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ENSEMBLING REGRESSION MODELS TO IMPROVE THEIR
PREDICTIVITY: A CASE STUDY IN QSAR (QUANTITATIVE
STRUCTURE ACTIVITY RELATIONSHIPS) WITH COMPUTATIONAL
CHEMOMETRICS

Giuseppina Gini1, Tushar Garg1,2, and Marco Stefanelli1
1Dipartimento di Elettronica ed Informazione, Politecnico di Milano, Milan, Italy
2Indian Institute of Technology, Guwahati, India

& The last several years have seen an increasing emphasis on mathematical models, both based
on statistics and on machine-learning. Today Bayesian nets, neural nets, support vector machines
(SVM), and induction trees, are commonly used in the analysis of scientific data. Moreover, a
recent emphasis in the modelling community is on improving the performance of classifiers through
ensembling more different and accurate models in order to reduce the prediction error. Ensembling
in fact is a way of taking advantage of good models that make errors in different parts of the data
space. We will outline the developments in model construction and evaluation through those tech-
niques justify their use and propose some quantitative structure activity relationships (QSAR) and
models based on ensembling. The models presented here are in the area of predicting acute toxicity
for the purpose of regulatory systems. The emphasis is on the better performances of ensembles, since
the general goal of delivering usable QSAR models requires others that are out of the scope of this
article.

INTRODUCTION

The development of computer programs capable of containing in
explicit form the knowledge about some domain was the basis of the devel-
opment of expert systems in the 1970s (Jackson 1999). Soon expert systems
moved from the initial rule-based representation to the modern modelling
and interpretation systems. Most of the emphasis in the beginning has been
on the idea of making use of more representations of the problem, more
paradigms of knowledge representation, and more algorithms to find a
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solution. A seminal work by Gallant (1993) introduced a way to look at both
neural networks and rule-based systems. In his approach, a net built from
data and absent of symbolic knowledge, is used to extract rules. This idea
developed in the artificial intelligence (AI) community in the well-known
area of integrating connectionist and symbolic systems.

In the same year the starting machine-learning community developed
another way to make use of data in the absence of knowledge, which led
to the development of inductive trees, well exemplified by C4.5 (Quinlan
1993) and there after by the commercial system CART. Integrating differ-
ent representations and solutions is a direction taken in AI in the years
around 1995. The term expert system in those years was practically replaced
by the term intelligent system or intelligent agent. Using different repre-
sentations to reach a common agreement or a problem solution led to
the idea of using computational different methods on different problem
representations, so to make use of their relative strengths. Examples are
the hybrid neural and symbolic learning systems (d’Avila Garcez, Broda,
and Gabbay 2002). Another kind of hybrid intelligent system is the
neuro-fuzzy system (Funahashi 1989) that combines connectionist and sym-
bolic features in the form of fuzzy rules.

While the neural representation offers the advantage of homogeneity,
distribution, and parallelization, and of working with incomplete and
noisy data, the symbolic representation brings the advantages of human
interpretation and knowledge abstraction (Neagu and Gini 2003).

A fundamental stimulus to the investigations of integrated systems is
the awareness that combined and integrated approaches will be necessary
to solve real-world problems using AI tools. Research in this area is very
active in the different traditional tracks as the integrations of neural
networks with expert systems, fuzzy systems, and global optimization algo-
rithms, to the hybridization of soft computing with other machine-learning
techniques as support vector machines, rough sets, Bayesian networks,
probabilistic reasoning, and statistical learning. Recently, such systems
become popular due to their capabilities in handling complex problems,
involving imprecision, uncertainty, and vagueness, high-dimensionality—
all of them to be handled in domains as financial prediction (Chen and
Wang 2004).

