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Abstract

Ž .A hybrid expert system prototype using artificial neural networks ANN and classical rules has been developed for pre-
dicting toxicology of compounds. Modularity was a must for the architecture of the system. The study of chemicals was
approached by establishing classes. When appropriate descriptors are calculated for the molecule, the ANN classifier assigns
the chemical class to the compound. Then the toxic activity is quantitatively predicted of by one of the trained ANN in the

Ž .system. After that, a qualitative prediction activernon-active is made by a rule-based system, calling only the correct
Ž .knowledge base KB for the assigned class. This last step enabled us to give an explanation of the results. All the rules in

the KBs have been obtained with automated learning techniques. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The increasing number of pollutants in the envi-
ronment raises the problem of toxicological charac-
terization of these chemicals. Toxicology is the sci-
ence that defines the limits of safety of chemical

w xagents 1 .
The traditional way of assessing the toxic risk of a

compound is to test them in animals. The results are
then extended to humans using safety factors and dose
relationships.

) Corresponding author. Tel.: q39-2-2399-3626; Fax: q39-2-
2399-3411; E-mail: gini@elet.polimi.it

This approach, however, suffers many drawbacks
w x2 :

ŽØ cost of the experiments ) 1 million US$ per
.compound ;

Ž .Ø the duration of the tests 3–5 years ;
Ø public pressure to reduce or eliminate the use of

animals in scientific experiments.
To overcome these problems, several computer-

aided tools have been developed to help toxicologists
assess the risk for new compounds.

Many algorithms have been proposed to explain
toxic effects in different situations where homoge-
neous classes of chemicals showed various activities.
However, in most cases these algorithms are suitable

0169-7439r98r$ - see front matter q 1998 Elsevier Science B.V. All rights reserved.
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for predictions only within the structure space
spanned by the set of compounds used to build the
model.

Attempts are now being made to model non-ho-
mogeneous sets of compounds, which is of course

w xharder than explaining the properties of analogues 3 .
This paper is a contribution to this area of study and
to the application of computer science and artificial
intelligence to real problems.

Ž .Several expert systems ES have been claimed to
predict toxicity of chemicals. These ES currently use
different approaches, based on a knowledge base
Ž .KB of explicit rules derived from the knowledge of
human experts, or relying on statistical approaches.
The advantage of rule-based systems is that the set of

Ž .rules which are independent can be extended with-
out rebuilding the system. However, the disadvan-
tages are that it is very hard to obtain a complete set
of rules and that control knowledge is not easily inte-
grated.

Intelligent technologies include various artificial
intelligence techniques, namely ES, artificial neural

Ž .networks ANN , and rule induction. These fall along
a continuum with subsymbolic processing at one end
and symbolic processing at the other. Until recently,
problem solvers typically used a single technique to
build the solution. One way to deal with really com-
plex systems is to combine two or more techniques
in order to exploit their different strengths and over-
come their weaknesses. The development of intelli-
gent systems for practical applications can benefit
from combinations of different techniques because no
single technique can do everything.

There has been a considerable amount of research
into integrating connectionist and symbolic process-
ing. While this approach has clear advantages, it also
involves serious difficulties and challenges. The hy-
brid approach is based on the use of two complemen-
tary paradigms, and aims at their synergistic combi-
nation in systems comprising both neural and sym-
bolic components. Hybrid systems are becoming
more common and useful. In fact the success of ANN
may well reflect the ease with which it incorporates
information processing approaches. However, it is
still debated which engineering method to apply for
developing effective hybrid systems.

In this project we aimed at several targets. First of
all, studying state of the art systems will help clarify

the needs of an ES in toxicology. An architecture
fulfilling these needs can then be developed. One of
the main tools we plan to use is ANN whose ability
to model unknown andror non-linear relationships is
widely recognized. These abilities are now strongly
supported on a theoretical basis. 1 We also intend to
use inductive learning algorithms to extract the KB
needed for the rule based ES.

The general target is then to integrate both these
components into an architecture, and develop it in
order to maximize the predictive power of the sys-
tem.

2. Toxicology and advanced computer systems

In recent years, several ES have been proposed in
toxicology, based on various approaches:
Ø rule-based systems drawn from human experts,
Ø systems using statistical methods,
Ø systems based on mechanistic processes.

