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Abstract— Encouraged by recent legislations all over the 
world, aimed to protect human health and environment, in 
silico techniques have proved their ability to assess the 
toxicity of chemicals. However, they act often like a black-
box, without giving a clear contribution to the scientific 
insight; such over-optimized methods may be beyond 
understanding, behaving more like competitors of human 
experts' knowledge, rather than assistants. In this work, a 
new Structure-Activity Relationship (SAR) approach is 
proposed to mine molecular fragments that act like 
structural alerts for biological activity. The entire process is 
designed to fit with human reasoning, not only to make its 
predictions more reliable, but also to enable a clear control 
by the user, in order to match customized requirements. 
Such an approach has been implemented and tested on the 
mutagenicity endpoint, showing marked prediction skills 
and, more interestingly, discovering much of the knowledge 
already collected in literature as well as new evidences. The 
achieved tool is a powerful instrument for both SAR 
knowledge discovery and for activity prediction on untested 
compounds.  

Keywords - Structure Activity Relationships; structural 
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I.  INTRODUCTION 
This paper deals with qualitative SAR (Structure-

Activity Relationships). While SAR makes use of rules 
created by experts to produce models that relates 
subgroups of the molecule atoms to a biological property, 
as toxicity in our case, we show how to automatically 
develop such rules if a suitable set of results of biological 
experiments is available.  

The recent availability of biological activity data on 
chemical substances has triggered a proliferation of data 
mining approaches for toxicity assessing. In most cases, 
classical statistical tools are used to search for a numerical 
correlation between chemical properties and biological 
activity. Such models are able to exhibit significant 
prediction abilities on new compounds, and can be 
profitably used for classification tasks; but it's hard to 
extract the underlying rationale. In fact, physicochemical 
properties or structural information of chemicals are 
numerically quantified into the so called molecular 

descriptors [1], whose chemical or biological meaning is 
not obvious. Moreover, the equation that binds an instance 
to its prediction could be not intelligible. It is the case of 
neural networks, where often good performance is tightly 
related to network complexity. On the other hand, the 
structural nature of chemicals is explicitly taken into 
account by several graph-mining approaches, as AGM [2], 
FSG [3] and MoFa [4], which mine large datasets for 
frequent substructures. All of the cited implementations 
are based on Apriori algorithm, an association rule 
induction method designed for market basket analysis; 
hence, the selection of relevant fragments is driven only by 
statistical criteria. 

Human experts usually estimate toxicity through the 
detection of particular structural fragments, already known 
to be responsible for the toxic property under 
investigation. In the literature such fragments are usually 
referred to as structural alerts (SAs) [5], toxicophores [6] 
or biophores [7] and can be derived by human-experts, 
from knowledge of the biochemical mechanism of action 
(such as the activation of an enzyme cascade or the 
opening of an ion channel, which leads to a biological 
response); these mechanisms are still poorly understood 
and largely unknown.  

To assist experts in the extraction of such knowledge 
from data, by providing predictive and understandable 
models based on molecular fragments, a few approaches 
have been developed. Some are based on techniques from 
inductive logic programming (ILP) [8]. Whereas ILP 

techniques are theoretically appealing, they exhibit 
significant efficiency problems, and moreover cannot be 
directly applied to a standard chemical formats for 
molecule representation. Other, including MCASE [9], and 
more recently LAZAR [10] use a mixed approach. 

MCASE mines relevant fragments from a set of 
experimentally tested molecular structures (training set), 
by breaking down each structure into its constituent parts, 
and selecting the ones that exhibit a statistically significant 
non-random distribution among the active and inactive 
classes of compounds. The fragments that appear mostly in 
active molecules, and may therefore be responsible for the 
observed biological activity, are labeled biophores; 
additional features that seem able to regulate a biophore 
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activity, such as molecular descriptors and/or other 
fragments, are called modulators and can influence the 
final prediction. It is hard to find detailed information 
about the way the fragments are generated (mainly linear 
fragments with branches around the backbones) and the 
scoring scheme which determines the final prediction is 
obscure (measured in "CASE unit") and not decisive (may 
contain "marginally active" predictions).  