Independently, a similar evolution in the pattern recognition com-
munity proposed to combine classifiers. In this area, most of the intuition
started with a seminal work, about bagging classifiers (Breiman 1996;
Avnimelech and Intrator 1999), which opened the way to ensemble systems
(Bauer and Kohavi 1999; Dietterich 2000; Freund, Yishay, and Schapire
2004). Combining the predictions of a set of classifiers has shown to be
an effective way to create composite classifiers which are more accurate
than any of the component classifiers (Ho, Hull, and Srihari 1994).
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In literature we can find at least two main streams, namely, ‘‘ensembles’’
of highly correct classifiers that disagree as much as possible, and ‘‘mixture
of expert’s, built on the idea to train individual networks on a subtask, and
then combine their predictions with a ‘‘gating’’ function that depends on
the input. Basic combinations like a majority vote or an average of continu-
ous outputs are sometimes effective. Finally, it is possible to train the output
classifier separately using the outputs of the input classifiers as new features.
There are many methods for combining the predictions given by compo-
nent classifiers, as voting (Bauer and Kohavi 1999), combination (Kittler,
Hatef, Duin, and Matas 1998; Ho 2002), ensemble (Krogh and Vedelsby
1995), and a mixture of experts (Jacob, Jordan, Nowlan, and Hinton 1991).

Why ensembles work and why they outperform single classifiers can be
discussed considering the error in classifiers. Usually the error is expressed
(Friedman 1997) as:

Error ¼ noiseþ bias2 þ variance; ð1Þ

where the noise is irreducible while the other components are:

. bias, the expected error of the classifier due to the fact that the classifier
is not perfect;

. variance, the expected error due to the particular training set used.

We observe that models with too few parameters can perform poorly,
but the same applies to models with too many parameters. In fact a model
that is too simple, or too inflexible, will have a large bias; a model that has
too much flexibility will have high variance. Usually, the bias is a decreasing
function of the complexity of the model, while variance is an increasing
function of the complexity, as illustrated in Figure 1.

FIGURE 1 The error function for different complexities of the model.
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The concepts of bias and variance are of help in understanding the
balance between the conflicting requirements of fitting our training set
accurately to obtain a good predictor. We seek a predictor that is sufficiently
insensitive to the noise on the training data, to reduce variance, but which
is also flexible enough to approximate our model function and so minimize
bias. There is a trade-off between the two components of the error, and
balancing them is an important part of error reduction. Increasing
complexity of the model is not (in general) a way to reduce the error, so
simple models that fit enough data are usually developed.

At least three reasons why ensembles are effective in reducing the error
have been indicated in Dietterich (2000) and are briefly illustrated:

Statistical Problem: There are many hypotheses with the same accuracy, and
the learning algorithm chooses one of them, but an ensemble mixes
them to better approximate the true hypothesis, as shown in Figure 2.

Computational Problem: The learning algorithm cannot guarantee reaching
the best hypothesis, so mixing the different hypothesis improves the
result, as shown in Figure 3.

Representational Problem: The hypothesis space does not contain any positive
approximation of the target classes, so additional hypotheses near the
border are combined as shown in Figure 4.

FIGURE 2 Statistical problem.

FIGURE 3 The computational problem.
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Our application domain is in chemometrics the information aspects of
chemistry. Chemometrics encompasses the basic steps of data analysis,
experimental design, and modelling. While the basic of chemometric
strategies evolved from statistical experimental design, which gives the basis
for the ways to generate a set of examples, reduce attribute dimensionality,
and attribute value ranges, transform data to simplify the response func-
tion, the methods for model extraction belong to different areas such as
pattern recognition, clustering, and machine-learning.

One of the most active areas in chemometrics is quantitative structure
activity relationships (QSAR), developed in the last 40 years to assess the
value of drugs, and more recently proposed as a way to assess general tox-
icity, as well as a way to obtain new knowledge from data. Quantitative struc-
ture activity relationships can be both regression or classification: for drug
activity and toxicity to a given target, most of the QSAR models are regres-
sions, referring to the dose giving the toxic effect in 50% of the animals.
The correct modelling of QSAR derives from ‘‘postulates’’ as defined from
evidence and theory, as so expressed:

. The molecular structure is responsible of all the activities shown.

. Similar compounds have similar biological and chemico-physical proper-
ties (Meyer 1899).

. Hansch (1963) postulate: biological system þ compound gives answer¼
f1 (lipolificity)þ f2 (electronics)þ f3 (steric)þ f4 (molecular property).

. Congenericity postulate: QSAR is applicable only to similar compounds.

This definition of QSAR makes it evident that the locality of the model
should be preserved and generalization requires attention.

