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Abstract
Until recently, problem solvers have typically used
single-technique-based tools to build the solution. Also
in the field of predictive toxicology, a few systems have
been developed in that way, with positive preliminary
results. One approach to deal with real complex systems
is to use two or more techniques in order to combine their
different strenghts and overcome each other’s weakness
to generate hybrid solutions. In this project we pointed
out the needs of an improved system in toxicology
prediction. An architecture able to satisfy these needs has
been developed. The main tools we integrated are rules,
ANN, graph search, and rule learning algorithms. We
defined fragments responsible for carcinogenicity
according to human experts, developing a module able to
recognize these fragments into a given chemical. To each
fragment a carcinogenicity category was associated.
Furthermore, we developed an ANN, using molecular
descriptors as input, to predict carcinogenicity as a real
value. PCA was used to reduce the number of descriptors
used by the ANN. Finally, we developed an automatic
learning program to combine the results obtained from
the two previous modules into a single predictive class of
carcinogenicity to man. We tuned the system to
maximize the predictive power of the system.

Introduction
The goal to predict carcinogenicity is a challenging one, in
consideration of the social and economical importance of the
problem. Chemicals are responsible for many tumors.
However, the experimental tests on chemicals are year-longs
(because carcinogenicity is a form of chronic toxicity),
costly, and require the use of animals, with ethical
problems.
Some recent reviews on the topic have been published [1-3].
So far the most popular programs have been expert systems
(ES), as HazardExpert [4], CASE [5,6], TOPKAT [7,8],
DEREK [9, 10], Oncologic [11].
More recently neural networks (ANN) have been used. In
some cases the results were promising [12, 13], but in
another one no generalization of the ANN appeared [14].
Another way is inductive logic programming [15]. Other
challenges are on-going and this fact confirm the interest on
the matter [16].
In the present study we tried a new approach, combining
different systems into a hybrid architecture. We developed an
ES able to recognize toxic residues prediciting a class of
toxicity. Furthermore, we trained a ANN with molecular
descriptors and obtained a second value of predicitive
toxicity. Finally, we used an ILP to merge the information
steming from the two sources.

Definition of the phenomenon to model:
carcinogenicity

Cancer is not a single disease. Furthermore, each single
cancer involves a complex sequence of events. The
complexity of the phenomenon means that experimental
data are not precise, and in some cases contradictory.
Carcinogens are listed in classes by several agencies. For
instance, the International Agency on Research on Cancer
(IARC) considers four classes: the first (class 1) contains
the compounds which have been recognized as carcinogenic
to man; the last (class 4) has compounds which are not
carcinogenic, and the other compounds are splitted in classes
of different degree on uncertainty: probably or possibly
carcinogenic to man, (class 2A and 2B) and with a quite
high uncertainty (class 3 - the most numerous one) [17].
A different approach has been introduced by Gold and
colleagues [18]. Their database contains standardized results
for carcinogenicity for more than 1200 chemicals; it reports
the results for carcinogenicity on rat and mouse, expressed
in term of the parameter TD50 which is the chronic dose
rate which would give half of the animals tumors. This
database refers only to animal, and this is another major
difference between the IARC database and the Gold’s one.
We used both kinds of classification: categorial and
continuous.
On animals there are more data, and as a consequence this
information is more detailed. For this reason we used also
this information to recognize toxic fragments. For ANN we
used the TD50 as output.
The above approach may be limited in its application to
man, since it is strongly related to the activity in animal.
We extended its applicability to man using rule learning,
training it with the IARC classification.

The residue approach: definition and
search

Many toxicologists consider the presence of given
fragments in the molecule as an indication of potential
carcinogenicity. Individuating all the fragments and
modulating in a detailed way their activity is necessary. For
instance, while aniline has a carcinogenic potential, p-
phenylendiamine does not [19]. Similarly, 2-naphthylamine
is a quite potent carcinogen (IARC class 1), but 1-
naphthylamine has a very low if any activity (IARC class
3) [17]. These examples show that to simply rely on the
presence of an aromatic amino group may be misleading.
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Much more fragments are necessary. We studied this topic
for all the aromatic compounds with at least a nitrogen
linked to the aromatic ring (Ar-N compounds).