LAZAR, on the other hand, searches only for linear 
fragments selected, again, with a statistical test (chi-
square); the final prediction of a molecular structure is 
determined by a weighted majority vote from neighbours 
(i.e., fragments above a predefined threshold of similarity). 
In both cases, only simple substructures are taken into 
account on pure statistical basis. It is worthy mentioning 
that while LAZAR is open source, MCASE is commercial, 
and its basic version (CASETOX) doesn't allow the user to 
extract knowledge from his own data, but only to use the 
application as an expert system with prepackaged 
knowledge. 

In this work we present a new, ad hoc, SAR approach, 
capable of finding relevant fragments in a transparent way, 
and to extract a set of rules directly from data without 
using a priori knowledge. The fragmentation algorithm can 
generate substructures of arbitrary complexity, not only the 
simple ones, and the fragments candidates to become SAs 
are automatically selected on their actual prediction 
performance on a training set. Modulators are occasionally 
taken into account as particular classes of structural 
variants of the SA itself, considered harmful and therefore 
exceptions to the rule.  

Both the input and the output are expressed as 
Simplified Molecular Input Line Entry Specification 
(SMILES) [11], ASCII strings obtained by printing the 
symbol nodes encountered in a depth-first tree visit of the 
chemical graph. SMILES are expressions of a context free 
language. The SMILES notation of a chemical compound 
is a string of atoms (represented by their atomic symbols), 
bonds, parentheses, and numbers. The four basic bond 
types are represented by the symbols ‘-‘, ‘=’, ‘#’, and ‘:’ 
(single and aromatic bonds may always be omitted), while 
ionic bonds are represented by a ‘.’. Branches are specified 
by enclosing brackets. Cyclic structures are represented by 
breaking one bond in each ring; the atoms adjacent to the 
bond obtain the same number. Hydrogen is not included in 
a SMILES representation, but can be inferred from the 
available valences. Typically, a number of equally valid 
SMILES can be written for a molecule. For example, 
CCO, OCC and C(O)C all specify the structure of ethanol. 
Algorithms have been developed to ensure the same 
SMILES is generated for a molecule, and this is termed the 
canonical SMILES. Canonical SMILES are used in our 
data sets.  

The output consists in a set of rules in the form 

"IF contains <SA> AND NOT <SA's exceptions> 
THEN active"  

where both SA and modulator structures are expressed 
as SMILES, then apt to be used by human experts or other 
chemical software.  

Moreover, the user can easily drive the rule selection 
procedure to match particular purposes, by customizing the 
lower admissible precision of the rules, and by deciding 
the maximum length of the substructures to consider.  

In the actual implementation, called SARpy (SAR in 
python), the fragmentation process is carried out directly 
on the SMILES notation of structures. A similar approach 
has been implemented in SMIREP [12], but in such work 
the SMILES strings are simply split into "branching 
fragments" and "cyclic fragments". In other words, only 
entire branches or entire cycles are considered (that is to 
say, in the SMILES syntax, from parenthesis to parenthesis 
and/or from number to number). Also CORAL [13] makes 
use of small SMILES fragments, but they are finally 
merged into a numerical molecular descriptor, therefore 
the whole structural information content of the SMILES 
string is never explicitly taken into account. In our method 
instead we explicitly consider each bond.  

In the following section a conceptual view of the 
proposed approach is given. Then its prototypical 
implementation is detailed and validated on a large dataset 
of publicly available molecular structures. At the end, the 
results achieved and the extracted knowledge are discussed 
and compared to the present state of the art of the domain.  

II. SARPY PARADIGM OF KNOWLEDGE EXTRACTION 
Given a training set of molecular structures, along with 

their experimental activity binary labels, SARpy generates 
every substructure in the set and mines correlations 
between the incidence of a particular molecular 
substructure and the activity of the molecules that contain 
it.  

