
253

Forum

ADA: A Language for Robot
Programming?

Giusepp ina Gin i and Maria Gin i
Dept. of Electronics, Politecnico, Milano, Italy

Robot programming languages are emerging from their ex-
perimental stage and entering an assessment phase. Their main
features are illustrated and a parallel with ADA is proposed.
The comparison is positive for ADA, in the sense that ADA
provides most of the required capabilities. The ability of rea-
soning on object models and taking decisions will play an
increasing role in the future. In this case the role of ADA
would possibly change and its interest as robot programming
language decrease,

Keywords: Programmable automation, robot teaching and pro-
gramming, programming systems for robots, high
level languages, ADA

intelligence, assembly
program construction.

Giuseppina C. Gini received her doc-
toral degree in physics from the State
University in Milano, Italy, in 1972.
Since then she has been research fel-
low at the Electronics Department of
Politecnico, Milano, Italy, where she is
now Senior Research Associate. She
spent more than two years at the
Artificial Intelligence Laboratory of
the Stanford University where she
worked in the Hand-Eye project. She
has .published papers in the area of
programming languages for artificial
automation, robot programming and

Maria L. Gini received her doctoral
degree in physics from the State Uni-
versity in Milano, Italy, in 1972. She
worked as a Research Fellow from
1972 at the Electronics Department of
the Politecnico, Milano, Italy. During
this period she spent more than two
years at the Artificial Intelligence
Laboratory of the Stanford University.
At present she is Senior Research as-
sociate at the Politecnico in Milano.
Her research interests are in the field
of artificial intelligence and its appli-

cations to robotics. She is author of several publications on
those subjects.

North-Holland Publishing Company
Computers in Industry 3 (1982) 253-259

I. Introduction

During recent years a big effort in time and
resources has been spent in developing advanced
programming languages and systems for robots.

Several approaches have appeared.
One approach is to take an existing language

and add to it routines to drive the mechanical
devices. This permits the full power of the lan-

guage to be used. Another is to write l ibrary

routines, so that the user program consists of a

series of calls to these routines in addi t ion to

simple control statements. Yet another approach is

to design a language specifically for manipula t ion .

Most of the efforts have been done using the

third approach. One of the reasons of this choice is

that no available language was at the same time
high-level, general purpose, real-time, and support-
ing cooperant and parallel processes. Moreover an

interactive env i ronment for developing programs
was available only in LISP-based systems.

The desirable features for a robot p rogramming
language have been identified. The language should

be general purpose to allow indefini tely complex

computa t ions from sensors and vision, should sup-
port cooperat ion to express cooperative simulta-

neous operations of mult iple robots and devices.
Since robots work in a real-time env i ronment data

must be processed within certain time constraints
when they are received, they may be received

asynchronously, and the computer should be able
to ask for and obta in data at any arbitrary time.
The ability to check periodically to see if certain
condi t ions are satisfied in order to synchronize
events which are dependent on the condi t ions or
to determine what action to take is another im-
por tan t requirement. Specialized data types should
be available to express manipu la to r posit ions in
the space.

0166-3615 /82 /0000-0000 /$02 .75 © 1982 Nor th -Hol l and

254 Forum ('ompute~, m Industry

On the other hand, this great generality may be
difficult for the user, so interactive facilities should
be available to assist him during the debugging
and testing of the application program. For this
purpose we have developed the POINTY system,
at Stanford Artificial Intelligence Laboratory, as
an interactive environment for AL programs.

What will be changing after the availability of
ADA? Most of the desirable features are there, so
the need of specifically designed languages will
decrease. Will ADA be the language for the next
generation of robots? We will discuss the strong
and the weak points of this choice taking into
account both the present needs and the future
foreseeable developments of robots.

2. W h a t is a R o b o t P r o g r a m m i n g Language?

Since computer controlled manipulators have
been introduced as a general purpose mechanism
for industrial automation, the methodology of
controlling and of programming them for new
tasks has seen a great deal of development. Some
important issues for these systems have gained a
wide acceptance [12].

