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InnovatIve technologIes, concepts and approaches 

1  Introduction and questions

Mutagenic toxicity is the capacity of a substance to cause 
genetic mutations. this property is of high public concern, 
because it has a close relationship with carcinogenicity and 
reproductive toxicity (Benigni et al., 2008): most mutagenic 
substances are suspected carcinogenic substances in case a ge-
notoxic mechanism is considered.

In experiments, mutagenic toxicity can be assessed by vari-
ous test systems. One crucial point was the creation of cheap 
and short-term alternatives to the rodent bioassay, the main 
tool of the research on chemical carcinogens. With this intent 
Bruce Ames created a series of genetically engineered Salmo-
nella typhimurium bacterial strains, each strain being sensitive 
to a specific class of chemical carcinogens (Ames, 1984). The 
Ames test is an in vitro model of chemical mutagenicity and 
carcinogenicity and consists of a range of bacterial strains that 
together are sensitive to a large array of DNA-damaging agents 
(Ashby, 1985).

An interesting point is the reliability of such experimental 
tests: as discussed in other papers (Piegorsch and Zeiger, 1991) 
the estimated inter-laboratory reproducibility rate of Salmo-
nella test data is 85%. This observation will be taken into ac-
count in our model that will make use of the available data 
without using new in vitro testing.

today regulators request the availability of mutagenic po-
tency to correctly label and restrict mutagens/carcinogens and 
the exposure to them. Another important use of mutagenicity 
testing is in drug discovery, where mutagens should be stopped 

in the development of drugs. In environmental protection regu-
lators need to understand the mutagenic potential of chemicals 
in order to control or limit their use.

Our aim is to develop a QSAR (Quantitative Structure Ac-
tivity Relationship) model based on available data and to de-
velop it for regulatory purposes; i.e. to reduce the number of 
false negatives. there is an argument that, if the main aim of 
QSAR modelling is simply prediction, the attention should be 
focused on model quality and not on its interpretation. Another 
argument is that it is dangerous to attempt to interpret mod-
els, since correlation does not imply causality, as discussed in 
(livingstone, 2000).

On this basis, we can differentiate predictive QSARs, 
where the focus is best prediction quality, from descriptive 
QSARs, where the focus is descriptor interpretability. Our 
first aim is predictive QSAR; however our model is also quite 
interpretable.

The first step in making a QSAR model is the calculation of 
molecular descriptors. We limited our models to descriptors 
computed using the MDl software, including general descrip-
tors and fingerprints. Fingerprints are used to encode structural 
characteristics of a chemical compound into a fixed bit vector 
(Durant et al., 2002).

QSARs have already been developed for mutagenicity. the 
availability of large data sets of non congeneric compounds, 
the most notable provided and analysed by Kazius et al. (2005), 
makes it possible to construct more robust models. A few other 
papers have been already published on this core data set (liao 
et al., 2007; Zheng et al., 2006).
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2  Materials and Methods

two methods for predictions are used. 
The first one consists in detecting in the molecule the particu-
lar structural fragments already known to be responsible for the 
toxic property under investigation. In the mutagenicity/carcino-
genicity domain, the key contribution in the definition of such 
toxicophores comes from Ashby (Ashby, 1985) and is grounded 
on the electrophilicity theory of chemical carcinogenesis de-
veloped by Miller and Miller (1981). Every subsequent effort 
starts from knowledge collected by Ashby to derive more spe-
cific rules. It is important to mention that so far the mutagenicity 
structural alerts (SAs) are sound hypotheses that derive from 
chemical properties and have a sort of mechanistic interpreta-
tion; however their presence alone is not a definitive method to 
prove the mutagenicity of the compound towards Salmonella; 
the substituents present in some cases are able to change the 
classification. SAs are in practice rules that state the condition 
of mutagenicity given the presence and the absence of peculiar 
chemical substructures.

the second method we propose uses statistics, in particular 
an effective method to build non-linear models, as developed 
under the name Support Vector Machines (Vapnik, 1995). 