In the proposed paradigm, such task is carried out in 
four subsequent steps: 

Fragmentation: it's a novel recursive algorithm that 
considers every combination of bond breakages, and 
computes every substructure of the molecular input set. 

Evaluation: each fragment is validated as SA for positive 
activity on the training set; such matching produces a 
result in terms of true positives (TP), which are actual 
active compounds individuated by the SA, and false 
positives (FP), the inactive compounds incorrectly 
matched. 

Exceptions induction: a screening on every SA is carried 
out to check how to refine its ability by excluding 
some of its structural variants. 

Rule set extraction: from the large set of candidates SA, 
each one equipped with the TP and the FP values on 
the training set, the best subset is extracted and all 
explicit redundancies removed. After learning, the final 
set of rules is used for predicting the activity of new 
molecules. Compounds without any SA will be 
considered to be inactive.  
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A. Fragmentation 
The total fragmentation of molecular structures is 

achieved by an iterative process; each iteration has the 
plain task of taking the input structures and computes all 
the substructures obtainable by individually considering 
every bond breakage. That is to say that fragmentation 
iteration simulates a split on each bond of every input 
molecule, and collects every time the resultant couple of 
fragments. The maximum number of output structures for 
any iteration is two fold the number of total bonds in the 
input set, since every split produces, at most, two 
fragments. The case of ring-bond splits will be later 
discussed.  

If this process is applied on the training structures, the 
result of the first iteration is the collection of 1st level 
fragments: all the substructures extracted by alternatively 
considering every possible single split. Now, applying the 
next iteration to the output of the previous, every 1st level 
fragment is further split: this means to consider every 
possible pair of splits on the original structures. 
Substructures with exactly two broken bonds are the 2nd 
level fragments and are added to the collection. And so on, 
until no more new fragments could be extracted.  

Since we are interested in general SAs capable of 
identifying large classes of active compounds, we may 
decide a predefined maximum number of atoms; hence, 
the maximum number of bonds to be broken is known. 
Furthermore, the number of the newly produced fragments 
decreases with the depth of the fragmentation recursive 
call, and the number of output fragments goes to zero in a 
very few tens of steps. This observation can be supported 
by noticing that a fragment found in a molecule in a inner 
level could have been found, with good probability, in 
other molecules in an outer level, if not so rare to be 
useless.  

When one or more cycles are present in a molecular 
structure, the first iteration produces not only the collection 
of every couple of fragments resulting from the split of all 
nonring-bonds, but also every possible way of unrolling 
each ring by breaking ring-bonds while keeping the 
structure undivided. Therefore the fragmentation of the 
ring will take place in the next iteration. So the presence of 
rings (even if fused) simply delays the appearance of some 
structural fragments due to the high number of bonds to be 
broken to split the structure in correspondence of rings. 

Moreover, the search for structural alerts for positive 
activity restricts the fragmentation only to positive 
structures of the training set; the iterative procedures 
terminates when no more fragments are found or when the 
maximum depth (set by the user) has been reached. 

Obviously the whole process can be performed even to 
identify “safe” substructures, simply considering as 
“positive” the inactive structures. 

B. Evaluation 
Once all the substructures have been produced, the 

next step consists in evaluating them as potential SAs for 

positive activity. Since the problem is a binary 
classification problem, and since we have the experimental 
activity value of the original structures in the training set, 
we evaluate positive correlations in terms of TP and FP 
predictions generated by their individual application on the 
training structures.  

After computing TP and FP values, a candidate rule is 
generated and characterized by its precision rate, called 
Positive Predictive Value (PPV), and its sensitivity, which 
measure, respectively, the proportion of truly active 
compounds in the subset matched by the SA, and the rate 
of actual positives correctly identified as such by the single 
rule. 