Robots should be programmed in a simple way,
without extensive users training. This goal has
been partially achieved with many industrial
robots, which are programmed guiding the arm
through the motions of the task and storing the
sequence of the so obtained positions for further
executions.

Teaching by guiding has been successful for
tasks where only simple operations or few posi-
tions are required. Where complex assemblies are
performed that method does not allow any modifi-
cation or adjustment of the movements during the
execution, and makes it impossible to use force
sensing and vision. Even small changes in the
assembly station cannot be introduced without
repeating all the teaching.

On the other hand, writing programs is not so
easy as one might think. Manipulation and assem-
bly tasks are difficult to program because the
expression of movements in terms of manipulator
positions requires many details. The intuitive
knowledge about physical operations can be hardly
expressed by words.

The increasing interest in the use of sensory
feedback, mainly for assembly operations, makes

the availability of a programming system for con-
trolling the operations of the robot a real need.

There are two aspects in a robot programming
language. The user language, in which application
programs are written, and the run time system,
which executes the code that results from compila-
tion or interpretation of a program in the user
language.

When a robot is running without any response
to sensory data a simple run time system can be
used, which controls the robot through a fixed
sequence of joint positions.

When a sensory response is required, computa-
tions of arbitrary complexity are required at run
time [15].

Several sorts of response to data obtained from
sensors or vision can be envisaged. For instance, in
[13] the following are considered:
- a discret choice between one sequence of ac-

tions and another is done at run time;
- the values obtained are used to take an action

which depends quantitatively upon sensory data;
- the sensory data are used to control the move-

ments of the robot continuously during an ac-
tion.
The robot programming languages can be con-

ceptually divided into four classes, according to
the level in which operations are expressed: joint
level, manipulator level, object level, and task level
[9,10].

Starting from the lowest level we have joint level
languages. The description of a task is expressed in
terms of the control commands required to drive
the individual motors and actuators. Each joint is
explicitly controlled. That means that the user
should program directly in the joint space instead
of in the cartesian space, and should know the law
of operation of the motors.

At the manipulator level we insert all the lan-
guages in which the user controls manipulator
positions and movements in the cartesian space.
There is no explicit representation of the objects
which exist in the world where the robot is. Let us
indicate MAL [6] as an example of this class.
Other well known examples are the VAL language
of Unimation and the RAIL language of Auto-
matix.

On the object level we have languages which have
some knowledge about the objects. This knowl-
edge is usually partial, because complete object

Computers in Industry G. Gini, M. Gini / ADA: A Language for Robot Programming? 255

models are not always needed, but only some
features are relevant for the task. Object models
are used to describe the sequence of operations
with less details or to compute collision free trajec-
tories [3]. In this class we may consider languages
as AL [5,8], in which objects are represented
through six coordinates as rigid bodies in the
space, or RAPT [13], AUTOPASS [10], and LAMA
[11], in which incomplete or complete models based
on geometry are given.

Most of the research problems still open in
robot programming languages are at this level,
while the manipulator level is better assessed. We
will come back later in this section on the features
of this level.

In the task level we intend to have those sys-
tems which are able to understand and execute
descriptions of the task. At this level there are no
working systems, although some of the systems
illustrated in the previous class are oriented to-
wards the task level.

The four levels can be shortly illustrated by the
example given in Fig. 1 where some instructions
for the different levels and the conceptual opera-
tions which transform each level into the lower are
indicated.

Since AL is, at the moment, the most advanced
system among those indicated which is completely
implemented and running we will refer to it. A1-

though future developments of research will create
more advanced languages it is reasonable to con-
sider a language that has been successfully tested
by a community of users which is large enough.

We will present conclusions attained though
our experience in developing POINTY [2,7,8], the
interactive environment of AL. It is interesting to
observe that the views expressed by Rieger et al.
[14] in their exploratory study do agree with many
of our opinions.

The ideal system should contain as desirable
features a simple syntax and semantics, to make
program readable, and in addition it should take
care of keeping the following desirable features.