The integration of both methods will give the final result, 
making the QSAR both predictive and interpretable.

2.1  Data
Following quality checks (IRFMN and CSL) the Kazius data-
base was pruned and modified to 4225 compounds: 2358 clas-
sified as mutagens and 1867 classified as non-mutagens by the 
Ames test. For developing and evaluating the model we split 
them into a training set (80%) and a test set (20%). For each 
compound molecular descriptors were calculated with MDl-
QSAR software, including both substructures and global de-
scriptors. 

A subset of 27 descriptors has been automatically selected 
with the BestFirst search method, using as subset evaluator the 
5-fold cross-validation score on the training set. In short, Best-
First algorithm searches the space of attribute subsets by greedy 
hill climbing (considering all possible single attribute additions 
and/or deletions at a given point), with a backtracking facility 
to explore also non-improving nodes. the same subset of 27 
descriptors has been obtained either searching forward, start-
ing from the empty set, or with a bi-directional search starting 
from the 10 top rated attributes by a single attribute evaluator 
(Relief), both with 3 steps of backtracking.

the resulting dataset has been normalised by dividing each de-
scriptor column by its maximum absolute value. table 1 shows 
the selected substructural descriptors, while table 2 shows the 
global descriptors. It is interesting to explain their meaning.
– Gmin = the minimum atom_level e-state value in a molecule. 

the e-State descriptor Gmin is a measure of the most elec-
trophilic atom in the molecule and the polarity of the molecule. 
Mechanistically, an electrophilic centre is important for cova-
lent bond formation with nucleophilic DNA, and so it is not 
surprising that Gmin is found to be important in modelling.

– idwbar = Bonchev-trinajstic mean information content based 
on the distribution of distances in the graph

– LogP = partition coefficient between octanol and water
– nrings = Number of rings in a molecular graph: cyclomatic 

number (i.e. the smallest number of bonds which must be re-
moved such that no ring remains)

Atom types are classifications based on element and bonding 
environment. Atom type assignments are used in functional 
group identification, hydrogen addition, and hydrogen bond 
identification, and to determine VDW radii.

Except for the first capital “S”, each lower case letter repre- 
sents a bond:

– each “s” within an atom type designation represents a single 
bond to that atom 

– each “d” within an atom type designation represents a double 
bond to that atom 

– each “t” within an atom type designation represents a triple 
bond to that atom 

– each “a” within an atom type designation represents an aro-
matic bond to that atom 

Tab. 1: The 23 local descriptors.
Modelling method for a statistical QSAR: Support Vector Machines

Symbol	 Definition

SsCH3_acnt Count of all ( – CH3 ) groups in molecule
SdCH2_acnt Count of all ( = CH2 ) groups in molecule
SssCH2_acnt Count of all ( – CH2 – ) groups in molecule
SdsCH_acnt Count of all ( = CH – ) groups in molecule
SaaCH_acnt Count of all (    CH   ) groups in molecule
SsssCH_acnt Count of all ( > CH – ) groups in molecule
SdssC_acnt Count of all ( = C < ) groups in molecule

SaasC_acnt  Count of all ( = CH = ) groups in molecule

SaaaC_acnt   Count of all ( = CH =  ) groups in molecule
SssssC_acnt Count of all ( > C < ) groups in molecule
SsNH2_acnt Count of all ( – NH2 ) groups in molecule
StN_acnt Count of all ( = N ) groups in molecule
SdsN_acnt Count of all ( = N – ) groups in molecule
SaaN_acnt Count of all ( = N = ) groups in molecule
SsssN_acnt Count of all ( > N – ) groups in molecule

SdaaN_acnt Count of all ( = N = ) groups in molecule
SsOH_acnt Count of all ( – OH ) groups in molecule
SdO_acnt Count of all ( = O ) groups in molecule
SssO_acnt Count of all ( – O – ) groups in molecule
SaaO_acnt  Count of all ( = O = ) groups in molecule
SHsOH_Acnt Count of all [ – OH ] groups in molecule
SHother_Acnt Count of all [ other ] groups in molecule
SHCHnX_Acnt Count of all Halogen on C with 1 or 2 H atoms
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We can observe that a few of them match known SAs. 
the SdsN descriptor (for the nitrogen atom type \-N\=) is as-

sociated with the azo group, a structural alert. Molecules with 
larger SdsN descriptor values tend to have larger calculated out-
put values.