The task of associating each SA to its TP and FP 
molecules could be optimized in several ways, however, in 
the implementation such computation is explicitly carried 
out by a complete matching procedure, where each 
fragment is matched against every molecule  in the 
training data, starting from the deepest level. In fact, the 
search for potential molecules containing a given structure 
can be restricted to those containing one of its descendants, 
being every descendant a substructure of its ancestor. 
Consequently, TP and FP of a SA can be found by 
searching in the subset of molecules already individuated 
by a related fragment from the deeper level (for instance, 
the one with less matches).  

In addition, to avoid rules with irrelevant behaviour, a 
lowest TP threshold can be considered to exclude SAs 
with little information on their positive prediction ability. 
SAs with a number of TP molecules below the threshold 
can be pre-emptively excluded (without the computation 
of FP), and the ancestor branches pruned, since TP values 
can only decrease (being superstructures).  

The evaluation is aimed at identifying the substructures 
that better generalize the concept of biophores, by showing 
high precision rate and good sensitivity for active 
chemicals. Several indicators can be derived, from the 
information just calculated, to assess the prediction ability, 
and to rank every fragment.  

We propose two simple score assignments, which 
wraps PPV and sensitivity respectively in "OR" or “AND” 
fashion. Such score will be determinant in the following 
steps as a relative measure to compare the ability of two 
redundant SAs. The score is computed either as (1) or (2), 
according to the user choice: 

score = PPV + sensitivity                      (1) 

score = PPV × sensitivity                       (2)  

Each score uses PPV and is biased by sensitivity; it 
considers sensitivity just in case of similar precision. In 
fact, PPV has high values, and the sensitivity of such a 
precise SA might be of a different order of magnitude, 
since it refers the performance of a single rule to the entire 
dataset. The two measures can be seen as indicators for 
local and global ability to predict positivity, since one 
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relates TP value to the subset of compounds matched by 
the rule, while the second refers to the total number of 
positives in the training set. To achieve a more concise 
model with fewer rules, the second definition of the score 
is used. 

C. Exceptions Induction 
So far, all the relevant substructures in the training data 

have been collected, along with the information about their 
individual prediction ability as potential SAs. To achieve a 
predictive model, generalization skills should be rewarded; 
however, some of the top ranked fragments, despite their 
good precision rate and high sensitivity, may represent a 
valid but still too general alert for positivity, by involving 
some harmless structural variants of the alert. A well 
known method to make these alerts more specific, 
preserving their generality, consists in searching for 
potential modulators [7]: factors that can regulate, and 
eventually deactivate, the action of the biophore.  

In SARpy such idea is put into practice in the case of 
potential SAs which have a significant number of FP 
ascribable to the same few harmless superstructures of the 
SA itself. In other words, SARpy seeks for each alert the 
existence of variants, namely structural extensions that are 
present in its FP molecules, then candidates to become 
exceptions to the SA. The search and the evaluation of 
potential exceptions is simple, considering that all  
substructures have been computed and associated to the 
relative TP and FP molecules. Exceptions to an alert can 
be found just within the fragments of the FP molecules of 
the SA itself; furthermore, only its superstructures have to 
be considered. FP molecules associated with the exception 
structure in the previous evaluation on the entire dataset 
now indicate FP predictions removed by the rising of the 
exception (becoming true negatives); on the other hand, 
TP molecules indicate correct predictions become errors 
(false negatives). 

At this point, the algorithm recalculates the new 
precision rate and sensitivity of the rule; if the exception 
enhances the performance on the training set, the resulting 
rule is expressed in the form "IF contains <SA> AND 
NOT <SA's superstructures> THEN positive". 

D. Rule Set Extraction 
At this point, a huge set of rules for positive activity 

has been collected, ranked and refined. The selection of 
the best rule set follows two steps. The first consists in 
constraining the precision of every rule (PPV). Then the 
second screening removes all the explicit redundancies: if 
two rules are found to be one implicit to the other, only the 
one with the best score is kept. 