Rule-based ES are suitable when some of the in-
formation is uncertain or even unknown. This is very
common in toxicology. The technique a human ex-
pert usually uses to assess the potential hazard re-
lated to a compound is the subjective idea of similar-
ity with other molecules. The expert looks for cer-
tain reactive groups that are known from the litera-
ture to have toxic action. Several reactive groups can

w xbe found in Ref. 4 . Examples of systems following
w xthis idea have been presented 5,6 .

TOPKAT and CASE systems use the statistical
w xapproach. TOPKAT 7,8 is inspired by the classical

QSAR principles. In any TOPKAT module we find a
QSAR model and a database. CASE, developed by

w x w xKlopman 9 , Rosenkranz and Klopman 10–12 , and
w xKlopman and Rosenkranz 13,14 works statistically,

comparing the fragments present in several training
sets.

The only system using the mechanistic approach is
w xCOMPACT 15 . This depends very much on knowl-

edge of the key biochemical processes in the activity
of the compounds.

1 Ž .Theorem by Hornik, Stinchombe and White 1989 .
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For a comprehensive overview of all these sys-
w xtems see Ref. 16 .

3. The general architecture of the present system

ŽAll the programs presented in the literature see
.above lack descriptions of the computer science as-

pects. This is probably because most of these papers
were published in toxicology or chemical journals. It
is not clear how the inference engine of the rule based
systems works. Moreover, most of these systems are
not properly ES, since they do not show any sym-
bolic reasoning. Additionally, the ability to explain
the results is not confirmed.

Since uncertainty is a major characteristic of the
toxicology field, it would be desirable to estimate the
precision of the prediction. Statistical methods can do
this easily, but rule-based systems cannot.

From the study of the existing systems, we estab-
lished the features needed for an ES in toxicology.

Ø Ability to explain the results.
Ø Integration of the quantitatiÕe computational

approach with the classical rule based ES. Two
modules should be present. The quantitative module
will predict the toxicity value, giving ample informa-
tion, but no explanation can be given. The qualitative
module, represented by a classical rule-based system,
will predict the activityrnon-activity of the com-
pound, with limited information, but here we can
show which rule explains the results.

Ø Choice of the chemical class before studying
toxic actiÕity; it is impossible to obtain good predic-
tive models for heterogeneous sets of compounds.
We, therefore, have to concentrate our modelling ef-
forts on a limited number of classes. This demands an
efficient classification module.

Ø Estimate of the reliability of prediction.
Ø Modularity: this is crucial since more classes

could be added as modules.
A reductive hypothesis at the basis of our archi-

tecture is to approach the toxicology problem consid-
ering the whole molecule and not some of its frag-
ments.

Fig. 1 illustrates the general architecture of the
system. The inputs are the molecular descriptors, and
the result is the toxicity value. The classification
module assigns a chemical class to the compound, so

Fig. 1. General architecture.

that only the appropriate quantitative model and
knowledge base will be activated. These two mod-
ules give the final result: a number, indicative of pre-

Ždicted toxicity or activity, a class activernon-ac-
.tive , and an explanation for this conclusion.

As a result, we have a hybrid multi-domain ES,
where the correct knowledge is activated only when
necessary.

4. Molecular descriptors

Informative data representation is essential to ob-
tain reliable results from ANN. Given the compound
structure, that can be entered graphically, there are
different ways to compute descriptors that account
better for the geometry, physics and activity of the
molecule. We had several choices: ‘classical’ such as
physico-chemical, and topological.

There are different physico-chemical descriptors
and parameters: log P, Henry coefficient, steric pa-

w xrameters, electronic parameters, etc. 17 . Their ad-
Žvantage is a firm physico-chemical basis clear and

.straightforward interpretation . The main disadvan-
tages are that some of them can be measured experi-
mentally, though their availability and accuracy are
low, and others can be calculated by several pro-
grams, but their value depends on the program used.

w xTopological indices 18 try to model the pattern
of connections of atoms in a molecule. A great ad-
vantage is that they are available for all organic
structures, and are easily computed. The disadvan-

Žtages are many: difficult interpretation especially for
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.high order connectivity indices , no direct chemical
meaning, none of the topological variables or their
principal components have any relationship to the
spatial and conformational aspects of the compound,
and finally, they generally do not encode information
about 3-D aspects of molecules and have little infor-
mation about the electronic characteristics of atoms.

