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Abstract
Until recently, problem solvers havéypically used
single-technique-based tools bwild the solution. Also
in the field of predictive toxicology, few systemshave
been developed in that way, witositive preliminary
results. One approach tealwith real complexsystems
is to use two or more techniques in order to comipiresr
different strenghtsand overcome each other'sieakness
to generate hybridolutions. In this project wpointed
out the needs of an improved system toxicology
prediction. An architecture able to satisfy these needs has
been developedThe main tools we integratedre rules,
ANN, graph searchand rule learning algorithms. We
defined fragments responsible for carcinogenicity
according to human experts, developing a module able to
recognize these fragments into a given chemical. To each
fragment acarcinogenicity categorywas associated.
Furthermore, we developed alNN, using molecular
descriptors as input, to predicarcinogenicity as a real
value. PCA wasised to reducthe number ofdescriptors
used bythe ANN. Finally, we developed anautomatic
learning program to combine the results obtairfiezm
the two previous modules into a single predictive class of
carcinogenicity to man. We tuned the system to
maximize the predictive power of the system.

Introduction

The goal to predict carcinogenicity is a challengimg, in
consideration of the social and economical importance of the
problem. Chemicalsare responsible for manytumors.
However, the experimental tests on chemicals are year-longs
(because carcinogenicity is farm of chronic toxicity),
costly, and requirethe use of animals, withethical
problems.

Some recent reviews on the topic have been published [1-3].
So far the most popular programs have been egystems
(ES), asHazardExperf{4], CASE [5,6], TOPKAT [7,8],
DEREK [9, 10], Oncologic [11].

More recently neural networkANN) have been used. In
some casesthe resultswere promising [12, 13], but in
another one no generalization of the ANN appeared [14].
Another way is inductivdogic programming [15].Other
challenges are on-going and this fact confirm the interest on
the matter [16].

In the present study weied anew approach, combining
different systems into a hybrid architecture. We developed an
ES able torecognizetoxic residues prediciting alass of
toxicity. Furthermore, wdrained aANN with molecular
descriptorsand obtained a secondralue of predicitive
toxicity. Finally, we used an ILP tmergethe information
steming from the two sources.

Definition of the phenomenon to model:
carcinogenicity

Cancer isnot a singledisease.Furthermore,each single
cancer involves a complexsequence ofevents. The
complexity of the phenomenon means tlperimental
data are not precise, and in some cases contradictory.
Carcinogenarelisted in classes by several agencies. For
instance, the Internation&lgency on Research o@ancer
(IARC) considers fourclasses: the first (class 1) contains
the compounds which have beetognized as carcinogenic
to man; the last (class 4) hasmpounds whickare not
carcinogenic, and the other compounds are splitted in classes
of different degree onuncertainty: probably omossibly
carcinogenic toman, (class 2Aand 2B) and with a quite
high uncertainty (class 3 - the most numerous one) [17].
A different approachhas beenintroduced by Gold and
colleagues [18]. Theidatabaseontainsstandardizedesults
for carcinogenicity for more than 1200 chemicalsiejports
the results for carcinogenicity on r@td mouse, expressed
in term of theparameteiTD50 which is the chronidose
rate which would give half of the animals tumors. This
database refersnly to animal,and this is another major
difference between the IARC database and the Gold’s one.
We used both kinds of classification:categorial and
continuous.

On animalstherearemore data,and as a consequenti@s
information is moredetailed.For this reason weusedalso
this information to recognize toxic fragments. For ANN we
used the TD50 as output.

The aboveapproachmay be limited in its application to
man, since it is stronglyelated tothe activity in animal.
We extendedts applicability to man using ruleearning,
training it with the IARC classification.

The residue approach: definition and
search

Many toxicologists consider the presence of given
fragments in the molecule as an indication of potential
carcinogenicity. Individuating all the fragments and
modulating in a detailed way their activity is necessary. For
instance, while aniline has aarcinogenic potential, p-
phenylendiamine does not [1Bimilarly, 2-naphthylamine

is a quite potent carcinogen (IARC class 1), but 1-
naphthylamine has a vefgw if any activity (IARC class

3) [17]. These exampleshow that to simply rely on the
presence of aaromatic amino group may be misleading.



