, or that tools are dirty and dirty objects cannot be used 
with food (common sense knowledge, more difficult to obtain), 
so avoiding also using the screwdriver. 

The graphical representation of the results of the queries is 
in Fig.4. 

1 2 3 

4 

Fig. 4. Graphical results of the NL queries. In the first query the 3 concepts: 
butterknife, butter, and spread are directly found and related to the concept 
‘spread the butter with a butterknife’ (in red). In the second query the knife, in 
green, is found as a generalization of butterknife. In the third query the knife 
is found from its properties HasShape and HasSize. In the fourth query the 
path is longer; solid food (in green) is related to turkey wing on one side 
through generalization (turkey wing, turkey, poultry, solid food), and on the 
other side it is also connected to staff of life through (staff of life , bread, solid 
food). Staff of life is the concept used in the cut movement concept (in red). 

V. CONCLUSIONS 
In this paper we have illustrated some problems 

encountered when trying to use generic natural language 
sentences to ask for robot actions. Our solution explores the 
feasibility of DLs to provide an internal representation and a 
reasoning tool. To deal with the embodiment problem we 
observed that the extraction of knowledge from sensing starts 
offering solutions, albeit not yet practical for any domain. The 
action planning problem is not considered here, as literature 
offers solutions, as for instance [2]. 

Here we wanted to estimate the feasibility of a DL 
representation, considering that the DL technologies still have 
representation and scalability problems. We started from an 
available large robot-oriented database, the PRAXICON, and 
transformed it into ontology. Doing that the following 
considerations emerged: 

- The use of classes for representing concepts is not suitable 
for several reasons: the typicality/exceptions issues, and the 
difficulty in building, storing and reasoning on expressive 
axioms when they are too many.  

- Instance checking, and instance retrieval are the main 
reasoning needed. 

- Data-types properties are used for linguistic 
representations. 

- Even though the technology to store large ontologies is still 
lacking, OWLIM 5.2 was capable of performing inference 
on OWL constructs while supporting a very high number of 
instances. Scalability might be a concern only up to a 
certain extent; a robot typically does not have an unlimited 
number of skills, therefore it does not need to store and use 
huge amounts of information. 

- The queries on the ontology using SPARQL 1.1 take 
advantage of property paths for taxonomic relations. 

The integration of other sources of information carrying 
different levels of representation is under investigation: we 
provided an example using an external ontology about objects, 
and we are currently studying how to integrate a grasp 
ontology too. In the future, to extend this case study to a real 
application, several improvements should be made, in 
particular on the representation side, for formalizing “relations 
between relations", and to include common knowledge 
statements.  

Putting our results in a perspective, we can conclude that 
DLs representation can be an extra force in simulators too. 
Today the development of robot applications is mainly done 
with the help of simulators. Considering the still open problems 
in using simulators instead of reality, our approach may 
improve the simulation process in dividing what depends on 
the world model and the cognitive capabilities of the robot 
from what depends on the robot movements and perceptions: 

• using ontologies, the simulation is done in a hierarchical 
way, from the models to the behaviors; 

• initially the model of the scene and the actions ontologies 
are checked for understanding whether something is 
missing or wrongly described. For instance, something may 
be wrongly described in the knowledge model if the robot 



decides to use a wrench to stir the soup, while a 
servingspoon is available; 

• after understanding the command, the obtained triplet  
indicates the behavior to use; as in [2] the triplet can 
subgoal for the planner, or can call an implemented skill;  

• the second level simulation is where the behavior is 
executed and where real time sensing occurs, as usual. 

Although the semantic approach in robotics deserves much 
interest, a specific use of it to allow programming robots in 
natural language has not yet been fully explored. 
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