The new tendency is to search a holistic approach
to defining the compound. New descriptors are im-
portant in order to represent the structure of the

Žmolecule better. WHIM weighted holistic invariant
. w xmolecular descriptors 19,20 are a recent approach

to obtain a holistic view of the molecule. Their cal-
culation starts from the molecular 3-D coordinates of
the molecule in the lowest energy conformation
Ž .equilibrium . Their aim is to capture the relevant 3-D
information regarding molecular size, shape symme-
try and atom distribution with respect to some invari-
ant reference frame. The algorithm involves a princi-

Ž .pal component analysis PCA on the centered
molecular coordinates, using different weighting
schemes. These descriptors have already proved their
utility in modelling toxic properties of chemicals
w x21,22 .

The intrinsic correlation among them can be re-
Ž .moved by using variable subset selection VSS in

regression analysis. The main advantage is their easy
interpretation; each descriptor refers to an intuitive
elementary geometric property of the molecule. This
is an important characteristic for writing an easily
explainable and usable KB.

5. Experimental

5.1. Data and descriptors

We chose to work on two data-sets: triazines and
haloarenes. The toxic properties to predict were phy-
totoxicity 2 for triazines, pRB 3 and pAHH 4 for

2 Phytotoxicity is defined as pI , that is the reciprocal of the50

molar concentration necessary to inhibit the reduction of the elec-
tronic acceptor by 50%.

3 Ž . Ž .pRBsylog EC RB where EC RB values are the in50 50
Ž .vitro rat hepatic cytosolic Ah RB receptor binding affinities.

4 Ž . Ž .pAHH sylog EC AHH , where EC AHH are the in50 50
Ž .vitro induction of AHH aryl hydrocarbon hydrolase .

haloarenes. Both the data-sets were studied and sup-
plied with 34 descriptors for each of the approxi-
mately 70 compounds per data-set at the Department
of Environmental Sciences of Milan University. The
molecular descriptors for these chemicals were the
WHIM indicated above and calculated using the
WHIM-3DrQSAR package, now available on re-

w xquest 23 .

5.2. The classification module

To implement the classification module, we
needed an algorithm that gave good results with soft
decay of performances when questioned with un-
known patterns. We used the LVQ NN classification

w xalgorithm introduced by Kohonen 24 ; this program
is available on Internet 5 and widely documented in

w xRef. 25 . LVQ is a supervised learning algorithm for
statistical classification. Its purpose is to define class
regions in the input data space.

Let xgR n be the input vector to be classified.
ŽWe take a finite number of ‘codebook vectors’ free

.parameter vectors and place them in the input space
to approximate various domains of x by their quanti-
fied values. Usually, we assign several ‘codebook
vectors’ for each class of x values.

Let m gR n, is1,2, . . . k be our ‘codebook vec-i

tors’. The x is assigned to the class to which the
nearest m belongs.i

Let m be the nearest m to x:c i

5 5 5 5m is chosen so that xym smin xym� 4c c i i

5 5or csargmin xym .� 4i i

Ž .Let x t be a sample of input:

m tq1 sm t qa t x t ym tŽ . Ž . Ž . Ž . Ž .c c c

if x and m belong to the same class,c

m tq1 sm t ya t x t ym tŽ . Ž . Ž . Ž . Ž .c c c

if x and m belong to different classes,c

m tq1 sm t for i/cŽ . Ž .i i

Ž . Ž .for 0 - a t - 1, a t can be optimized for each
Ž . Ž .m t introducing a i t .i

5 The LVQ_PAK is available at: cochlea.hut.fi. It is download-
able with anonymous ftp features.
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The aim of these experiments was to correctly dis-
tinguish triazines and haloarenes. The training data-

Žset comprised 110 samples 60 triazines and 50
. Žhaloarenes and the validation set 37 samples 14 tri-

.azines and 23 haloarenes . The number of free pa-
rameter vectors was always 14. The number of itera-
tion was set at 40)14s560, where 40 is a number
recommended by the authors of the algorithm. All
possible combinations of the available options were
tried.