Much more fragmentare necessary. Wetudiedthis topic

for all the aromaticcompoundswith at least a nitrogen

linked to the aromatic ring (Ar-N compounds).

Carcinogenicity of aromatic compounds

Ar-N compoundscontain a large number of chemicals,

many of them carcinogens. brder to definghe fragments

responsible for carcinogenicity, weused several

bibliographic sources [17-20].

The Ar-N group is divisible into 1@hemical classewith

different mechanisms of bioactivityfurther splittedinto

some subclasses. Subclassesdefined bythe following
criteria:

* presence othe same atom or substituent dremical
structure in dfixed position relative to the theAr-N
bond;

 affinity of chemicals in terms of TD50 values;

» toxicological, target tissue and/or IARC class.

The list of the knowledge base is shown in Table 1.

Table 1
subclasses.

Ar-N compoundsdivided into classes and

1) PRIMARY AMINES

a- Monocyclic aromatic primary amines

b- Pentaatomic heteroaromatic primary amines

c- Hexaatomic heteroaromatic primary amines

d- Biphenyl primary amines

e- Di- and triphenylmethane amines and analogues
f- 4- and 4,4'-Stilbenes

o- 2-aminofluorene and analogues

h- Condensed polycyclic primary aromatic amines 1

i- Condensed polycyclic primary aromatic amines 2
2) NITROCOMPOUNDS

a- Monocyclic aromatic nitro compounds
b- 2-nitro-5-furyl
c- Thio- and azo-pentaatomic nitro compounds
d- Condensed polycyclic nitro compounds 1
e- Condensed polycyclic nitro compounds 2
f- Miscellaneous nitro compounds
3) AZOCOMPOUNDS
a- Dibenzo azo compounds
b- 1-naphtho azo compounds
c- 2-naphtho azo compounds
4) HYDRAZINES
a- Hydrazines 1
b- Hydrazines 2
5) SECONDARY AMINES
a- Aromatic secondary aliphatic amines
b- Diphenyl secondary amines
c- Carbazole
d- Solfonic secondary amines
e- Purines
6) AMIDES
a- Monocyclic aromatic amides
b- Biphenyl amides
c- 2-acetylaminofluorene derivatives
d- Pentaatomic heteroaromatic amides
e- Hexaatomic heteroaromatic amides
7) TERTIARY AMINES
a- Monocyclic aromatic tertiary amines
b- Di- and triphenylmethane tertiary amines
c- N,N-dihydroxyethyl tertiary amines
d- Nitrogen mustards
e- Pentaatomic heterocyclic tertiary amines

8) C-NITROSOCOMPOUNDS
9) N-NITROSOCOMPOUNDS
10) ISOCYANATES

We implementedhis knwledge as awo level structure,

eventually with negative conditions for each layer.

e FIRST SEARCHLEVEL: search ofthe characterizing
element of the subclass (alsmmed "body" of the
residue);this element iscomposed bythe classgeneral
discriminant structure of nitrogen fragmeand the
general aromatics structures bondethiat group (e.g. a
mono or bicycle).

* FIRST INHIBITION LEVEL: it has beeroriginated to
solve the problem of chemical groupisat, even if
related to the structure of the subclassare not
carcinogens or anywayoxicologically not similar.
Another problem is the exclusion of groups of
compoundghat in fact belong to other subclasses. For
example implementing Monocyclic Aromatic Primary
Amine we had to exclud the Biphenylic Amines, that
belong to another specific subclass of Primary amine.

e SECOND INHIBITION LEVELthe second seardhvel
does not discriminate between compounds not
cancerogenic omot yet toxicologically defined and
carcinogenicones that belong to the sams&uctural
subclass: thissecond inhibition level is useful to
exclude aspecific compound.For example in the
subclass of Monocyclic Aromatic Nitro Compound, 2,4-
dinitrophenol has to beexcluded because not
cancerogenic.

This two-layer structure allows an easy introduction of new

subclasses or even classes of compoumexclusion of

compounds or entire groups of them; it is also possible to
modify only a portion of the structure.