Finally, the predictive toxicology problem is the problem of developing
predictive models, in order to obtain improved applicability of these sys-
tems to real regulations to acquire knowledge from data to speed up scien-
tific discovery. The final target of this research is to work in silico, not in vivo

FIGURE 4 The representational problem.
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(a ‘‘virtual’’ laboratory for toxicity). This trend is not new in chemistry,
which is largely a computer-based area: computer models and computation
are present in any area of analysis and synthesis, where models are searched
to provide an explanation to the experimental results.

Ensembles are appealing in QSAR to improve the accuracy of statistical
models. As widely known, no single method can be considered as the only
way to predict toxicity (Benfenati, Mazzatorta, Neagu, and Gini 2002).
Several methods can give good predictions in a comparable way, since each
approach can incorporate some parts of knowledge. Examples of appli-
cation of those concepts in chemometrics are appearing in literature
(Merkwirth, Mauser, Schulz-Gasch, Roche, and Lengauery 2004). In our
previous research, we have extensively combined local experts to assess
good predictive models of challenging data, as the Duluth data set of
environment protection agency (EPA) which contains toxicities against
the fathead minnow (Koening, Gini, Craciun, and Benfenati, 2004; Gini,
Craciun, Koening, and Benfenati 2004), the carcinogenicity set from
RTECS and the gold data set (Gini, Lorenzini, Benfenati, Brambilla, and
Malve 2001).

In the following sections we will develop our approach creating models
and ensembling them. In the present investigation, we approach the area
of QSAR for regulatory purposes; we work on the dataset of pesticide as
developed in the EU project Demetra to develop basic models on different
animal endpoints and to integrate them to get a final model for public
release (Benfenati 2007). We report here on some of this development.

THE QSAR PROBLEM IN THE ENSEMBLING PARADIGM

Different computer-based approaches to analyze chemical and
biological information and to automatically discover knowledge implicitly
contained in the data have been reported (Gini and Katrizky 1999).

To get an ensemble we need to build basic models that are accurate and
diverse. We start building basic models in various techniques, so to guaran-
tee that they are independent, we check their results and finally investigate
ensembles. The models produce an equation or a subsymbolic represen-
tation of the correlation between the structural descriptors of the mole-
cules and the biological property considered. Usually we apply a
logarithmic transformation of the output to reduce its range.

The chosen method for ensembling is stacking classifiers through
a learning system able to integrate them. While inputs to the basic models
are the chemical descriptors, input to the ensemble model are the n values
predicted for each molecule by the n integrated models; the output is
always the toxicity for that molecule. The models can be chosen and com-
pared using a graphical method, as we show in the subsequent section.
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In many cases, published QSAR models implement a leave-one-out
cross-validation procedure and compute the cross-validated R2, called q2.
A high value of q2 (for instance, q2> 0.5) is considered an indicator or even
the ultimate proof that the model is highly predictive. A high q2 is the neces-
sary condition for a model to have a high predictive power; however, it is not
a sufficient condition. Besides the wide accepted criteria of checking q2,
some additional more strict conditions should be imposed, as we will list.

Besides the better prediction value we can obtain from the combined
model, we may want to understand its statistical meaning in a more com-
plete way. This idea is at the basis of the receiver operating characteristic
(ROC) curves for classifiers, and has been exemplified in the recent predic-
tive toxicology challenge (Helma and Kramer 2003). The ROC curves
have proven to be a valuable way to evaluate the quality of binary classifiers.
The expected performance of a classifier can be characterized by the area
under the ROC curve (AUC), which gives a simple way to individuate a
valid classifier that should have an AUC> 0.5.

The authors of Bi and Bennett (2003) devised a methodology for
regression problems with similar benefits to those of ROC curves. In
regression, existing measures of residuals such as mean-squared error,
mean absolute deviation, R2, and q2, provide only a single snapshot of
the performance of the regression model; the regression error charac-
teristic (REC) curves instead plot the error tolerance on the x-axis versus
the percentage of points predicted within the tolerance on the y-axis
(accuracy).