Carcinogenicity of aromatic compounds
Ar-N compounds contain a large number of chemicals,
many of them carcinogens. In order to define the fragments
responsible for carcinogenicity, we used several
bibliographic sources [17-20].
The Ar-N group is divisible into 10 chemical classes with
different mechanisms of bioactivity, further splitted into
some subclasses. Subclasses are defined by the following
criteria:
• presence of the same atom or substituent or chemical

structure in a fixed position relative to the the Ar-N
bond;

• affinity of chemicals in terms of TD50 values;
• toxicological, target tissue and/or IARC class.
The list of the knowledge base is shown in Table 1.

Table 1.  Ar-N compounds divided into classes and
subclasses.
_______________________________________________
1) PRIMARY AMINES

a- Monocyclic aromatic primary amines
b- Pentaatomic heteroaromatic primary amines
c- Hexaatomic heteroaromatic primary amines
d- Biphenyl primary amines
e- Di- and triphenylmethane amines and analogues
f- 4- and 4,4'-Stilbenes
g- 2-aminofluorene and analogues
h- Condensed polycyclic primary aromatic amines 1
i- Condensed polycyclic primary aromatic amines 2

2) NITROCOMPOUNDS
a- Monocyclic aromatic nitro compounds
b- 2-nitro-5-furyl
c- Thio- and azo-pentaatomic nitro compounds
d- Condensed polycyclic nitro compounds 1
e- Condensed polycyclic nitro compounds 2
f- Miscellaneous nitro compounds

3) AZOCOMPOUNDS
a- Dibenzo azo compounds
b- 1-naphtho azo compounds
c- 2-naphtho azo compounds

4) HYDRAZINES
a- Hydrazines 1
b- Hydrazines 2

5) SECONDARY AMINES
a- Aromatic secondary aliphatic amines
b- Diphenyl secondary amines
c- Carbazole
d- Solfonic secondary amines
e- Purines

6) AMIDES
a- Monocyclic aromatic amides
b- Biphenyl amides
c- 2-acetylaminofluorene derivatives
d- Pentaatomic heteroaromatic amides
e- Hexaatomic heteroaromatic amides

7) TERTIARY AMINES
a- Monocyclic aromatic tertiary amines
b- Di- and triphenylmethane tertiary amines
c- N,N-dihydroxyethyl tertiary amines
d- Nitrogen mustards
e- Pentaatomic heterocyclic tertiary amines

8) C-NITROSOCOMPOUNDS
9) N-NITROSOCOMPOUNDS
10) ISOCYANATES

We implemented this knwledge as a two level structure,
eventually with negative conditions for each layer.
• FIRST SEARCH LEVEL: search of the characterizing

element of the subclass (also named "body" of the
residue); this element is composed by the class general
discriminant structure of nitrogen fragment and the
general aromatics structures bonded to that group (e.g. a
mono or bicycle).

• FIRST INHIBITION LEVEL: it has been originated to
solve the problem of chemical groups that, even if
related to the structure of the subclass, are not
carcinogens or anyway toxicologically not similar.
Another problem is the exclusion of groups of
compounds that in fact belong to other subclasses. For
example implementing Monocyclic Aromatic Primary
Amine we had to exclud the Biphenylic Amines, that
belong to another specific subclass of Primary amine.

• SECOND INHIBITION LEVEL: the second search level
does not discriminate between compounds not
cancerogenic or not yet toxicologically defined and
carcinogenic ones that belong to the same structural
subclass: this second  inhibition level is useful to
exclude a specific compound. For example in the
subclass of Monocyclic Aromatic Nitro Compound, 2,4-
dinitrophenol has to be excluded because not
cancerogenic.