5.3. The quantitatiÕe prediction module

The theorem by Hornik, Stinchombe and White
Ž .1989 ensures that a regressive feed-forward ANN is
a universal function approximator from R n ™ R.
This makes ANN a very powerful tool for mathemat-
ical modelling, especially for non-linear relation-

w xships. We used the back-propagation algorithm 26
on a three-layer neural model.

To avoid local minima we introduced a momen-
tum term. To accelerate the convergence of the algo-

w xrithm, we used the techniques explained in Ref. 27 .
The code used in the experiments was made avail-
able by Davide Anguita 6 of the Department of Bio-
physical and Electronic Engineering at the Univer-
sity of Genova.

We used R2 for validation.cv

All the data were normalized between 0 and 1 be-
fore processing in the ANN. The ANN modules were
implemented using MBP code. 7

All the ANN simulations were done using SUN
SPARCs from the Laboratory of Artificial Intelli-

Ž .gence and Robotics AIR-LAB of the Department of
Ž .Electronics and Information DEI of Milan Poly-

technic and the mainframe SUN SPARC-Center 2000
at the EDP center of the same university.

We first made experiments using all the available
descriptors and a fixed topology, increasing the num-
ber of neurons in the hidden layer. For each topology
the algorithm started from 100 different points of the
weight space to achieve the best performance avoid-
ing local minima.

6 The software is available through anonymous ftp on:
risc6000.dibe.unige.it.

7 MBP available with anonymous ftp at: risc6000.dibe.unige.it.

5.4. Rule extraction and qualitatiÕe prediction mod-
ule

In a classical rule-based ES, knowledge is repre-
sented by production rules like:if - condition )

then -action) .
Usually these rules are provided by human ex-

perts. Since we decided to use the new WHIM de-
scriptors, there was no-one available to provide ex-
pertise through this representation of molecules. We
had no other choice than to automatically extract
rules.

We set a threshold for each data-set. All the com-
pounds with a toxicity value below that threshold
were considered non-active and the ones with higher
values were considered active.

In order to extract rules, we used a well known
Ž w x.machine learning program the C4.5 by Quinlan 28

Žand a statistical based, binary tree classifier CART:
w x.classification and regression tree 29,30 .

For the qualitative prediction module, we needed
an ES shell to use the automatically extracted KB.

w xCLIPS 31,32 was chosen for this, because of its fea-
tures of knowledge representation, portability, inte-
gration, interactive development, verifyrvalidation,
wide documentation and freely available software.

6. Results and discussion

6.1. Results for classification

The results on validation always indicated 100%
correct classification. Since these results were ob-

Fig. 2. Sammon’s mapping of triazines and haloarenes.
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Table 1
Results of experiments with 34 and 7 selected descriptors on triazines and haloarenes: modelling of phytotoxicity, pRB and pAHH

Number of neurons Triazines Haloarenes

Phytotoxicity pRB pAHH

34 Descriptors 7 Descriptors 34 Descriptors 7 Descriptors 34 Descriptors 7 Descriptors
2 2 2 2 2 2R R R R R Rcv cv cv cv cv cv

1 56.4 62.7 83.7 76.8 70.0 58.3
2 77.1 63.8 84.4 80.7 71.5 62.6
3 76.4 69.5 84.1 81.0 72.3 61.8
4 78.0 73.3 84.4 80.9 73.5 62.7
5 77.8 71.5 84.7 81.8 74.1 58.0
6 80.5 86.6 84.9 80.8 74.0 57.7
7 80.6 87.7 84.5 82.8 75.0 53.5
8 80.2 76.7 84.9 81.4 74.3 53.9
9 80.7 83.6 84.7 80.7 74.7 55.1

10 81.1 83.9 85.0 81.3 73.6 56.0
11 81.6 82.7 84.8 82.1 74.0 54.3
12 81.0 81.4 85.4 81.1 74.6 53.3
13 79.9 81.0 85.0 81.6 75.3 59.3
14 80.4 84.3 84.3 82.3 73.6 54.9
15 80.9 84.6 74.8
16 80.2 84.4 75.7
17 81.1 84.2 73.8
18 80.2 84.1 74.6
19 80.4 84.0 76.8
20 81.1 84.3 75.0
21 80.7 83.9 72.8
22 82.0 83.3 75.2
23 80.5 83.4 74.3
24 80.5 83.6 74.2

Fig. 3. E vs. number of neurons with 34 descriptors.v
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Fig. 4. Feed-forward NN for weight inspection.

tained with all possible combinations of the options,
the robustness of the algorithm has been proved for
this classification problem.