The resulting curve estimates the cumulative distribution function of
the error, which can be defined as the difference between the predicted
value f(x) and the actual value y of response for any point (x, y), or the
squared residual (y� f(x))2. Accuracy is defined as the percentage of points
that are fit within the tolerance. If we have zero tolerance, only those points
that the function fits exactly would be considered accurate. If we choose a
tolerance that exceeds the maximum error observed for the model on all of
the data, then all points would be considered accurate. So as the tolerance
increases, the accuracy also increases and eventually goes to 1. The area
over the REC curve (AOC) is a measure of the expected error for a
regression model (Bi and Bennett 2003), since it is an approximation of
(1�R2).

The range of the tolerance adjusts the appearance of REC curves. We
scale the box to draw the REC curves for our ensembles using the average
model, i.e., a model with all points equal to the mean of the response of
the basic models on the training data. The x-axis starts with 0 and ends
at the largest value of the errors obtained by the average model. It is easy
to see the best model checking the dominant curve or the curve that first
reaches accuracy 1.
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All the REC computation in the following are done using Matlab
functions.

Besides REC, we applied the additional conditions, proposed by
Golbraikh and Tropsha (2002), to conclude if a QSAR model has an
acceptable prediction power. We check that both the q2 in cross-validation
and the R2 on an external test set are above a minimum value, and that
the regression line has a correct slope and intercept, as expressed in the
following conditions:

q2 > 0:5;

R2 > 0:6

ðR2 � R2
0 Þ

R2
< 0:1 and 0:85 � K � 1:15 or

ðR2 � R 020 Þ
R2

< 0:1 and 0:85 � K 0 � 1:15

jR2
0 � R 020 j < 0:3:

ð2Þ

To compute the conditions in Equation (2), we proceed as in
Equation (3). If y

_

i , and yi are the predicted and actual logProperty values,
y
_

i and y
_

i respectively, are the average value of the predicted and observed
logProperty. The parameters are calculated as follows:

yr0
i ¼ k y

_

i ; y
_r0

i ¼ k0yi ; k ¼
P
ðyi y

_

iÞ
P

y
_2

i

; k0 ¼
P
ðyi y

_

iÞP
y2

i

; R2
0 ¼ 1�

P
ð y_i � yr0

i Þ
2

P
ð y_i � y

_

iÞ
2
;

R 020 ¼ 1�
P
ðyi � y

_r0

i Þ
2

P
ð y_i � �yyÞ2

: ð3Þ

BUILDING AND INTEGRATING MODELS

In the European Union pesticides are currently assessed via the EU
Directive 91=414=EEC (EEC, 1991). This directive and the associated
annexes cover the risk to the operator, consumer, and environment.
Annex II outlines what data are required on the active substance. The risk
to the environment covers both the fate and behavior of an active substance
(i.e., exposure) as well as its possible effects to nontarget organisms.
Nontarget organisms considered under 91=414=EEC include: birds, mam-
mals, aquatic life (fish, aquatic invertebrates, algae, and aquatic plants),
non target arthropods, honeybees, earthworms, soil macro-invertebrates,
soil microbial processes, and terrestrial nontarget plants.
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Table 1 provides part of the toxicity studies that may be requested when
an active substance is considered under 91=414=EEC.

From Table 1 we can observe that important endpoints are avian acute
toxicity, avian dietary toxicity, and acute toxicity on bees.

In previous studies on the classification of toxicity of pesticides, several
models have been proposed. For instance, classifiers were combined, which
improved the overall results (Benfenati et al. 2002) on rat toxicity for 57
organophosphorus pesticides. Good results were obtained, but there is a
need to create models on different chemicals since modern pesticides
are based on very different chemical structures, which usually means differ-
ent mechanisms of action. There has been an interest in understanding
and explaining some specific activities, for instance, of compounds with
anti-cholinesterase activity (Lin, Lai, and Liao 1999), but in general we
do not have knowledge of the existence of a specific receptor with a given
structure for each of the pesticides. So our models have to take chemicals of
different classes and correlate the chemical structure to the effect.

In the basic QSAR approach, given the compound structure there are
different ways to compute descriptors that account for the geometry,
physics, and activity of the molecule. We had several choices, such as
physico-chemical, namely, log P, steric parameters, electronic parameters,
or topological indices. A large number, about 3000, can be easily computed
from available software. We used only 2D descriptors, namely, descriptors
that are computed from the 2D structure and do not require the optimiza-
tion the molecular structure in 3D space.