SsssN is the atom count of all tertiary nitrogens in molecules. 
tertiary nitrogen group alerts occur when the nitrogen is at-
tached to either an aromatic or partially unsaturated ring. SaasC 
counts aromatic carbons with an attached substituent atom. It is 
not an alert per se; however, it reflects the nature of structural 
alerts attached to the ring system.

2.2.  The statistical model
We created the statistical model using Support Vector Ma-
chines (SVM). SVM can use linear models to implement 
non-linear class boundaries. the input space is mapped into 
a higher (maybe infinite) dimensional space by a function φ, 
and a linear model constructed in the new space can repre-
sent a non-linear decision boundary in the original space. In 
the transformed space, the algorithm calculates the maximum 
margin hyperplane, i.e. the linear model that gives the greatest 
separation between the classes. the instances that are closest 
to it are called support vectors.

In our model we chose the Radial Basis Function as the ker-
nel. A complete environment to develop SVM models is the 
open source libSVM library1, containing C++ and Java imple-
mentation of SVM algorithms with high-level interfaces (Py-
thon, Weka and more). 

the optimal parameterisation of the model can be fully auto-
mated by one of the scripts included in libSVM. With this tool 
it is possible to perform an almost exhaustive grid-search in the 
2-dimensional parameter space of the objective function, using 
as evaluation criterion a cross-validation on the training set: the 
best assignment found was (C, γ) = (8, 8).

With this parameterisation a model was trained on the train-
ing set, and its prediction ability was evaluated on the test set, 
normalised with the same scale factors used for the training 

set. Moreover, its robustness was assessed by a stratified 10-
fold cross-validation. Table 3 reports the accuracy of the ob-
tained model. 

the accuracy of the model is very high. However, for the 
scope of CAESAR, we may try to reduce the FN rate. To this 
end we can apply another check and see if some widely known 
SAs can be used to detect other mutagens.

2.3.  A model using SAs
As stated above, the available knowledge on mutagenicity is 
expressed in terms of SAs. A recent compilation of those alerts 
has been chosen as the knowledge base of our approach. To 
this end we considered the set of 30 SAs for mutagenicity de-
rived by Benigni and Bossa from several literature sources. 
this rulebase is implemented as a module of toxtree. (Devel-
oped by Ideaconsult Ltd. under the terms of a JRC contract. 
Software available at http://ecb.jrc.ec.europa.eu/qsar/: a java 
open source wrapper for structure-based predictions inclu-
sive of a few other plugins on some toxicological endpoints.) 
In this realisation, the SAs are coded into SMARtS (SMiles 
ARbitrary Target Specification) strings, and the compounds in 
SMIleS strings. therefore the SAs detection is accomplished 
basically as a SMARtS2 matching task. SMARTS strings are 
a text representation of substructures. to be matched, both the 
SMIleS and the SMARtS strings are translated into graphs 
and the two graphs are compared.

the Benigni/Bossa rulebase was evaluated on the same set of 
4225 chemical structures of CAESAR. The prediction ability 
on the entire data set, compared with the respective Ames test 
results, is summarised in Table 4.