To show how the classes were distributed, we
made a 2-D mapping of the compounds using Sam-

w xmon’s algorithm 24 . In Fig. 2, we can see that the
two classes are very well distinguishable, and never
overlap. The shape of the two clusters also shows that
the class of triazines is much more homogeneous than
the haloarenes.

6.2. Results with the ANN

Table 1 sets out the results of experiments with the
ANN. Results with 34 descriptors were good. In-

creasing the number of neurons hardly improves the
Ž .performance of the network Fig. 3 .

We thought we might possibly improve perfor-
mance by reducing the number of descriptors so as to
increase the ratio between the number of examples
and number of features per example. To do this, we
needed a method for inspecting the weights of the net
and recognizing which of the inputs the algorithm re-
ally used. We virtually tried to open the ‘black box’
of the ANN to see what was happening inside.

Let us look at Fig. 4. For each input i to the net
Žwe calculated the function GMW geometric meani

.for W :i

h

< <a Pb(Ý i j i j
js1

GMW s .i h

ŽIf a is high but the corresponding b is small ori j i j
.vice versa , the input i cannot propagate through the

jth route to reach the final neuron. With GMW , wei

can see which signal i is really important in the net.
What we did was to save the weights of the net when
results were best and then calculate the geometric
mean on these ‘optimal’ weights.

Fig. 5. Experiments for variables selection.
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Table 2
Triazines predicted phytotoxicity on validation set using NN

< <a Name Predicted Expected Err

1 Mol 61 6.16 6.34 0.18
2 Mol 62 5.44 5.45 0.01
3 Mol 63 5.42 5.53 0.11
4 Mol 64 6.73 6.52 0.21
5 Mol 65 5.97 5.53 0.44
6 Mol 66 5.82 5.53 0.29
7 Mol 67 6.52 6.65 0.13
8 Mol 68 6.98 6.85 0.13
9 Mol 69 5.69 5.42 0.27

10 Mol 70 4.72 4.57 0.15
11 Mol 71 6.17 5.92 0.25
12 Mol 72 4.96 4.55 0.41
13 Mol 73 4.95 5.18 0.23
14 Mol 74 5.88 5.76 0.12

Our experiments are shown in Fig. 5. We made a
list of all these means for all the inputs i and noted
which of them was highest in all the simulations. We
marked the seven strongest descriptors. Selecting the
best descriptors from the tables as shown, we made
new experiments with only seven descriptors, some-
times improving the performances of the models.

Table 3
Haloarenes predicted pRB on validation set using NN

< <a Name Predicted Expected Err

1 Mol 2 6.04 5.49 0.55
2 Mol 5 7.07 7.15 0.08
3 Mol 8 6.81 6.10 0.71
4 Mol 12 6.36 5.96 0.40
5 Mol 17 8.12 7.81 0.31
6 Mol 20 8.90 8.82 0.08
7 Mol 22 8.44 8.18 0.26
8 Mol 25 8.49 8.83 0.34
9 Mol 29 3.80 4.38 0.58

10 Mol 32 4.68 3.61 1.07
11 Mol 35 5.19 4.07 1.12
12 Mol 39 5.94 6.46 0.52
13 Mol 41 6.39 6.66 0.27
14 Mol 44 5.76 6.40 0.64
15 Mol 47 6.36 6.70 0.34
16 Mol 50 4.64 4.70 0.06
17 Mol 53 6.13 5.89 0.24
18 Mol 57 5.94 5.08 0.86
19 Mol 61 3.62 3.85 0.23
20 Mol 64 4.66 5.39 0.73
21 Mol 67 6.14 6.92 0.78
22 Mol 69 4.53 5.15 0.62
23 Mol 71 4.93 4.80 0.13