After the preparation of the data sets, as illustrated in (Benfenati
(2007), and the computation of descriptors, a group of partners developed
the first level models using various methods. After choosing reasonably
accurate models, we integrate them.

We take, as the basic measure of the value of our ensemble, the model
obtained averaging the single component models. The average model is
always an improvement of the basic models since it reduces the variance
of the error (Bauer and Kohavi 1999). Using the stacking approach other
kinds of hybrid models are then built and checked against the average
model, and retained only if they are doing better.

Developing the First Level Models

We illustrate here an experiment on the Oral Quail LD50 endpoint,
studied in the above-mentioned Demetra project. The data set contains
heterogeneous chemicals and is available on the Demetra website1 and
also given in the Appendix A. We used various machine learning algorithms
and checked their prediction both in leave-more-out and over an external
test set.
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Oral Quail Toxicity
In the Oral Quail data set, 2D descriptors were used to build the mod-

els, after considerations reported in previous QSAR analyses (Benfenati
2007). The total number of chemicals for which the LD50 is available
through the Demetra project is 116. The output considered is TOXICITY
(Log(Kg=mmol), reported in Appendix B.

For building the level 1 models, we used the WEKA data mining work-
bench created by the Department of Computer Science at the University of
Waikato, New Zealand.2 It comprises a wide range of different data mining
algorithms for regression, classification, and clustering as well as tools for
preprocessing evaluation and visualization of the data and the results.
Windows XP was the operating system platform used and the Microsoft
office tools were used for the data handling and preparing the data for
‘‘arff’’ format which is needed for WEKA. Small visual basic scripts were
introduced in Excel sheets to get the desired format.

To be comparable with other models developed by other partners in
the project, we chose 12 Dragon descriptors, selected after PCA analysis,
namely: DRA0173, DRA0200, DRA0228, DRA0347, DRA0367, DRA0405,
DRA0418, DRA0540, DRA0584, DRA0661, DRA0716, DRA0747, computed
through e-Dragon.3 The external test set has been selected as 19 molecules
in the space covered by the training set.

We used the criteria illustrated above for evaluating and accepting the
models. In practice:

a. The value of R2 in 10-fold cross-validation (the more robust method
used in WEKA instead of leave-one-out) should be greater than 0.55.

b. For choosing between the models with similar values of R2, we also kept
in mind that the models should not predict a high toxic compound as a
lower one, so we preferred models with less underestimated toxicity.

Some of the best models obtained are illustrated in the following. We
want to observe here that many models have similar performances on
the same data, so the decision of preference is not easy.

TABLE 2 NN Multilayer Perceptron Model for Oral Quail

Summary: NN, sigmoidal transfer function,
six nodes in the hidden layer 10-fold cv

R2 0.57
Correlation coefficient 0.75
Mean absolute error 0.53
Root mean-squared error 0.68
Relative absolute error 68.23%
Root relative squared error 74.44%
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We report in Tables 2 and 3 examples of the best WEKA models
obtained.

The results that we have obtained are not completely satisfactory, parti-
cularly considering that errors are equally distributed and some high toxic
compounds are predicted as less toxic. Therefore we investigated how to
improve them through ensembling techniques.

Ensemble Models

Here we develop the combination of basic models and discuss the
results obtained starting from the Oral Quail; we continue then on other
endpoints as the dietary Quail and the Bee endpoints.

We start from a set of models all built on the same training set. We com-
pute the mean model by averaging, and then we produce the ensemble
model through stacking and compare their REC diagrams. We make the
test on an external test set that has never been used by the classifiers.

Oral Quail
In addition to our own models, we selected four out of the many basic

models developed in the Demetra (Benfenati 2007) project; we show in
Table 4 their accuracy comparing their q2 and R2 values. Three of the mod-
els have very good performance and are based on different descriptors and
methods as multilinear regression, Partial Least Squares (PLS), and neural
nets. The first is poor but is inserted since it uses Neural Networks (NN).