Each fragment is associatedth a category expressing the

level of toxicity. The systenreports the highestevel

obtained and the residue responsible for the activity; in other
words, if more than a toxigesidue ispresent, thgrogram
select themost active. For thedefinition of the five

“carcinogenicity levels”, three parameters havédoeen

considered:

1. the TD50 of the molecule;

2. the level of carcinogenicityascribed tothe fragment
contained inthe molecule (this haseendefined taking
into accountthe quantitative information available,
averagingthe evaluation forachfragment onall the
molecules containing the substructure);

3. the classification or thesvidence of carcinogenicity
given by the IARC, IRIS, HSDB, NTP, RTECS [17,
18] databases.

All chemical structuresare represented bgraphs. The

COSMIC format has been chosendescribethe molecule.

This decision allows us to use atom hybridization instead of

information on atomic bonds, with two positive

consequences:

1. All bonds are equals. The chemical information is hidden
in the nodesand sothe implementation of theearch
algorithm is easier.

2. Hydrogens are left out. The molecular graph is smaller.

Molecules and chemical structuresare represented by

adjacencylists. This paradigm is a development of the

adjacency matrix where the rows are replaced by liristsl,
one for each vertex of the gragfor any givenlist, i, the
nodes inthe list contain theverticesthat are adjacent to



vertexi. Notice that all thechemicalinformation, atomic
number and hybridization, are hidden in the nodes, while the
links are indifferentiated.

Search

The search of a fragment in a molecule can be formalized, in

graph theory, as subgraph isomorphism probleim which

we have to findll the isomorphisms between a given graph

and subgraphs,where agraph G, is isomorphic to a

subgraph of a grapfs, if and only if there is a 1 to 1

correspondencbetweenthe nodesets of this subgraph and

of G, that preserves adjacency. This probliemin general,

NP-Complete.

Our searchhas beerdividedinto two parts: the firssearch

level is performed by finding athe possible isomorphisms

between the considered sub-structure andrtbkecule.Note
that looking for all the isomorphisms igecessary t@heck

all the possible spatial configurations of tlesidue in the

molecule. This target igeached using the Ullmann's

algorithm, modified to manage hydrogens and wildcards.

Afrter finding afirst level sub-structure, thsecondpart of

our search procedurechecks if positive and negative

conditionsaretrue. In other words, foeachisomorphism
found, we pass t@onsiderthe next structure levelshis
second part of the search procedure is based on two
important hypotheses:

« there is only one instance of the sub-structure belonging
to thesecond searclevel that islinked to afirst level
isomorphism.

» moreover we need to findnly one isomorphism of the
inhibition levels to infer that the exclusion is necessary.

For this level weused abacktracking technique which

performs an atom-by-atom search. This simple algorithm is

sufficient becausethe sub-structuresissociatedwith the
inhibition levels and the second search level are sanple

and composed by few atoms.

If the backtracking finds asecondlevel structureand no

inhibition, we have found one instance of tlesidue in the

molecule.

Summing up, the search of residues is:

1. Search anew isomorphism of residue first level
structure and molecule (Ullmann’s algorithm);
2. IF there is no other isomorphism THEN GOTO 4;
3. FOR each isomorphism found THEN
3.1. IF (Check first levelinhibition = TRUE)
THEN GOTO 1,
3.2. Search second level structure;
3.3. FOR each second level structure found
3.3.1. IF (Check second level inhibition =
FALSE) THEN one instance of a
residue is fuond;
3.4. GOTO 1;
4, END;
The ANN

Molecular descriptors used as input

From the chemicalsincluded inthe Gold’s database 104
molecules presenting an aromatic ring and a nitrdig&ad

to the aromatic ring have been chosen to train the ANN. We
used molecular descriptors as input for the ANN.

Molecular descriptors represetifferent structural attributes

of the moleculesTheir use constituesliierent approach
from that of using substructures. In thease of
substructures the problem is that the rest of the molecule is
not consideredput somegeneral parametersay influence
biological activities.