This two-layer structure allows an easy introduction of new
subclasses or even classes of compounds, and exclusion of
compounds or entire groups of them;  it is also possible to
modify only a portion of the structure.
Each fragment is associated with a category expressing the
level of toxicity. The system reports the highest level
obtained and the residue responsible for the activity; in other
words, if more than a toxic residue is present, the program
select the most active. For the definition of the five
“carcinogenicity levels”, three parameters have been
considered:
1. the TD50 of the molecule;
2. the level of carcinogenicity ascribed to the fragment

contained in the molecule (this has been defined taking
into account the quantitative information available,
averaging the evaluation for each fragment on all the
molecules containing the substructure);

3. the classification or the evidence of carcinogenicity
given by the IARC, IRIS, HSDB, NTP, RTECS [17,
18] databases.

All chemical structures are represented by graphs. The
COSMIC format has been chosen to describe the molecule.
This decision allows us to use atom hybridization instead of
information on atomic bonds, with two positive
consequences:
1. All bonds are equals. The chemical information is hidden

in the nodes and so the implementation of the search
algorithm is easier.

2. Hydrogens are left out. The molecular graph is smaller.
Molecules and chemical structures are represented by
adjacency lists. This paradigm is a development of the
adjacency matrix where the rows are replaced by linked lists,
one for each vertex of the graph. For any given list, i , the
nodes in the list contain the vertices that are adjacent to



vertex i . Notice that all the chemical information, atomic
number and hybridization, are hidden in the nodes, while the
links are indifferentiated.

Search
The search of a fragment in a molecule can be formalized, in
graph theory, as a subgraph isomorphism problem in which
we have to find all the isomorphisms between a given graph
and subgraphs, where a graph Ga is isomorphic to a
subgraph of a graph Gb if and only if there is a 1 to 1
correspondence between the node sets of this subgraph and
of Ga that preserves adjacency. This problem is, in general,
NP-Complete.
Our search has been divided into two parts: the first search
level is performed by finding all the possible isomorphisms
between the considered sub-structure and the molecule. Note
that looking for all the isomorphisms is necessary to check
all the possible spatial configurations of the residue in the
molecule. This target is reached using the Ullmann's
algorithm, modified to manage hydrogens and wildcards.
Afrter finding a first level sub-structure, the second part of
our search procedure checks  if positive and negative
conditions are true. In other words, for each isomorphism
found, we pass to consider the next structure levels. This
second part of the search procedure is based on two
important hypotheses:
• there is only one instance of the sub-structure belonging

to the second search level that is linked to a first level
isomorphism.

• moreover we need to find only one isomorphism of the
inhibition levels to infer that the exclusion is necessary.

For this level we used a backtracking technique which
performs an atom-by-atom search. This simple algorithm is
sufficient because the sub-structures associated with the
inhibition levels and the second search level are very simple
and composed by few atoms.
If the backtracking finds a second level structure and no
inhibition, we have found one instance of the residue in the
molecule.
Summing up, the search of residues is:
1. Search a new isomorphism of residue first level

structure and molecule (Ullmann’s algorithm);
2. IF there is no other isomorphism THEN GOTO 4;
3. FOR each isomorphism found THEN

3.1. IF (Check first level inhibition = TRUE)
THEN GOTO 1;

3.2. Search second level structure;
3.3. FOR each second level structure found

3.3.1. IF (Check second level inhibition =
FALSE) THEN one instance of a
residue is fuond;

3.4. GOTO 1;
4. END;

The ANN

Molecular descriptors used as input
From the chemicals included in the Gold’s database 104
molecules presenting an aromatic ring and a nitrogen linked