TABLE 3 Pace Regression Model for Oral Quail

Summary: pace classifier regression with
empirical Bayes estimator for normal mixture 10-fold cv

R2 0.57
Correlation coefficient 0.75
Mean absolute error 0.48
Root mean-squared error 0.59
Relative absolute error 62.61%
Root relative squared error 65.41%

TABLE 4 Basic Oral Quail Models Considered for Ensembling

R2 q2

CSL05 0.423 0.421
CSL06 0.667 0.666
NEGRI01 0.606 0.606
NEGRI02 0.692 0.692
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If we average the values computed by all the models on the training set,
we get the mean model, which can be considered the first ensemble model,
and whose values are R2 (mean)¼ 0.69; q2 (mean)¼ 0.67. As we see, the
variance has been reduced about 20% only by averaging the models.

To improve this mean model, we must try more complex integrations,
as we can see in the following.

We try a stacking method with NN with backpropagation. We define a
three layer architecture with four neurons in the input layer (the four mod-
els), four neurons in the hidden layer, and one layer in the output (the tox-
icity). We train the net with the function ‘‘traingdx’’; the activation
functions are ’’tansig’’ and ‘‘lin’’ for the output. The results for this model
are summarized in Table 5, both on the train sets and the test sets, and
show an improvement over the mean model.

We can better analyze the models in the REC curve. we immediately see
that the NN model dominates the other models (Figures 5a and 5b). We
also observe that the AOC of the ensemble is minimum but the ensemble
model reaches accuracy 1 after the single model Negri02. In the boxes of
the REC curves, we give the value of AOC which should be minimized since
it is an approximation of (1� q2).

TABLE 5 Results for Ensemble 1 Oral Quail

R2
train q2

train R2
test k R2

0 R2
tot

0.818 0.818 0.590 1.16 0.975 0.7

FIGURE 5 REC curves for the Oral Quail on the (a) training set and (b) test set, respectively. We
observe that the mean model has a nonconvex behavior and does not reach the accuracy.
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There is still a way to improve this ensemble model. We develop a
new model using the training function ‘‘trainbr’’, which applies Bayesian
regularization, and a net with three neurons in the hidden layer, whose
results are shown in Table 6. We see the regression line on the training
set and the test set in Figure 6.

If we want to compare the two NN models, we can draw together
their REC curves on the training set and the test set, as we see in
Figure 7. Here we see that the second model is better that the first: it
reaches unitary accuracy before and dominates the other model.

Other Ensembling Models
Similar work has been carried out on other models. We report here

about bee since it presents a new problem in model quality assessment.
For the bee endpoint, we started with the basic models of Table 7. Some

of them are developed using genetic algorithms and clustering techniques.
Other use the partial least squares (PLS) regression technique (projection
to latent structures by means of PLS) implemented in a Simca – P8.0
package (Umetrics AB, Umea, Sweden).

TABLE 6 Results for Ensemble 2 Oral Quail

R2
train q2

train R2
test k R2

0 R2
tot

0.855 0.854 0.624 1.12 0.987 0.74

FIGURE 6 Regression lines for the second NN model for Oral Quail on the (a) training set and the
(b) test set.
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The parameters on those models are already acceptable according to
the previously mentioned criteria. If we build the average ensemble model
from them, we get:

R2
trainðmeanÞ ¼ 0:72; q2

trainðmeanÞ ¼ 0:72:

The regression analysis on the mean model indicates that the slope of
the regression line is much better in the test set than in the training set. We
can observe this behavior also through the REC curves in Figure 8.

We see that the accuracy on the training set is lower than on the test set.
This analysis indicates that the ensemble model has a dubious value. In this
case, we should go back to the first level models and check this anomaly.
The real problem is that the model seems to underfit the training data,
and can be a result of the scarce data available.

FIGURE 7 Comparison of the two NN models for Oral Quail on the (a) training set and (b) the
test set.

TABLE 7 BASIC Models for Bee

R2 q2

CSL01 0.607 0.606
CSL02 0.710 0.709
NEGRI04 0.658 0.658
NEGRI06 0.628 0.628

A Case Study in QSAR 275

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
i
n
i
,
 
G
i
u
s
e
p
p
i
n
a
]
 
A
t
:
 
1
8
:
2
2
 
6
 
M
a
r
c
h
 
2
0
0
9



CONCLUSIONS

We have proposed and motivated the use of ensembling in QSAR as a
way to reduce the error of the classifier. In particular, we have chosen the
approach of stacking multiple classifiers to improve the performance of
basic classifiers. The condition to make this ensembling useful is that basic
classifiers are diverse and accurate enough. In our example, the basic clas-
sifiers chosen have been developed on the same data set by different part-
ners and using methods going from PLS to neural networks to SVM. The
full details on those models are not reported here since our discussion is
about the statistical properties of the ensembles.