Different kinds of molecular descriptosse reported in the
QSAR literature. We tried to use many of theseameters.
The programs VAMP6.1 (Oxford Molecular Limited,
England) has beenused for the quantum-chemical and
thermodynamic calculations, HazardExpert 3.0 (Compudrug,
Budapestfor logD calculation,TSAR version 3.0(Oxford
Molecular Limited, England) for all the other descriptors.
The following 34 descriptors have beercalculated:
molecular weight; molecular volume, logD at pH 2, 7.4 and
10; three principaimoments of inertiaand three principal
axes of inertia; WienerRandic and Balaban topological
indices; three Kappandthree Kappa alfa shape indices,
flexibility index; five ChiV connectivity indices; ellipsoidal
volume and electrotopological sum; HOMO; LUMO; dipole
moment; total energy; polarizability, heat of formation.

A selection wasecessary irorder to avoid an excessive
time for training the network. The criterion adopted was that
of obtaining the most informatioandthe leastcorrelation
between input variables Principal component analysis
(PCA), one of the mairtechniques forthe multivariate
analysis of data, has been used.

The main differenceswithin the set of 104molecules
resulted explained byhe descriptortotal energyand by a
pool of descriptors including the topological, geometric and
electrostatic. Dipole moment, the topologidaldex of
Balaban, the quantum-chemical HOMO and LUMO
descriptors and the logD parameters explained another source
of differencesbetweenthe molecules. Considerinthese
results of PCAandremoving corrrelatinglescriptorausing

the correlation matrixobtained byPCA, a final set of 13
descriptorshas beenselected. The reduced set is the
following: molecular weight, HOMO, LUMO, dipole
moment, polarizability, Balaban, ChiV3 and flexibility
indices, logD at pH 2and pH 10, third principal axis of
inertia, ellipsoidal volume, electrotopologicalm. It is
interesting to note thalescriptors of differenhature have
been selected after PCA, meaning that no singtegory of
descriptorwas a source of completaformation. Wenote
that logD wasobtainedusing an ESand inthis sense the
ANN includes asnput a valueobtainedfrom a symbolic
program.

Output for ANN

The parameteiTD50 created byGold has beeradopted for
the output. The output haseen derived from a
transformation of the TD5G@ccording to the following
formula:

output = Log (MW*1000/TD50)
This transformation habeenadopted in order tchave a
more continuous output space.



ANN experiments

Data pretreatment waseeded in order to have a
homogeneousange of variance of descriptors. Datere
scaled between 0 and The validation set was scatad the
basis of the scaling of the training set.
All the simulations were performed using MBP v 121].
The working parameters were the following:
- weight initialized tor YPROPK =07 K, =007
The algorithm stops itself when @ncounters one of the
followings:
« gradient lower than 16 [for too low values no
improvement of Mean Square Error (MSE) happens]
* MSE equal to 0;
* maximum calculated differencebetween calculated and
desired output equal to O;
* maximum number of iterations reached.
Each networkhas beertrained starting from 100points
random in the space, in order to minimize the probability of
convergingtowardslocal minima. For thevalidation step
the Leave-Two-Out approach was adopted.
MSE and R,, resulting from 10000 iterations of thmack-
propagation ANN, usingdifferent nhumbers of internal
neuronsshowed that best resuligere obtainedusing four
or seven neurons:Rwas in both cases 0.69. Theesence
of outliers in the set, i.e. of observations whiaie so
distant from the others to suspect that a different mechanism
underlies them, has been supposed and investigated.
For the removal of the outliersanservative approach has
beenadoptedremoving just the molecules whigiresented
an error in validatiorhigher than 0.2 in both the twmest
models. 12 moleculesvere identified asoutliers and
removed from the set. Resultsobtained after outliers
removal showed cleaimprovement in theR?2,, which
becameD.82 (with 4 internal neurons). The major part (9
out of 12) of the outliersare molecules for which the
experimental results for carcinogenicitywere not
statistically significantand anarbitrary value of 1% was
given in the Gold database.The major experimental
evidencedor these moleculetend to non carcinogenicity.
The developedANN presented therefore lawer prediction
for non carcinogenic compounds. These compounds,
however, are subject to major experimental uncertainties in
the database we used. Carcinogenic compowsds instead
correctly predicted, thus assuring the capacity of the network
of avoiding false negatives. Other ANMchitectures have
been tried.Counter propagaton on the complete gate
only 0.61 for R, and 0,72 after outliers removal.