Data structures should accomodate complex
symbolic information as well as primitive types.
For instance data types as rotations or frames,
which are used to describe object positions, should
be available as abstract data types. The user should
refer to them instead of their internal representa-
tion, which can be realized by orthogonal matrices
or quaternions. Strong input /output and file
manipulation facilities are highly desirable. It
should be possible to save programs and data both
in symbolic and internal form; it should be easy to
access files from programs, and log files should be
provided by the system. A generalized form of
input /output instruction should accomodate for
data coming or going to different external devices.

J ,TASK LEVEL I

natural language understanding
plan generation
geometric modelling and reasoning
collision avoidance

object model management

1
I I

1
cartesian to joint conversion

and viceversa
trajectory ieneration

IJOINT LEVEL I

"screw the bracket and
the interlook together"

"position nut in fixture"
"pickup screw"

"open fingers to 3"
"move arm to pickup-point"

• ° ,

"drive jointl to 98.00"

Fig. 1. Levels of Robot Programming Languages.

256 Forum (}mlpulers m hidustrl

The control of parallel events should be easily
available, both to coordinate different robots and
devices and to implement parallel algorithms.

Robots should work in an automated factory
and cooperate with other machines, all under com-
puter control. The software should take care of
communication in a local area network.

For software development and debugging an
interpreter should exist for the language or a rea-
sonably complete programming environment
should be provided. Nevertheless, the language
may have a compiler for production usage.

A set of utility packages, as a language oriented
editor, a debugging module, a source program
formatter, a self-modifying display, should be made
available.

3. ADA: A Language for Robot Programming

We are now going to investigate the use of
ADA [1] as a programming language for robots.
As indicated in the previous section, we are mainly
concerned with the application of robots to assem-
bly operations, which appears to be a worthwhile
domain for programmable automation.

~Ve will not investigate here the use of ADA as
implementation language for robotics, both in the
sense of language for implementing the run time
system and as language for implementing the com-
piler (or interpreter) of the robot programming
language. We may reasonably suppose that ADA
can be well suited as implementation language for
run time systems.

ADA is a real time and a high level language,
qualities which are very difficult to find in the
same language and both equally important.

We do not want to enter into the discussion
about the performance of ADA as a real time
language. It is certainly true that languages which
have large overheads tend to be unsuitable for real
time programming. Robots are systems whose cor-
rect functioning depends on how much time is
spent in computation and how fast requests are
satisfied once they are sent.

Only the availability of good ADA compilers
will allow a more precise evaluation of this aspect.

We will examine whether the features offered
by ADA are corresponding to the needs of pro-
gramming languages for robots. According to the
indications given in the previous section, we will

consider, in particular, the features offered by AL
[51.

One of the positive aspects of ADA is the
possibility of using packages. ADA, through
packages, provides clean user interfaces to com-
plicated sets of hardware. It is possible to encode
the features of the I / O interfaces and external
devices, together with their addresses and other
characteristics, within package bodies, leaving only
those features that are needed by the user in the
visible part of the package.

Taking into account the fact that robotic sys-
tems heavily depend on the hardware, which is the
manipulator as well as the computer, the possibil-
ity of hiding the hardware details from the user
can be considered as truly important.

As representations in ADA are associated with
types rather than variables, different hardware de-
vices require different ADA instructions. Each
robot or each device will require a specific package
that could be provided together with the device. In
this way the hardware aspects are hidden from the
user, who can write simple code sequences. For
instance the user will be able to write instructions
such as

SET DIRECTION (SCREWDRIVER, CLOCKWISE)

without worrying about where SCREWDRIVER
is in memory or what are the characteristics of the
interface.

Another strong point in favor of ADA is the
standardization, which will be strictly enforced,
and the consequent portability of programs be-
tween different systems. Moreover the availability
of ADA will increase the effort spent into the
development of suitable ADA packages. For the
robot producers it will be much easier to develop
specific ADA packages for their systems than to
develop a specific programming language, as they
are doing today. We may mention the VAL lan-
guage, developed by Unimation for the PUMA
system, the SIGLA language of Olivetti for the
SIGMA robot, and the language developed by
DEA for the PRAGMA assembly system.