With respect to the SVM model, the SA model shows an 
increase of 48% of FP and an increase of 5% of FN. However, 
even if good sensitivity is exhibited by a low False Negative 
(FN) rate, the toxicity is often overestimated (low specificity), 
compromising the overall performance. this highlights the 
apparent drawback of the SAs: their compilation is engineered 
to individuate candidate mutagens by detecting the presence 

Tab. 2: The 4 global descriptors

MDL code	 Definition

MDL187 Smallest atom E-State value in molecule
MDL198 Bonchev-Trinajstic mean information content
MDL226 Calculated value of LogP
MDL230 Number of rings (cyclomatic number) in a 
 molecular graph

Tab. 3: Accuracy of the SVM model

TRAINING SET Predicted Predicted
3380 chemicals mutagen non-mutagen
mutagen 1766   122
non-mutagen   137 1355

Correct classification rate: 92.3%

TRAINING SET Predicted Predicted
845 chemicals mutagen non-mutagen
mutagen 407   63
non-mutagen   79 296

Correct classification rate: 83.2%

1 available at http://www.csie.ntu.edu.tw/\textasciitilde{}cjlin/libsv 2 Daylight Theory Manual available at http://www.daylight.com/
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of (presumed) toxicophores; just the remainder is labelled as 
non-mutagen.

3  Final results 

So far we have seen how it is possible to achieve good predic-
tion ability through a statistical approach, and also quite good 
results in predicting Salmonella mutagenicity through toxtree 
software. 

How can be these models be made more suitable for regulatory 
purposes? An answer is to address with special care the reduc-
tion of FNs, the hazardous compounds predicted as safe. There 
are various tricks to implement such enhancement in learning 
algorithms simply by throwing the model off centre, but all at-
tempts in this direction will unavoidably raise several new FPs 
for each FN removed, since a just trained model is already in its 
best equilibrium. From here arose the idea of a trained classi-
fier supervised by an expert layer: the aim is to refine the good 
statistical separation between classes supplied by SVM, not by 
introducing a perturbation in the optimality of the model, but by 
applying a complementary knowledge-based filter in order to al-
low an accurate identification of misclassified mutagens (FNs), 
even if isolated. In other words, instead of making the model 
more (or too much) sensible to mutagens, our intent is to equip it 
with an additional device to be applied to non-mutagenic predic-
tions, skilled in what it has had difficulty to learn.

In practice, although every SA should be trusted if evaluated 
on a random set of molecules, here we are considering only 
that portion of compounds already presumed non-mutagenic by 
SVM, i.e. cleaned for the most part of mutagens. this means 
that while the FP rate spawned by each rule is unchanged (since 
all the non-mutagens should still be present), the rate of caught 
true positives (tPs) will decrease, because just a few mutagens 
are left. Hence a selection is needed to extract just a subset of 
the rulebase skilled in finding the mutagens potentially subject 
to misclassification by the SVM model. Having such a large da-

ta set, the above selection can be carried out in a straightforward 
way. the predictions obtained by cross-validating the model on 
the training set (3380 compounds) shall be representative of its 
general prediction ability, so a filter fixing the inaccuracies of 
such a meta-model will probably provide even for defects of 
the original one.

An integrated model was arranged cascading the two tech-
niques: a trained SVM classifier with an additional expert facil-
ity for FNs removal based on SAs. The SVM classifier is the 
one described previously, while the rulebase for the expert filter 
was extracted from the Benigni/Bossa SAs set after an analysis 
of their individual effect, evaluated on those structures of the 
training set labelled non-mutagenic by 10-fold cross-validating 
the model. 

this spotlights two different subsets of SAs (see Appendix). 
The former (10 SAs) is the set of “good” rules: each of them 
showed a balance of more FNs caught than FPs spawned once 
evaluated on the cross-validated predictions. their supposed ca-
pacity to refine the SVM model prediction ability is confirmed 
by the proof on the test set. The latter (5 SAs) is the set of “sus-
picious” rules, i.e. those ones with a still remarkable FNs re-
moval power but a higher misclassification rate. As can be seen 
in Table 5, the FNs removal carried out by the first set of rules 
improved both sensitivity and accuracy similarly, either in the 
calibration on the training set or the validation on the test set. 
13% of FNs are cleaned from the “safe” prediction on the test 
set and this benefits even the correctly classified prediction rate 
with a slight increment.