The minimum PPV threshold of every rule is user 
defined in the interval 0-1. A low threshold allows for 

more and not necessarily precise rules to be selected, and 
the final classification will be highly sensitive but poorly 
specific. A high value is more restrictive by admitting only 
rules with good precision; this makes the classification 
more accurate but maybe less sensitive. The default value 
is set to 0.8. The user can perform a fast trial and error 
procedure to find a custom-tailored set of rules, aimed at 
sensitivity, specificity, accuracy or simplicity of the rule 
set. Furthermore, by setting the PPV threshold at the 
highest value 1, the user can achieve the most sharp set of 
rules, the ones with (at the limit) no FP predictions, that 
represent extremely reliable alerts to take into account for 
further investigations. 

Before testing new chemicals, with the aim to ensure 
that all the testing structures are inside the applicability 
domain of the training set, it is worth to check if some of 
the new structures contain fragments never found in the 
training phase. A priori unreliable predictions like these 
could be intercepted and the exclusion of such outliers 
from the testing task will guarantee higher prediction 
accuracy. 

III. IMPLEMENTATION 
The prototype implementation has been driven by a 

golden rule: fast and clear coding. It's a Python script 
(about 400 lines of code) employing the open source Open 
Babel 2.2.3 library [14] via a set of bindings to the C++ 
code. The aim of the prototype is to sample the efficacy of 
the proposed paradigm, either for classification purposes 
(the rule set used to classify untested compounds like in 
SAR) or for knowledge extraction (the rule set as source of 
information for further investigation). 

The iterative fragmentation of chemical structures is 
implemented directly on their SMILES notation as a string 
fragmentation task (Fig. 1). In detail, each iteration 
alternatively splits all the SMILES strings in 
correspondence to each bond, and rearranges the resultant 
two substrings (keeping into account the parenthesis 
nesting level) to obtain the two SMILES that identify the 
relative couple of fragments.  

The drawback in the current SMILES fragmentation is 
that ring breaking produces invalid fragments that will be 
rejected; thus, rings are considered as single entities. This 
doesn't necessarily means there is any other information 
loss: in fact, during the fragmentation of training data, the 
same toxic fragment involved in a ring may be still found 
as open skeleton in other compounds; then, during the 
evaluation phase, all the structures containing such 
fragment will be matched, regardless of them belonging to 
a ring or not. Otherwise, if the toxic fragment is always 
embedded in a ring, the ring itself is taken as the possible 
cause of toxicity. 
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Figure 1- SMILES fragmentation: duplicates are omitted. At the top the 
starting structure. 

Once found the 1st level fragments, every substructure 
is evaluated and potential exceptions are considered. The 
structural comparison is carried out by the Open Babel 
SMARTS [15] matching function. From this point only the 
substructures inclined to positive predictions are kept for 
the next iteration. In the default settings, to prevent 
imprecise SAs to be developed further, the minimum PPV 
is set to the trivial one (0.5, random rule); to avoid 
unexpected behaviors, rules with a statistically not 
significant number of matches on the training set are 
excluded, by constraining the minimum TP value in 
function of the total number of active compounds in the 
training set (natural logarithm is used).  

For the remaining substructures the process is iterated 
until no more new fragments are found, or a user-defined 
fragmentation depth level is reached. Then, to remove 
explicit redundancies from the resulting subset, SAs are 
sorted by score and compared two by two, and if a rule 
implies the other (i.e., one SA is a substructure of the 
other), only the top ranked one is kept. Finally the selected 
rules are applied on the training set and the performance 
statistics (accuracy, sensitivity, specificity, and confusion 
matrix) are prompted to the user, who, if satisfied, can 
save the rule set, or can search for a better tuning by 
defining a new PPV threshold. As an additional feature, 
the search direction for the optimal PPV is suggested on 
the basis of the difference between sensitivity and 
specificity: with low specificity, higher precision rate 
should be requested, vice versa for the low sensitivity case. 
The resulting set of rules can be checked on an external 
test set or many-folds cross-validated. 

IV. EXPERIMENTAL 
To test the predictive capabilities of the proposed 

approach, the implementation has been deeply validated on 
the mutagenicity endpoint, for which large datasets of 
molecular structures are available along with the 
correspondent experimental outcome.  