to the aromatic ring have been chosen to train the ANN. We
used molecular descriptors  as input for the ANN.
Molecular descriptors represent different structural attributes
of the moleculesTheir use constitues a different approach
from that of using substructures. In the case of
substructures the problem is that the rest of the molecule is
not considered, but some general parameters may influence
biological activities.
Different kinds of molecular descriptors are reported in the
QSAR literature. We tried to use many of these parameters.
The programs VAMP 6.1 (Oxford Molecular Limited,
England) has been used for the quantum-chemical and
thermodynamic calculations, HazardExpert 3.0 (Compudrug,
Budapest) for logD calculation, TSAR version 3.0 (Oxford
Molecular Limited, England) for all the other descriptors.
The following 34 descriptors have been calculated:
molecular weight; molecular volume, logD at pH 2, 7.4 and
10; three principal moments of inertia and three principal
axes of inertia; Wiener, Randic and Balaban topological
indices; three Kappa and three Kappa alfa shape indices,
flexibility index; five ChiV connectivity indices; ellipsoidal
volume and electrotopological sum; HOMO; LUMO; dipole
moment; total energy; polarizability, heat of formation.
A selection was necessary in order to avoid an excessive
time for training the network. The criterion adopted was that
of obtaining the most information and the least correlation
between input variables. Principal component analysis
(PCA), one of the main techniques for the multivariate
analysis of data, has been used.
The main differences within the set of 104 molecules
resulted explained by the descriptor total energy and by a
pool of descriptors including the topological, geometric and
electrostatic. Dipole moment, the topological index of
Balaban, the quantum-chemical HOMO and LUMO
descriptors and the logD parameters explained another source
of differences between the molecules. Considering these
results of PCA and removing corrrelating descriptors using
the correlation matrix obtained by PCA, a final set of 13
descriptors has been selected. The reduced set is the
following: molecular weight, HOMO, LUMO, dipole
moment, polarizability, Balaban, ChiV3 and flexibility
indices, logD at pH 2 and pH 10, third principal axis of
inertia, ellipsoidal volume, electrotopological sum. It is
interesting to note that descriptors of different nature have
been selected after PCA, meaning that no single category of
descriptor was a source of complete information. We note
that logD was obtained using an ES, and in this sense the
ANN includes as input a value obtained from a symbolic
program.

Output for ANN

The parameter TD50 created by Gold has been adopted for
the output. The output has been derived from a
transformation of the TD50 according to the following
formula:

output = Log (MW*1000/TD50)
This transformation has been adopted in order to have a
more continuous output space.



ANN experiments
Data pretreatment was needed in order to have a
homogeneous range of variance of descriptors. Data were
scaled between 0 and 1. The validation set was scaled on the
basis of the scaling of the training set.
All the simulations were performed using MBP v 1.1 [21].
The working parameters were the following:
- weight initialized tor YPROP: K Ka d= =07 007. , .
The algorithm stops itself when it encounters one of the
followings:
• gradient lower than 10-6 [for too low values no

improvement of Mean Square Error (MSE) happens]
• MSE equal to 0;
• maximum calculated difference between calculated and

desired output equal to 0;
• maximum number of iterations reached.
Each network has been trained starting from 100 points
random in the space, in order to minimize the probability of
converging towards local minima. For the validation step
the Leave-Two-Out approach was adopted.
MSE and R2

cv resulting from 10000 iterations of the back-
propagation ANN, using different numbers of internal
neurons, showed that best results were obtained using four
or seven neurons: R2

cv was in both cases 0.69. The presence
of outliers in the set, i.e. of observations which are so
distant from the others to suspect that a different mechanism
underlies them, has been supposed and investigated.
For the removal of the outliers a conservative approach has
been adopted removing just the molecules which presented
an error in validation higher than 0.2 in both the two best
models. 12 molecules were identified as outliers and
removed from the set. Results obtained after outliers
removal showed clear improvement in the R2

cv which
became 0.82 (with 4 internal neurons). The major part (9
out of 12) of the outliers are molecules for which the
experimental results for carcinogenicity were not
statistically significant and an arbitrary value of 1031 was
given in the Gold database. The major experimental
evidences for these molecules tend to non carcinogenicity.
The developed ANN presented therefore a lower prediction
for non carcinogenic compounds. These compounds,
however, are subject to major experimental uncertainties in
the database we used. Carcinogenic compounds were instead
correctly predicted, thus assuring the capacity of the network
of avoiding false negatives. Other ANN architectures  have
been tried. Counter propagaton on the complete set gave
only 0.61 for R, and 0,72 after outliers removal.

