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Abstract— We develop a bio-inspired controller for an active
stereo vision system based on the Hering’s law. We extend
a model already proposed in literature in two ways. Firstly
we evaluate the performance of the controller, inspecting its
capability to foveate a generic feature in the 3D space, and the
robustness respect to the initial angular configuration of the
stereo system. Secondly we introduce the redundant component
of the neck. Using a classical learning method we tune the
controller to adapt to the controlled system. We investigate
how the redundancy is solved by the learned controller, and
show that the performance increases and the controlled stereo
system generates human-like trajectories.

I. INTRODUCTION

The problem of controlling an active stereo system is
critical. As the complexity of the controlled system increases,
the controller equations become more complicated too. The
research field has been very active in the last 15 years
and methods to effectively employ active vision techniques
is surveyed in [3]. Furthermore, many techniques based
on biologically plausible models were recently proposed.
The typical way to approach a bio-inspired controller is to
investigate how the information of the bio-inspired neural
network can be processed to achieve the vergence control.
This work instead investigates the underling control model
that is compatible with neural processing but is placed at an
higher level of computation. Moreover, we analyze in a quan-
titative way the capability of the control system, exploring
a wide area of the 3D space. Based on these assumptions
we investigate a model derived from the Hering’s law of
equal innervation [9]. Recent work shows that the Hering
model may be plausible at least for disparity-driven vergence
and binocular fixation [6]. We propose a learning method
to adapt the system to the controlled device, and selectively
investigate the quantitative performance in terms of foveation
error, and the capability of the system to foveate a 3D point
starting from a generic position of the cameras. Then we
extend the model introducing the redundant component of
the neck that is not present in the classical controlled device.

This paper is organized as follows. In Section II we
present some related work, in Section III we present the
original model and the performed experiments, in Section
IV we present the extended model and the experiments
compared with those of the original controller, in Section
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V we investigate the biological plausibility of the extended
model and in Section VI we derive our conclusions.

II. RELATED WORKS

Several approaches and methods to effectively employ
active vision techniques are surveyed in [3]. The authors
describe problems arising from many applications, e.g. object
recognition, tracking, robotic manipulation, localization and
mapping. A lot of techniques are proposed to deal with the
low-level control strategies to drive the active stereo head.
Several approaches propose a bioinspired neural network,
based on the disparity energy model, to command vergence
and version for foveating tasks.

Wang et al. [13] [14] show the autonomous development of
the vergence control, maximizing neural responses through
reinforcement learning. Gibaldi et al. [5] show a model
that directly extracts the disparity-vergence response without
an explicit calculation of the disparity. Moreover, the same
authors implement the control strategy for the iCub head
to foveate steady or moving object along the depth direc-
tion considering only some fixed configurations in the tilt
direction [4]. Shimonomura et al. propose an hardware stereo
head built with an FPGA and silicon retinas; the vergence
system is able to foveate a point processing the disparity
computed with the energy model [10]. Tsang et al. [12]
show a gaze and vergence control system using the disparity
energy model with a vergence-version control with a virtual
vergence component. Qu et al. [8] propose a neural model
based on the energy model introducing the orientation and
scale pooling; they show how the novel features improve the
learning curve. Sun et al. [11] demonstrate that the vergence
command can be learned starting from a sparse coding
paradigm. Other recent approaches addressing the problem
of the vergence are based on more classical algorithms, either
fuzzy [7] or SIFT [1].

Typically the experimental data are collected only along
the depth direction; in our research, instead, we addressed
the problem to produce statistics related to a wider space
along the three direction in space. Moreover, we introduced
the neck redundancy in order to enrich the capability of the
control system.

III. HERING-BASED MODEL

In this section we introduce the bio-inspired active stereo
vision system initially proposed in [9]. The fundamental
equations are based on the Hering’s law of equal innervation
which states that the eyes move by combining the movements
of vergence and version [6].



A. Control system

The system is a proportional model which needs to be
trained to learn the proportional parameters. The controller
is used with a 3 degrees of freedom (DOF) structure with 2
DOF for the pan command for both eyes and 1 DOF for the
tilt, as in Figure 1. The fundamental equations are:

θ̇version = K1(xL + xR) (1)
θ̇vergence = K2δ (2)

θ̇tilt = K3(yL + yR) (3)

where xL and xR are the feature x-position on the left
or right image plane and yL and yR are the feature y-
position on the left or right image plane. The disparity of
the projected feature is represented by δ , and [K1,K2,K3]
are the parameters that must be estimated.

We can compute the pan and tilt angles as following:

θ̇r = θ̇version− θ̇vergence (4)
θ̇l = θ̇version + θ̇vergence (5)

θ̇t =−θ̇tilt (6)

B. Setup

To be as consistent as possible with reality we use the
camera model with the same calibration matrix for both eyes:

K =

200 0 320
0 200 240
0 0 1


with focal length equal to 200 pixels and with an image

plane of 640×480 pixels. This calibration matrix leads to a
lens angle of about 100◦.