Mutagenicity is the capability of a substance to cause 
genetic mutations. It is a property of high public concern 
because it has a close relationship with carcinogenicity, in 
the case of genetic mutations, and with reproductive 
toxicity, in the case of germ cell mutations [16]. The 
mutagenic potential of chemical compounds is 
experimentally assessed by Ames test [17], which provides 

a cheap and short-term alternative to the rodent bioassay 
by means of a series of genetically engineered Salmonella 
Typhimurium bacterial strains. As discussed in [18], the 
estimated inter-laboratory reproducibility of this in vitro 
test is about 85%. 

The employed dataset, usually referred to as Bursi 
Mutagenicity Dataset [6], was provided by its authors to 
the EC funded CAESAR project [19] as SDF (Structure 
Data Format) file. The dataset originally contained 4337 
molecular structures, but after a minute check of each 
chemical structure some of them were corrected or 
removed, to avoid inaccuracies. The resulting CAESAR 
mutagenicity data set consists of 4204 compounds, 2348 
classified as mutagenic and 1856 classified as non-
mutagenic by Ames test.  

For modeling, the data set was split into a training set 
and a test set following a stratification criterion in order to 
make sure that each subset would approximately cover all 
major functional groups as well as all major features of the 
chemical domain of the total compound set. The training 
set consists of 80% of the data (3367 compounds), while 
the other 20% (837 compounds) is for testing.  

The SDF input was read with Pybel [20], a set of 
convenience Python functions and classes that simplifies 
access to the Open Babel I/O module, and converted into 
SMILES disregarding chirality information.  

The parameterization used in the experiment is: the 
minimum and maximum number of atoms in fragments, 
set respectively to 2 and 18, and the PPV threshold, set to 
0.8, to get an high, yet enough accurate, set of rules. Using 
score (1) on the training set, 77 rules are generated.  

We predicted the test set and obtained the statistics in 
Table 1. A 5-fold cross validation on the training set gives 
accuracy measures with very similar statistics. Good 
accuracy is achieved on both training and test set, with 
balanced sensitivity and specificity, as illustrated in the 
confusion matrix of the predictions on the test set (Table 
2); in this case, the molecules not containing any SA are 
considered as non-toxic. The computation time on a laptop 
PC is in Table 3. 

TABLE I.  SARPY: STATISTICAL EVALUATION 

SARpy 
CAESAR Mutagenicity Dataset 

Training set Test set 

Accuracy: 79.3 % 77.7 % 

Sensitivity: 80.1 % 80.1 % 

Specificity: 78.2 % 74.6 % 

TABLE II.  SARPY: CONFUSION MATRIX ON TEST SET 

Test set 
Predictions 

Active Inactive 

Actual mutagens 407 58 

Actual nonmutagens 86 286 
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TABLE III.  SARPY: TIMING FOR MUTAGENICITY 

Phase Seconds % of total time 

Fragmentation: 93 s 12% 

Evaluation: 221 s 29 % 

Exceptions Induction: 440 s 58 % 

Ruleset Extraction: 1 s 0.1% 

Total time:   755 s 
 

Using score (2), a reduced set of 38 rules is generated, 
and the accuracy is similar, since the remaining rules are 
the most general and cover a large number of cases. 
However, here we prefer to discuss the relevance of the 
extracted rules more than possible improvements in 
accuracy performance that are the subject of the ongoing 
work. 

V. DISCUSSION 
In the mutagenicity/carcinogenicity domain, the key 

contribution in the definition of known SAs comes from 
Ashby's studies in the 80s [21]. Grounding his work on the 
electrophilicity theory of chemical carcinogenesis 
developed by [22], which correlates the electrophiles 
presence (like halogenated aliphatic or aromatic nitro 
substructures) to genotoxic carcinogenicity, Ashby 
compiled a list of 19 SAs for DNA reactivity. In a 
following paper [23], a few hundred data of NTP (National 
Toxicology Program of US) have been manually mined to 
confirm their findings. Every subsequent effort starts from 
knowledge collected by Ashby to derive more specific 
rules, like the already mentioned work by Kazius et al [6], 
where the cognition of the mechanism of action is joined 
to statistical criteria. 