The standardization of ADA could enforce a
sort of standardization in the programming aspects
of robots. That can be considered an important
achievement.

The fact that AL is becoming a standard, at
least for the research groups in the United States,
indicates that the need of a high level language for

Computers in Industry G. Gini, M. Gini / ADA: A Language for Robot Programming? 257

robotics is widely recognized. The dissemination of
the A L system has been obstacled by the fact that
A L requires a large computer (PDP 10) plus a
PDP 11. Moreover A L is implemented both in a
language available only at the Stanford Artificial
Intelligence Labora tory (SAIL) and in the assem-
bler of the PDP 11.

Al though A L is obviously more suited to
robotics than ADA, the big effort put into the
development of the A D A system will eventually
enable A D A to become the s tandard language for
robots. It is impor tant to recognize that the main
result of the A L project is the demonstra t ion that
the features available in general purpose high level
languages are impor tant in robot programming,
that it is possible to run, efficiently, programs
written in a sophisticated language, and that it is
much easier to write programs in a high level
language than in a joint level or low manipulator
level language. Those achievements have been re-
cognized in different meetings and by various peo-
ple working with the AL language.

Coming back to the features of A D A , we may
note that A D A allows the definition of data types
specially suited to the needs of manipulation, as
the types vector, rotation, transformation, and
frame of the A L language. Through overloading
the meaningful operat ions on those data types can
be easily defined.

Also in this case the package construct makes
the internal representation of data types hidden to
the user, so realizing abstract data types. That is
particularly impor tant since the internal represen-
tation of rotations and frames would be changed
within the package body, for instance from orthog-
onal matrices to quaternions, without affecting
user programs.

An example of an A D A package defining the
basic data types of AL and the operations on them
is illustrated in Fig. 2.

Other features of A D A such as task synchroni-
zation and parallelism and exception handling are
obviously impor tant for robotics.

It is well known that the handling of errors is
one of the most difficult parts in robot program-
ming. Errors are often unpredictable and it would
be unfeasible for the user to take explicitely into
account all of them. The exception handling mech-
anism of A D A seems to be the best solution to this
problem. The user defines the condit ions for rising
errors and writes the appropriate recovery proce-

package AL DATA_TYPE is
type SCALAR is private;
type VECTOR is private;
type ROT is private;
type TRANS is private;
type FRAME is private;
STATION: constant FRAME;
XHAT, YHAT, ZHAT, NILVECT: constant VECTOR;
NILROT: constant ROT;
NILTRANS: constant TRANS;
function "*" (X, Y : TRANS) return TRANS;
-- trans composition
function "*" (X : TRANS; Y : FRAME) return FRAME;
-- frame transform
function "*" (X, Y : ROT) return ROT;
--rotation composition
function "*" (X : TRANS; Y : VECTOR) return VECTOR;
-- vector transform
function "*" (X : ROT; Y : VECTOR) return VECTOR;
-- vector rotation
function "*" (X : SCALAR; Y : VECTOR) return VECTOR;
-- dilation

private
type SCALAR is digits 8 range -IE30..1E30;
type VECTOR is array (1.. 3) of SCALAR;
type ROT is

record
AXIS : VECTOR;
ANGLE : SCALAR;
end record;

type FRAME is
record
ROTATION : ROT;
POSITION: VECTOR;
end record;

subtype TRANS is FRAME;
ZHAT: constant VECTOR;

NILVECT: constant VECTOR := (0.0,0.0,0.0);
NILROT: constant ROT := (ZHAT,0.0);
NILTRANS: constant TRANS :-- (NILROT, NILVECT);

end AL DATA_TYPES;

Fig. 2. Specifications of AL_ DATA_TYPES package.

dures, without worrying about their activation.
We do not want to spend more words on that.

We prefer to approach other aspects of robot
p rogramming the solutions of which are not im-
mediately obtainable in ADA.