It is worth noting that we use the undistorted non-rectified
matrices, taking into account that we deal with an active
system and considering the consistency of the camera model.

We define the origin of the neck-frame coincident with the
origin of the world frame of reference; the only movement
of the neck is given by the tilt activity. The camera positions
are defined at 0.2 m of distance to each other along the x-
axis, and at 0.2 m along the y-axis of the world frame of
reference (see Figure 1). The unity measure of the world
frame of reference is meter.

To evaluate the performance of the system we use the
following error measure:

eL/R =
√

x2
L/R + y2

L/R (7)

that is the Euclidean distance computed in the image plane
between the final feature position in the image plane and the
centre of the image plane (in this case we have the origin of
the frame of reference of the image plane exactly at the centre
of the image plane itself). The subindices L/R refer to the
left and right camera respectively. We choose to evaluate the
error for the left and the right eye separately to understand
if the foveation error vary between the two eyes.
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Fig. 1. Frames of reference of the active stereo system with 3 DOF. The
tilt movement is executed along the x-axis of the world frame, and it rotates
the frames of both eyes of θT [rad] . Ideally, we define a virtual neck that
performs the tilt movement.

C. Learning phase

In this section we propose a method to learn the parame-
ters Ki that guarantee a minimum error eL/R for any desired
3D point to be foveated, independently from the starting
position of the stereo camera. The parameters can be learned
by performing the following minimisation:

c(X ,Y,Z) = e2
L + e2

R +∑
j
| θ̇l | j +∑

j
| θ̇r | j +∑

j
| θ̇t | j

K = argmin
K1,K2,K3

∑
x

∑
y

∑
z

c(x,y,z)

The Euclidean distances in the objective function are
needed to evaluate the performance of the system in foveat-
ing the desired point; the sum terms are necessary to mini-
mize the lengths of the performed trajectories (and therefore
avoiding oscillations around the desired final position).

The objective function is minimised numerically using the
gradient descent method; the points used as training set cover
most of the view field and can be described as follows:

x ∈ [−100,100] m

y ∈ [−100,100] m

z ∈ [1,201] m

with a step of 50 m.

D. Experimental results

The gradient descent minimization of the cost function on
the training set lead to the following parameters:

K1 = 0.3286 K2 = 0.0859 K3 = 0.1837



It is worth noting that the cost function has a lot of local
minima but, in our experience, the overall performance of
the system is not affected.

To test the performance of the learned control system, we
conducted the following experiments:
• Exploring the 3D space, that investigates the capability

of the active stereo system to foveate points that are not
contained in the training set.

• Testing initial position, that investigates the capability of
the system to foveate a feature in 3D space, regardless
the initial joints configuration of the stereo camera. The
aim is to investigate the robustness of the system to
foveate a feature starting from a generic position.

1) Exploring 3D space: As a first experiment we inves-
tigate the capability of the system to foveate a huge set
of features (e.g. 3D points) in the 3D space starting from
a defined initial position. Based on their 3D positions, the
evaluated points (testing sets) can be grouped in three cubes
adjacent to the training set:

Along Z direction

[−100,100]× [−100,100]× [201,401]

Along Y direction

[−100,100]× [100,200]× [1,201]

Along X direction

[−200,−100]× [−100,100]× [1,201]

Each of these portions of space is discretised with a step of
10 m in each direction. We do not consider the points that
are not projected in either image planes.

Figure 2 shows the errors associated to each point in
the 3D space (top row), and the overall error distributions
(bottom row).

The mean error associated to the testing set along the Z
direction is 1.42 pixel with a variance of 0.33. This result is
expected mainly because the projections of the 3D points are
closer to the image centre as their distances from the image
plane increase. Along the X direction the error increases
as the X component increases. Since these points are close
to the image planes, their projections are in the border of
the images and, consequently, the task of foveating them is
more challenging. However, as can be seen from the bottom
pane, the errors are distributed in an acceptable error interval;
i.e. [2.5;5.5] pixels with an average of 4.33 pixels and a
variance of 0.488. Similar considerations can be done for the
testing set along the Y direction, where qualitatively the error
increases as the Y component of the 3D points increases. The
mean error is 3.96 pixels with a variance equal to 0.296.

2) Testing initial position: This experiment presented in
this subsection aims at understanding the robustness of the
system to foveate a 3D point starting from a generic joint
configuration (i.e. θl , θr and θt ).