Combining the two information: hybrid
system

There has been a considerable amount of research in
integrating connectionist and symbolic processing. While
such an approach has clear advantages, it also encounters
serious difficulties and challenges. The hybrid approach is
premised on the complementarity of the two paradigms and
aims at their synergistic combination in systems
comprising both neural and symbolic components.
However, it is still under discussion which engineering

methodology to apply for effectively developing hybrid
systems.
The results we obtain from the two parts of the prediction
should now be combined. The general target is to integrate
both the components in order to maximize the predictive
power of the system.
In a previous study we described a different hybrid system,
in which the program was able to recognize the chemical
class of a given compound and then to apply the toxicity
rules defined for that chemical class [22]. Also in that case
the inputs to the system were the molecular descriptors. The
classification module assigned a chemical class to the
compound, enabling the system to call only the appropriate
model. These two modules gave as final result: a number,
representing predicted toxicity, a class (active/non-active),
and the explanation.
In the present study we changed the architecture of the
program: indeed, the output of the two (different) modules,
based on substructures and on ANN, were used within a
third module giving the final prediction.
The target classification is the one proposed by IARC.
From the studied molecules, 67 have a IARC classification.
43 of them are in class 3 (no definitive risk assessed) and 0
of class 4 (no risk). It was considered impossible to directly
use the IARC classification, and we decided to split some
semiquantitativeclasses according to the following criteria:
- to obtain 5 classes, 1 to 5, from lower to higher risks,
based on the TD50 values;
 - to check the presence of each residue in the molecules
under study;
- to give to each residue a toxicity class obtained as the
mean of the toxicity of the molecules where it was found;
- to assign to the molecule the maximum toxicity obtained
from the residues and ANN module.
We have used different tree construction programs on our
data set. The first is C4.5 which makes use of the
maximization of the entropy gain, and build hyper-
rectangular in the attributes space.  The second one was
CART which builds binary trees. A recent evolution of
CART is OC1 [23] available on the Internet. It uses a
random perturbation of parameters to escape from local
minima. We tested the three programs on our data set, and
obtained similar performances using the leave-one-out
method, as illustrated in Table 2.

Table 2.  Prediction obtained with the rule induction
systems
(accuracy %)

C4.5 CART OC1
Training 93.3 88.5 90.2

Validation 81.9 85.5 82.8



Discussion and conclusions
Our study wants to contribute to the understanding of the
possibilities to predict carcinogenicity.
The present study represents an example of a hybrid system,
combining ANN and a system based on residue recognition.
The strenght of the ANN may in theory be in its capacity to
find the link between input and output, even in the case of
unknown relationship.
So far ANN has been used in limited cases for
carcinogenicity prediction. Ghoshal [12] used ANN for 9-
nitroanthracenes and some heterocyclic compounds, with a
correlation index r of 0.877 or 0.919, after removing the
outliers. Vracko [13] obtained an r of 0.74-0.76 after
removing the outliers, for a set of aromatic compounds,
belonging to different chemical classes. Our study gave
results comparable with those by Ghoshal and Vracko.
On the other hand, Benigni and Richard [14] had poor
results, in a study using 280 compounds of various kind.
However, Benigni and Richards tested their net on a much
more heterogeneous population of molecules.
Our research confirms the feasibility of an ANN for
carcinogenicity for chemicals. A valuable characteristic of
our ANN is that it seems to correctly predict carcinogenic
compounds, while it is less accurate in the prediction of non
active compounds. The latter compounds, however, are
subject to major experimental uncertainties.
It is likely that ANN alone cannot solve problems linked
with carcinogenicity prediction. There are cases in which
molecular descriptors, or at least those used by us, were not
able to disciminate certain compounds. In this case an
approach  based on the residues can simply discriminate
between the two chemicals. This is a clear example of the
possibilities offered by hybrid systems.
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