Combining the two information: hybrid
system

There has been aconsiderableamount of research in
integrating connectionisand symbolic processingWhile
such anapproachhas clear advantages, &lso encounters
serious difficultiesandchallenges. The hybridpproach is
premised on the complementarity of the tparadigms and
aims at their synergistic combination in systems
comprising both neural and symbolic components.
However, it is still under discussion whichengineering

methodology to apply foreffectively developinghybrid
systems.

The results we obtain from the two parts of gnediction
should now be combined. Thyeneral target is to integrate
both the components ionrder to maximize thepredictive
power of the system.

In a previous study weescribed a differertybrid system,
in which the program was able tecognizethe chemical
class of a givetompoundandthen to apply the toxicity
rules defined fothat chemical class [22]Also in thatcase
the inputs to the system were the molecular descriptors. The
classification module assigned a chemictdss to the
compound, enabling the system to call only dpgropriate
model. Theséwo modulesgave as finatesult: a number,
representingoredictedtoxicity, a class(active/non-active),
and the explanation.

In the present study wehangedthe architecture of the
program: indeedthe output of the twddifferent) modules,
based onsubstructuresand on ANN, were usedwithin a
third module giving the final prediction.

The target classification is the omeoposed bylARC.
From the studied molecules, 67 have a IARC classification.
43 of them are in class 3 (no definitivisk assessedgnd O
of class 4 (no risk). It was considered impossiblealitectly
use the IARC classificatiorand wedecided tosplit some
semiquantitativeclasses according to the following criteria:
- to obtain 5 classes, 1 to 5, from lower to highisks,
based on the TD50 values;

- to checkthe presence of each residue fine molecules
under study;

- to give toeach residue #oxicity classobtained as the
mean of the toxicity of the molecules where it was found;
- to assign to the molecule the maximum toxictytained
from the residues and ANN module.

We haveused different treeonstruction programs on our
data set. The first is C4.5 which makes use of the
maximization of the entropy gainand build hyper-
rectangular inthe attributes space. Tlsecondone was
CART which builds binary trees. Aecentevolution of
CART is OC1 [23]available on the Internet. It uses a
random perturbation ofparameters to escageom local
minima. Wetestedthe three programs oour dataset, and
obtained similar performancesusing the leave-one-out
method, as illustrated in Table 2.

Table 2 Prediction obtainedvith the rule induction
systems
(accuracy %)

C4.5 CART 0OC1
Training 93.3 88.5 90.2
Validation 81.9 85.5 82.8




Discussion and conclusions

Our study wants to contribute to thmderstanding of the
possibilities to predict carcinogenicity.

The present study represents an example of a hgpstem,
combining ANN and a system basedresiduerecognition.
The strenght of the ANN may in theory be in its capacity to
find the link between inpuand output, even inthe case of
unknown relationship.

So far ANN has beenused in limited cases for
carcinogenicity prediction. Ghoshal [12ked ANN for 9-
nitroanthraceneand someheterocyclic compoundsyith a
correlation index r 0f0.877 or 0.919,after removing the
outliers. Vracko [13] obtained an r 0f0.74-0.76 after
removing the outliers, for a set @fromatic compounds,
belonging to different chemical classes. Our studyave
results comparable with those by Ghoshal and Vracko.
On the otherhand, Benigniand Richard [14] had poor
results, in a study using 28bmpounds of various kind.
However, BenignandRichards testetheir net on a much
more heterogeneous population of molecules.

Our researchconfirms the feasibility of an ANN for
carcinogenicity for chemicals. A valuabtdaracteristic of
our ANN is that it seems toorrectly predict carcinogenic
compounds, while it is less accurate in the prediction of non
active compounds. The latter compounds, however, are
subject to major experimental uncertainties.

It is likely that ANN alone cannot solve problerisked
with carcinogenicity predictionThere arecases in which
molecular descriptors, or at least those used byvage not
able to disciminate certain compounds. this case an
approach based onthe residues carsimply discriminate
betweenthe two chemicals. This is dearexample of the
possibilities offered by hybrid systems.
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