4 . F u t u r e D e v e l o p m e n t s o f R o b o t P r o g r a m m i n g

S y s t e m s

As we have indicated in Section 2, robot pro-
gramming systems can be classified into different

258 Forum ("omputerv m lndu.vtrl

classes. The idea which is at the basis of the
classification is to differentiate languages accord-
ing to the amount of specific knowledge that the
user should put into programs.

More knowledge is embedded in the program-
ming system, less detailed will be the specification
of the task from the part of the user.

The writing of programs is easier if the lan-
guage allows to express task oriented specifica-
tions more than action oriented specifications. In
action oriented programming the description of
the actions of the robot is of primary concern, and
the description of the objects on which the robot
operates is considered as incidental. Alternatively
in task oriented programming the description of
the task we want to realize and of the objects on
which the robot operates is the most important
aspect, and the robot actions are considered as a
consequence of the description of the task.

The example illustrated in Fig. 1 shows how a
program at joint or manipulator level tends to be
long and device dependent, while the same pro-
gram at object or task level is shorter and easier to
understand.

The task level description, as indicated before,
can be adopted provided that the appropriate gen-
eral knowledge is given to the system. As indicated
in Fig. 1, the transformation of task level descrip-
tions into executable operations requires the sys-
tem to be able of dealing with natural language, of
generating plans for actions, of reasoning about
geometry, and of computing collision free paths.

A few systems currently being developed makes
use of world models in different ways. One of the
mos{ investigated field is how to plan collision-free
trajectories. A general solution to this problem, as
the one proposed by [3], requires complete body
models and operates only for objects with planar
surfaces. Another solution, used in AUTOPASS
[10], makes use of some heuristic criteria. Neither
in RAPT [13] nor in AL [5] this capability is
provided.

Generating trajectories can be approached as a
special case of geometric reasoning Some systems
made recently available, as AC R ONYM [4], incor-
porate a large amount of knowledge about geome-
try and properties of objects. They can be applied
to the computation of collision free trajectories
although their main purpose is more general.

Geometric reasoning appear to be the central
issue for the next generation of robot program-

ruing systems.] he ability of dealing with geomet-
rical models of objects is in fact the major require-
ment for transforming task descriptions into se-
quences of operations of the robot. The descrip-
tion of the objects could be expressed in natural
language or could be directly obtained from a
vision system, as done by ACRONYM.

The other capability we mentioned before is the
ability to construct plans of actions from very high
level descriptions. This research direction, devel-
oped within Artificial Intelligence [17], has re-
ached many objectives in the middle of the 70's
[16]. The application of plan generation to robots
has failed in the past because of the limited capa-
bilities of both planners and robots.

According to Sacerdoti [16], the industrial ro-
bots available today are able to perform fixed
sequences of actions activated by simple visual or
contact stimuli. The sequence of actions is per-
formed without significant alterations whenever
the stimulus is presented, no feedback is used
when a new stimulus appears. The difference be-
tween the behavior of present and future robots is
expressed in [16] using the terms of psychology:
reflex robot versus instrumental robot.

What will be the role of ADA in those future
developments of robot systems?

We may note that most of the problems men-
tioned above are still in the research stage. The
fact is that we do not know yet how to make really
intelligent robots and that will be a research topic
for next years.

The problem of the choice of the programming
language tends to become important when all the
aspects of the problem have been clarified and the
basic issues individuated. A programming lan-
guage is only a tool for expressing concepts and,
obviously, it cannot solve problems not yet solved.

In this sense we may say that a discussion about
the role of ADA in this field is premature, for
some aspects, or it should be brought to a more
general discussion: would ADA be a good pro-
gramming language for Artificial Intelligence? This
topic would take us very far from the aim of this
paper.

5. Concluding Remarks

We have examined the characteristics of the
programming languages for robots and we have

Computers in Industry G. Gini, M. Gini / ADA: A Language for Robot Programming? 259

proposed a classification of them in four levels,

according to the amoun t of knowledge embedded

in the language.
The use of A D A as a language for program-

ming robots has been explored, and we have con-

cluded that A D A can serve as a valuable tool for

writ ing applicative programs at the same level as
AL, provided that adequate packages are available

for dealing with the hardware interfaces.