As a benchmark for the SARpy performance, we 
considered the collection of 30 SAs for mutagenicity 
manually derived from literature sources [21, 23, 24, and 
7] and implemented in Toxtree [25]. Its performance on 
the same dataset is reported in Table 4. In classification, 
the two approaches reach a very similar accuracy, and the 
specificity of the SARpy model is even higher; moreover 
the Bursi Mutagenicity Dataset itself was entirely used to 
derive the Benigni/Bossa rule base coded in ToxTree. 
Furthermore, while a SARpy's fragment is just a SMILES, 
Toxtree's one can be a complex SMARTS, or even not 
definable by the SMARTS language only. 

TABLE IV.  TOXTREE: STATISTICAL EVALUATION 

Toxtree CAESAR Mutagenicity Dataset 

Accuracy: 78.9 % 

Sensitivity: 86.3 % 

Specificity: 69.6 % 

 

About knowledge discovery, SARpy was capable to 
automatically identify SAs which are listed in expert 
systems based on human knowledge, such as the 
Benigni/Bossa rule base. This is the case, for instance, of 
the aromatic amines and the azoderivatives (respectively 
SA_28 and SA_14 in Toxtree).  

More interestingly, SARpy proved to be capable to 
identify new fragments, not codified into well-known 
collections of SAs, and even not present in the wide list of 
potentially genotoxic fragments recently defined in [26]. 
This is the case of the vinyl fragment, associated to 
mutagenicity by SARpy. Indeed, styrene, which is the 
smallest chemical containing this fragment, is mutagen in 
the Ames test [27].  

Another fragment that SARpy discovered as related to 
mutagenicity is the 7-chloroquinoline. Interestingly, 
laboratory experiments have shown that, when chlorine is 
on the nitrogen ring, it does not cause mutagenicity; 
conversely, when chloro is in position 5, 6 or 8, the 
chloroquinoline is mutagenic, as reported in the CCRIS 
database1 and in [28, 29]. Unfortunately, this database 
doesn't have experimental results for the mutagenicity of 
the 7-chloroquinoline.  

Another interesting fragment individuated by SARpy is 
1,2-dichloroethene-sulfides, that is an S-halo alkenyl 
sulfide, and the mutagenicity of S-halo alkenyl sulfides is 
supported in literature by [30].  

A comparison between some of the alerts extracted by 
SARpy and similar evidences in literature is summarized 
in Table 5. 

On the same dataset other results have been published. 
In [31] a machine learning approach mines the data set 
with Support Vector Machines (SVM) algorithm and RBF 
kernel, with high accuracy both in training (92%) and in 
test (83%) set, but the equations behind are extremely 
complex and the input requires 27 calculated molecular 
descriptors, thus increasing the risk of random correlations 
and making difficult the interpretation. Also LAZAR has 
been validated on a subset of the Bursi Mutagenicity 
Dataset and reached a prediction accuracy of 69% [10]. 

VI. CONCLUSION AND FUTURE WORK 
There is an argument that, if the main aim of SAR and 

QSAR (Quantitative SAR) is simply prediction, the 
attention should be focused on model quality and not on its 
interpretation. Another argument is that it is dangerous to 
attempt to interpret models, since correlation does not 
imply causality. Regarding the interpretability of QSAR 
models, Livingstone [32] states: “The need for 
interpretability depends on the application, since a 
validated mathematical model relating a target property to 
chemical features may, in some cases, be all that is 
necessary, though it is obviously desirable to attempt some 

                                                           
1Toxnet: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS (accessed 
Jul 2010) 
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explanation of the mechanism in chemical terms, but it is 
often not necessary, per se”. 