Vergence and version affect the panning command com-
petitively (see Equation 4). To check whether the system
is able to perform panning accurately, we evaluated the

Fig. 3. Original system. In the left pane it is shown the mean error
associated to each 3D point in the testing set. The mean error is computed
considering each plausible initial joints configuration of the head; for each
configuration we compute the error to foveate. In the right plane is shown
the mean error distribution.

most problematic region of the 3D space. Indeed, the Z
region represents an ”easy” case where the points are always
projected to the centre of the image, and the Y region does
not affect the panning but the tilting. The testing subspace
along X direction, used for the experiments, is:

[−200,−100]× [−100,100]× [1,201]

discretised with a step of 10 m on each direction. We
let the system foveate each of the testing points starting
from each possible joint configuration in the joint space.
We defined a range of values for each joint, i.e. [−60◦;60◦]
with a step of 30◦. In total we have 125 different joints
configurations. Then, we compute the mean error associated
to each 3D point and the results are shown in Figure 3.
Qualitatively, the error increases as the Z component of the
3D points decreases (see left pane). Since these points are
close to the image planes, their projections are in the border
of the images and, consequently, the task of foveating them
is more challenging. However, as can be seen from the right
pane, the errors are distributed in an acceptable error interval;
i.e. [1;35] pixels with an average of 15 pixels.

IV. EXTENDED MODEL

The model presented so far takes into account only 3
DOF to foveate a generic target in the 3D space. In this
section, we extend the model adding a further degree of
freedom (i.e. the neck) to improve the performance of the
head in the pan activity. Moreover we investigate whether,
from a biological point of view, it is possible to infer some
similarities between the obtained head trajectories and the
stereotypical trajectories performed by primates (eventually
humans).

A. Control system

In order to add the additional neck-joint, we investigated
different augmented version of control system presented in
Sec. III, and for each of them we evaluated the performance.

First of all, we introduced the neck component in accor-
dance with Eq. (1)-(3):

θ̇neck = K4(xL + xR) (8)



Fig. 2. Error maps computed for the left eye; we experienced very similar error values also for the right eye. Top row: testing sets with the error associated
to each foveated 3D point. Bottom row: the error distribution in pixel for the testing set. The red line represents the mean of the error. As we expected
the error distribution along the Z direction is lower then along the other directions.

This implies that the neck motions depend on the position
of the feature in the image planes. Neck movements only
consists of rotations along the Y axis and are independent
from the tilting command.

B. Setup

Introducing a new degree of freedom for the neck to make
the system redundant, requires to define a chain of roto-
translations from the neck to the world frame of reference.
The position of a 3D feature (initially defined in the world
frame of reference) in the camera frame of reference can be
computed as follows:

RL/R
W = RL/R

N (θL/R) RN
H(θN) RH

W (θT ) (9)

where RL/R
W is the roto-translation between the world frame

of reference and the camera frame of reference (left or right),
RL/R

N (θL/R) is the roto-translation between the neck and the
camera frame of reference, RN

H(θN) is the roto-translation
between the head and the neck (defined as the movement
along the pan direction) and RH

W (θT ) is the tilting command
defined as a rotation of the head frame of reference respect to
the world frame. The camera model and the other parameters
are defined as in Section III.

C. Neck configurations

In order to compute the angle movements for pan, tilt,
and rotation, equations (1)-(3), and (8) have to be combined
appropriately. We call configurations the different ways to
obtain these angle movements.

The configurations are summarised in the table below, and
reflects the following ideas:

Configuration 1 Configuration 2
θ̇r = θ̇version− θ̇vergence + θ̇neck θ̇r = θ̇version− θ̇vergence + θ̇neck
θ̇l = θ̇version + θ̇vergence + θ̇neck θ̇l = θ̇version + θ̇vergence + θ̇neck
θ̇t =−θ̇tilt θ̇t =−θ̇tilt
θ̇n = θ̇r θ̇n = θ̇l
Configuration 3 Configuration 4
θ̇r = θ̇version− θ̇vergence + θ̇neck θ̇r = θ̇version− θ̇vergence + θ̇neck
θ̇l = θ̇version + θ̇vergence + θ̇neck θ̇l = θ̇version + θ̇vergence + θ̇neck
θ̇t =−θ̇tilt θ̇t =−θ̇tilt
θ̇n = θ̇neck− θ̇version θ̇n = θ̇neck
Configuration 5 Configuration 6
θ̇r = θ̇version− θ̇vergence θ̇r = θ̇version− θ̇vergence
θ̇l = θ̇version + θ̇vergence θ̇l = θ̇version + θ̇vergence
θ̇t =−θ̇tilt θ̇t =−θ̇tilt
θ̇n = θ̇neck θ̇n = θ̇neck− θ̇version

• The eye movements (pan) could be mediated by the
neck component (Configuration 1-4)

• The neck movements (pan direction) could be mediated
by vergence and version (Configuration 1,2,3,6)

• The eye and the neck could be independent each other
(Configuration 5)

D. Learning phase

We adapted the learning procedure that is used for the 3
DOF system (see Equation III-C) to the new 4 DOF system:

c(X ,Y,Z) = e2
L + e2

R +∑
j
| θ̇l | j +∑

j
| θ̇r | j +∑

j
| θ̇t | j +∑

j
| θ̇n | j

K = argmin
K1,K2,K3,K4

∑
x

∑
y

∑
z

c(x,y,z)

The minimisation is performed with the same algorithm
and on the same training set as in Sec. III.