We have presented a step-by-step process to develop ensembles in a case
of QSAR for heterogeneous compounds. We should mention that this case
study is derived from the need of industry to explore QSAR methods for
pesticides, considering that pesticides are of many different chemical
classes, and that toxicity data are available more for old pesticides than
for new ones. Since the considered compounds are really heterogeneous,
we can expect that the performance of a single model is weak. We have
observed that the ensemble model obtained through averaging performs
better and can also make a good use of overfitted models. We need more
adaptable techniques however, to integrate the models as in the developed

FIGURE 8 REC curves for the training set and test set of the mean model for bee.
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gating network method experimented. Some of those ideas have been
inserted into available methods to model pesticides, as reported in
Benfenati (2007).

This exploratory study concluded that it is possible to significantly
improve the performance of the QSAR model using techniques derived
from machine-learning and data mining. In this study, we limited our inte-
gration to the use of a few models of good quality; the reason is that people
can be more confident in the component parts. Theoretically, however, we
can expect to get better performances from ensembling more many diverse
models, for instance to explore a way to make use of the randomization of
the feature selection method so to build models with different features
instead of trying a priori to minimize their number. The cost of this ensem-
bling, however, will be that the number of descriptors to be used will
become significant.

The next step will be both the revision of the basic models as well as
the exploration of ensemble an a with greater with number of basic clas-
sifiers. We feel that the statistic results will be much more significant, but
that the confidence of users in the final model will be poor, since it would
be impossible to say exactly what any single model is bringing into the
ensemble.
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APPENDIX A Molecules and Toxicity for Oral Quail. The Elements in Grey Have Been Left Out
During Training to be Used as a Test Set for the Ensemble Model

ID Chemical TOXICITY (Log(Kg=mmol))

3 DCDMH(Glychlor Formulation) �0,9397318
4 Dichloropropene �0,136638

21 Alachlor �0,7447597
22 Aldicarb 1,9784088
25 Ametryn �0,9954303
26 Amitraz �0,4289921
29 Atrazine �0,6392374
30 Bendiocarb 1,0700379
32 Bensulide �0,5423496
35 Bromacil �0,9606828
46 Carbofuran 1,6425116
48 Oxythioquinox 0,0775533
50 Chlorethoxyfos 1,0791942
51 Chlorhexidine diacetate �0,5075817
54 Chlorophacinone �0,1207709
58 Chlorpyrifos 1,0396619
62 Clodinafop-propargyl �0,6190929
63 Clomazone �1,0199695
68 Cyhexatin (Plictran) 0,1085988
75 DBNPA �0,1654213
83 Dichlobenil �0,598867
84 Dichlorprop(2,4-DP) �0,1778061
85 Dichlorvos 1,3998703
87 Dicloran (DCNA) �0,6382302
90 Dienochlor �0,1718614
95 Dimethenamid �0,5879298

103 Dodine �0,3803019
104 Dowicil �0,758412
111 Ethion 0,4783994
125 Fenridazone-sodium �1,1728725
126 Fenthion 1,5933485
139 Formetanate Hydrochloride 0,7931
146 Hydramethylnon �0,5677835
150 Iprodione �0,449719
152 Isofenphos 1,5988534
157 Lithium perfluorooctane sulfonate 1,0809527
160 MCPP Acid �0,5176683
165 Methomyl 0,8263426
176 N,N-Diethyl-meta-toluamide(DEET) �0,8565877
185 Imidacloprid 0,2250138
187 Octhilinone �0,2551775
188 Oryzalin �0,1651605
194 Paradichlorobenzene �1,0389687
195 Paranitrophenol �0,6177862
197 Methyl Parathion 1,5418136
198 Pentachlorophenol �0,3718638
204 Phorate 1,5705763
216 Propachlor 0,3812587
217 Propanil 0,0354397