In closing, we have indicated the open problems

for the nex t generat ion of robots and we have

i l lustrated some of the func t ional capabilities that

will be necessary.

Acknowledgements

Partial support for this paper has been provided

by the C N R through Progetto Final izzato per l ' In-
formation, Sottoprogetto P3, Obiett ivo MODIAC.

References

[1] Reference Manual for the ADA Programming Language.
Proposed Standard Document, Dept. of Defense, USA,
July 1980.

[2] Binford, T.O., Liu, C.R., Gini, G., Gird, M., Glaser, I.,
Ishida, T., Mujtaba, M.S., Nakano, E., Nabavi, H., Panof-
sky, E., Shimano, B.E., Goldman, R., Scheinman, V.D.,
Schmelling, D. and Gafford, T., Exploratory study of
Computer Integrated Assembly Systems, Progress Report
4, SAIL Memo AIM-285.4, Stanford University, Ca, June
1977.

[3] Boyse, J.W., Interference Detection among Solids and
Surface, Comm ACM, Vol. 22, N. 1, January 1979, pp.
3-9.

[4] Brooks, R.A., Greiner, R. and Binford, T.O., The

ACRONYM model-based vision system, Proc. 6th IJCAI,
Tokyo, Japan, 1979, pp. 105-113.

[5] Finkel, R., Taylor, R.H., Bolles, R.C., Paul, R. and Feld-
man, J.A., Overview of AL, a programming system for
automation, Proc. 4th IJCAI, Tbilisi, USSR, 1975, pp.
758-765.

[6] Gini, G., Gini, M., Gini, R. and Giuse, D., A multitask
system for robot programming, A CM Sigplan Notices, Vol.
14, N. 9, May 1979, pp. ll-18.

[7] Gini, G. and Gini, M., POINTY: a philosophy in robot
programming, in (Rembold Ed.) Information Control Prob-
lems in Manufacturing Technology, Pergamon Press, 1980.

[8] Gini, G. and Gini, M., Interactive development of object
handling programs, Computer Languages, Vol. 7, 1982, pp.
1-10.

[9] Latombe, J.C., Une analyse structure~ d'outils de pro-
grammation pour la robotique industrielle, in Langages et
methodes de programmation des robots industriels, IRIA,
Paris, France, 1979.

[10] Lieberman, L.I. and Wesley, M.A., AUTOPASS: an auto-
matic programming system for computer controlled mech-
anical assembly, IBM Journal of Research and Develop-
ment, Vol. 21, N. 4, July 1977, pp. 321-333.

[I 1] Lozano-Perez, T. and Winston, P.H., LAMA: a language
for automatic mechanical assembly, Proc. 5th IJCAI,
Cambridge, Mass, August 1977, pp. 710-716.

[12] Nitzan, D. and Rosen, C.A., Programmable industrial
automation, 1EEE Trans on Computers, Vol. C-25, Decem-
ber 1976, pp. 1259-1270.

[13] Popplestone, R.J., Ambler, A.P. and Bellos, I.M., An
Interpreter for a language for describing assemblies, Artifi-
cial Intelligence, 14, 1980, pp. 79-107.

[14] Rieger, C., Rosenberg, J. and Samet, H., Artificial Intelli-
gence Programming Languages for Computer-Aided
Manufacturing, IEEE Trans on Systems Man and
Cybernetics, Vol. SMC-9, N. 4, April 1979, pp. 205-226.

[15] Rosen, C.A. and Nitzen, D., Use of sensors in program-
mable automation Computer, December 1977, pp. 12-23.

[16] Sacerdoti, E.D., Plan generation and execution for robotics,
NSF Workshop on robotics research, Newport, Road Is-
land, April 1980.

[17] Winston, P.H., Artificial Intelligence, Addison-Wesley
Publishing Co., 1977.