Fig. 5. Extended system. In the left pane it is shown the mean error
to foveate each 3D point in the testing set. The mean error is computed
considering each plausible initial joints configuration of the head. In the
right pane it is shown the mean error distribution.

E. Experimental results

The experiments presented in this section aim to:
• selecting the neck configuration that has the best per-

formance in terms of error in the exploration of the 3D
testing space

• comparing the performance with the results collected
with the original system

To select the best configuration we compared the results
obtained in the experiment “exploring the 3D space”. The
best configuration was then used to run the experiment “test
initial position”.

1) Exploring 3D space: We run the experiments for each
neck configuration and, comparing mean and variance, we
found that the best configuration is the number five with
decoupled control between eyes and neck1. The testing sets
are the same as defined in Sec. III. The obtained parameters
K after the training phase of Configuration 5 are:

K1 = 0.0167 K2 = 0.5543 K3 = 0.1584 K4 = 0.3542

Figure 4 presents the error maps related to Configuration 5.
Results seem to be compatible with the performance obtained
with the 3 DOF system (see Sec. III and Fig. 2); i.e. the mean
errors are 4.33, 3.93 and 1.41 pixel, and the variances are
0.65, 0.32 and 0.34, respectively for the testing sets along
the X, Y and Z directions.

2) Test initial position: As shown in Figure 5 the errors
are distributed in the interval [5;20] pixels. Compared to the
performance of the 3 DOF system (see Sec. III and Fig.
3), the error presents a lower mean and standard deviation.
We can therefore conclude that the additional neck-joint
provides robustness to the system and, specifically, it reduces
the influence of the initial configuration of the head on the
performance of the system in foveating a point in space.

V. DISCUSSION

This study proposes a new controller for an active stereo
system based on the Hering’s law. Quantitative results are
presented and a comparison with the original model is

1The quantitative results can be provided by contacting the authors

Fig. 6. The trajectories of the cameras performed by the trained extended
system. The blue cross represents the 3D feature in space in position
[200 0 40]. For graphical reason the image is scaled but it is clearly
shown that the system firstly moves the neck and only when the neck is in
a steady position the eyes perform the vergence movement.

provided. In this work we trained the system on a region
of the 3D space in front of the cameras, and we evaluated
the capability of the system to explore a wider area of the
space (in terms of capability to foveate a 3D point); moreover
we investigate the robustness of the system with respect to
a generic initial joint position of the head. All the test sets
are chosen to be in a very far region in space respect to the
cameras because what we want to evaluate the capability of
the system to react to 3D features that are not projected in
the central part of the image plane, and are in general more
difficult to foveate.

We investigate different possible control laws for the ex-
tended model to take into account the redundancy introduced
by the neck; what emerges, comparing the error in foveating
3D points, is that the best performance is obtained when the
controllers of the eyes and the one of the neck are decoupled
(Configuration 5). Comparing the error illustrated in Figure 2
and 4 it emerges that the mean error and variance associated
to the extended system are in general similar to the original
ones. Figures 3 and 5 present the experimental results of
the initial position of the system. In this case the error of
the extended system presents a lower mean and standard
deviation. We can therefore conclude that the additional
neck-joint provides robustness to the system.

Furthermore, a qualitative analysis of the trajectories of
the extended model with decoupled control (see Fig. 6),
i.e. Configuration 5, seems to be compatible with some
biological results [2].

VI. CONCLUSION

In this work we presented a vergence-version control
system for an active stereo head based on the Hering’s law.
First, we quantitatively evaluated the performance of the
original system previously presented in [9]. We defined a
cost function and we trained the system with a classical
technique; the obtained results show the robustness and the
effectiveness of the controller. Second, we extended the
controller adding a neck component that makes the system
redundant. We defined different possible configurations of
the neck control including coupled/decoupled controls. We
extended the cost function and trained the new controller for



Fig. 4. Error maps computed for the left eye of the extended system with the fifth neck configuration.

each neck configuration. We compared the different neck
configurations and chosen the best in terms of obtained
performance. We found the best performance with a decou-
pled control eye-neck. The trajectories generated from this
controller are compatible with the human head trajectories in
foveating tasks. Moreover, comparing our performance with
those of [9], we found that the extended controller solves the
redundancy improving the performance and the robustness of
the system.
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