By applying the second set of rules (tab. 6), the perform-
ances in classification accuracy are not noticeably downgraded 
if compared with those of the basic SVM model, but about a 
third of FNs (32%) are removed from the overall predictions, 
boosting the sensitivity over 90%.

The statistics on the final model are described in Table 7.
A global overview of the performances of the combined mod-

el is illustrated in Figure 1, where an interpretation of the set 
of “suspicious” rules is given: it can extract the more suspect 

Tab.	4:	Results	of	the	SA	model	on	the	test	set

TEST SET Predicted Predicted
845 chemicals mutagen non-mutagen
mutagen 404   66
non-mutagen 117 258

Correct classification rate: 78.3%

Tab.	6:	Confusion	matrix	after	applying	both	sets	of	rules

TEST SET Predicted Predicted
845 chemicals mutagen non-mutagen
mutagen 415   55
non-mutagen   86 289

Correct classification rate: 83.3%

5:	Confusion	matrix	on	the	test	set	after	using	the	first	set	of	
10 rules

TEST SET Predicted Predicted
845 chemicals mutagen non-mutagen
mutagen 427   43
non-mutagen 109 267

Correct classification rate: 82.1%

Tab. 7: Statistics about the cascade model 

CAESAR	 Suspicious	taken Suspicious	taken
test set as	non-mutagenic as	mutagenic
accuracy: 83.3% 82.1%
sensitivity: 88.3% 90.9%
specificity:	 77.1%	 71.2%
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compounds from “safe” prediction with good accuracy, if re-
lated to the very low number of real mutagens still present. the 
so obtained global model for mutagenicity prediction has been 
released through the portal of the CAESAR project.

Our final cascade model is described in Figure 2. Its logic 
flow is very clear, and its statistical analysis defined.

4  Discussion

Our hypothesis that a QSAR approach was a good method to 
build models of non-congeneric compounds has been proven. 
The two-step method proposed in our CAESAR model for mu-
tagenicity demonstrated that the QSAR method is more apt to 
screen the data set than the SAs approach.

In our implementation, besides improving accuracy, we are 
also biased toward reducing the number of false negatives, as 
required by regulators. As we have seen, the first screening is 
based on statistical correlation between small fragments and 
the mutagenicity property, and we only check the presence of 
SAs upon a negative outcome. Since regulators use this method 
manually, we are so able to provide them with a similar check.

However, there are important differences between our method 
and the traditional SAs. As we already pointed out, the known 

SAs are biased toward pollutants and carcinogenic molecules; 
in our approach we can use only the first screening to deal with 
drugs and other families of compounds. SAs are a fixed list of 
substructures, while the MDL keys used in the QSAR phase are 
in a number automatically selected to give better performance to 
the correlation with the endpoint. So the keys are automatically 
derived from the reduction algorithm, not extrapolated from hu-
man experts. They can cover or not the known SAs. In this sense 
we are really performing data mining and deriving a set of keys 
that can become, in principle, new SAs in case the chemical 
classes considered are new and an interpretation about reactiv-
ity is available.

In terms of accuracy our model, which uses powerful algo-
rithms, can reach accuracy very near to the rate of the reproduc-
ibility of the experimental data in different laboratories.

In terms of interpretability of our model, the first step can be 
understood in terms of the few global descriptors used and the 
MDL keys. However we should remember that the interpret-
ability of non-linear models does not depend on simple relations 
between input and output, and the mix of the descriptors cannot 
be translated into rules. The second step is obviously defined in 
terms of rules, stating that the presence of any of the SAs and 
the absence of external conditions would put the compound in 
the mutagenicity class.







Fig.	1:	Reduction	of	false	negatives	 Fig. 2: The cascade model
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