(Continued)
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APPENDIX A Continued

ID Chemical TOXICITY (Log(Kg=mmol))

236 Phostebupirim 1,1955043
238 Temephos 1,2311104
240 Terbufos 1,0037497
244 Thiazopyr �0,6835594
252 Tribuphos 0,3187404
257 Triclosan �0,4547454
262 Trimethacarb �0,0904125
264 Uniconazole �0,69955
273 3,5Dimethyl-1-(hydroxymethyl)pyrazole �0,7792513
275 2,4-D Isopropyl Ester �0,8537564
277 3-Iodo-2-propynyl butylcarbamate �0,4256055
278 4,5-Dichloro-1,2-dithio-3-one �0,1206928
282 Bentazon Sodium Salt �0,6498248
285 Bifenazate �0,5359942
297 DDAC 0,2223448
304 Dipropyl isocinchomeronate �0,730124
307 Etridiazole �0,3545426
311 Fluazinam �0,583352
323 Naphthalene �1,321932
328 Parachlorometacresol �1,0334317
331 Pirimiphos-methyl 0,8827806
333 Prallethrin �0,5908136
340 Thiodicarb �0,7563429
346 Sodium dichloro-s-triazinetrione �0,9046667
347 2-(Hydroxymethylamino)ethanol �1,281636
351 Azinphos-methyl 0,9830382
353 Bromethalin 2,0991249
354 Bromo-3-chloro-5,5-dimethylhydantoin(BCDMH) �0,6465026
355 Bromoxynil heptanoate 0,0349668
361 Coumaphos 2,1867433
364 Cyproconazole 0,2890089
366 Diazinon 1,767427
368 Dicamba (Acid) 0,0100171
369 Diclofop-methyl �1,1104437
371 Endosulfan 0,9862597
372 Endothall �0,4237939
376 Fenamiphos 2,2778956
377 Fenitrothion 1,0699752
378 Fluchloralin �1,2939775
385 Hexazinone �0,950355
386 Hymexazol �1,1738945
391 Methiocarb 1,0605822
394 Methyl Bromide 0,1141264
395 N6-Benzuladenine �0,8511258
400 Propiconazole �0,916675
411 Sulfluramid 0,04623
412 TCMTB �0,4428331
423 4-Aminopyridine 0,7976368
424 Chlorobenzilate �0,2710382

(Continued)
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APPENDIX A Continued

ID Chemical TOXICITY (Log(Kg=mmol))

425 Chloroprop, Sodium salt �0,7717249
426 Cyromazine �1,0309549
427 Decyl isonomyl dimethyl ammonium chloride 1,0101627
428 Dimethoxane �0,9589313
429 Dinoseb acid (Cancelled in U.S.) 0,7785853
431 Disulfoton 1,359282
432 Esfenvalerate 0,0422519
433 Grotan �0,8407455
434 MCPA Acid �0,2739455
435 Mecoprop-P �0,4054415
436 Mefenoxam �0,5454892
437 Methamidophos 1,1453595
438 Pyrithiobac-sodium �0,6613467
439 Sodium dodecylbenzenesulfonate �0,5900943
440 Sulprofos 0,8364184
441 Trichlorfon 1,060428
442 Trichloro-s-triazinetrione �0,8575006

The test set is composed of compounds with the following IDs: 32, 46, 48, 54, 75, 176, 194, 216,
277, 282, 347, 361, 385, 391, 423, 425, 431, 434, 439.

Subdivision of the data in training and test data is based on toxicity values only, and was done this way
to obtain similar distributed data sets:

1. Sort toxicity values y¼�Log(Toxicity [mmol=kg]).
2. 1 of 6 compounds of the sorted toxicity list is selected for the test set.

APPENDIX B Names of the Descriptors Computed
Through Dragon for the Oral Quail Basic Models

DRA0173 C-005
DRA0200 C-032
DRA0228 O-060
DRA0347 TIE
DRA0367 X1Av
DRA0405 IDDE
DRA0418 TIC0
DRA0540 T (S..S)
DRA0584 BEHm3
DRA0661 JGI6
DRA0716 MATS2e
DRA0747 GATS1e
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