TABLE V.  SOME  STRUCTURAL ALERTS FOUND BY SARPY 

Name Structure Reference 

Aromatic amine 

 
Toxtree  [26] 

(SA_28) 

Aliphatic azo 

 

Toxtree [26] 
(SA_14) 

Acyl halide 

 

Toxtree [26] 
(SA_1) 

Quinones 

 

Toxtree [26] 
(SA_12) 

Aziridines 
 

Toxtree [26] 
(SA_7) 

Monohaloalkene 

 

Toxtree [26] 
(SA_4) 

Vinyl benzene 
 Styrene is 

mutagenic 
according to [28] 

7-chloroquinoline 

 5,6 and 8 
chloroquinoline 
are mutagenic 

according to [29, 
30] 

1,2-dichloroethene-
sulfides 

 

 
S-halo alkenyl 

sulfides are 
mutagenic 

according to [31] 

 

On this basis, we can differentiate predictive (Q)SARs, 
focused on prediction accuracy, from descriptive 
(Q)SARs, focused on descriptor interpretability. The usage 
of predictive QSAR models is growing, since they provide 
fast, reliable and quite accurate estimates of the chemicals 
activity. These features make them suitable for legislative 
purposes, as envisaged in the European legislation 
REACH (Registration, Evaluation, Authorisation and 
Restriction of Chemicals).  

Descriptive (Q)SAR however is highly appreciated by 
stakeholders to characterize the toxic risk of chemicals. 
Structural rules are expressions that correlate local 
characteristics of the molecule to a risk, and usually can be 
explained in terms of reactivity or activation of biological 
pathways. Toxicology has induced some of those rules 

from experiments on a few endpoints, notably 
mutagenicity and carcinogenicity. 

Even though statistical (Q)SARs provide predictive 
models [33] using global characteristics of the molecule, 
there is a need to integrate the two approaches. To this end 
we have developed SARpy, a system able to focus on the 
important structural features hidden in the database.  

The difference of SARpy with respect to other (Q)SAR 
approaches is its ability to extract relevant knowledge in 
the form of structural alerts during the learning stage. 
Other approaches rely on precalculated descriptors or 
fingerprints, calculated by specialized software. Another 
advantage of SARpy over most of the similar data mining 
systems lies in the small set of rules produced. While 
approaches such FSG, and AGM typically find a large set 
of patterns satisfying a minimum frequency threshold, 
which are not necessarily predictive, SARpy builds a small 
set of predictive rules. The resulting rule set can be used to 
carry out expert predictions, or can be read by human-
experts, finding support in literature, or revealing new 
clues in the domain.  

Furthermore, the same approach can produce new 
models of any property of interest. We tested SARpy to 
other relevant endpoints against the models freely 
provided in the CAESAR web site (http://www.caesar-
project.eu) obtaining the same statistical performances and 
a set of possible SA still under investigation (since no 
structural alerts are known for bioaccumulation and 
developmental toxicity).  

The limitation of SARpy of being a binary classifier is 
not a problem considering that the legislation indicates a 
threshold even for dose-related endpoints. 

The theoretical limits and the time complexity will be 
demonstrated in future work. Considering that parsing with 
context-free grammars is decidable; and the worst-case 
time complexity is cubic, we expect that the complexity of 
SARpy in enumerating the substrings is still polynomial. 
Moreover, the worst case time complexity of the algorithm 
to break the aromatic bonds is polynomial in the number of 
atoms plus the number of bonds. In fact the algorithm 
behaves like a Depth First Search for each sub graph 
consisting of aromatic atoms. Because the total number of 
atoms and bonds in the aromatic sub graph does not 
exceed their total number in the molecule, the estimated 
time complexity is a worst case estimate. 

Work is under way to make SARpy running on GPU to 
reduce computation times in case of very large data sets. 
Other future improvements will redefine the score in 
statistical terms as likelihood ratio. We will implement a 
graphical interface and use ROC curves for visualizing the 
substructures performance. 
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