Table 4
Haloarenes predicted pAHH on validation set using NN

< <a Name Predicted Expected Err

1 Mol 2 5.89 4.00 1.89
2 Mol 5 6.65 6.44 0.21
3 Mol 8 7.06 6.23 0.83
4 Mol 12 7.37 7.68 0.31
5 Mol 17 6.60 7.38 0.78
6 Mol 20 10.23 9.26 0.97
7 Mol 22 9.64 9.19 0.45
8 Mol 25 9.03 10.38 1.35
9 Mol 32 4.36 4.21 0.15

10 Mol 35 5.30 4.71 0.59
11 Mol 39 6.67 5.88 0.79
12 Mol 41 7.18 5.98 1.20
13 Mol 44 5.76 7.07 1.31
14 Mol 47 7.48 8.10 0.62
15 Mol 50 6.12 7.42 1.30
16 Mol 53 7.21 6.97 0.24
17 Mol 57 6.94 7.37 0.43
18 Mol 61 3.15 3.00 0.15
19 Mol 64 5.46 6.01 0.55
20 Mol 67 8.25 9.62 1.37
21 Mol 69 5.57 5.68 0.11
22 Mol 71 5.99 4.89 1.10

Comparing the results with 34 and 7 descriptors
Ž .Table 1 , we see that the reduction in the number of
descriptors increased the performance of the models

Ž 2 .for triazines R goes from 82.0% to 87.7% ,cv
Ž 2slightly decreased the pRB models R goes fromcv

.85.4% to 82.8% and strongly decreased the pAHH
Ž 2 .ones R goes from 76.8% to 62.7% .cv

To test the reliability of the models, Tables 2–4
show the net’s answers when prompted with the vali-
dation set of compounds, and compare the results
with the expected ones; for triazines the mean error

Ž .is 0.21, for haloarenes pRB 0.47 and for pAHH
0.76.

6.3. Comparisons of the obtained models

It is difficult to make a useful comparison with the
results found in the literature, mainly because of dif-
ferent validation methods. Nevertheless, to give an
idea of the difficulty of modelling toxicity, we report
the results found on papers dealing with the same sets
of compounds.

w xA triazines data-set was used in Ref. 33 . At the
beginning, the set comprised 78 compounds, but was
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Table 5
Percentage of x-validated error on rule extraction with CART and C4.5 obtained with leave-one-out method

Triazines Haloarenes

Phytotoxicity pRB pAHH

34 Descriptors 7 Descriptors 34 Descriptors 7 Descriptors 34 Descriptors 7 Descriptors

C4.5 24.30 31.10 28.20 32.40 30.40 26.10
CART 27.02 32.43 21.13 28.17 21.74 26.09

then reduced to 71 because of seven outliers. The au-
thors gave up the model at that stage.

w xIn Ref. 34 we find the results for haloarenes.
w xSulea et al. 34 used topological descriptors and var-

ious combinations of subsets of the original data-set;
they obtained these results, with the leave-one-out
method for validation:

pRB: R2 s59%cv

pAHH: R2 s55%.cv

6.4. The qualitatiÕe prediction module

As we have already explained, this module has to
assign an activernon-active class to the compound
and explain its conclusion. The information regard-
ing toxicology is low, but the real information here is
why a result was obtained.

In order to extract rules, we used C4.5 and CART.
For both algorithms we first tried 34 descriptors and
then with the seven descriptors selected with the ANN
approach. The leave-one-out method was used for
validation. We could thus compare these two algo-
rithms properly. In Table 5 we show the best results
for the rules extracted by both. As we can see, C4.5
was better than CART for phytotoxicity classification,
while CART performed well for haloarenes. The rules
extracted with just seven descriptors did not perform
badly, but could not outperform the ones extracted
with all the available descriptors.

7. Conclusions

The prototype 8 was implemented following three
principles: modularity, portability and transparency.

8 The prototype has been implemented on a 486 DX-4 100 MHz
with 16 M of RAM memory and running Linux.

To achieve these we propose a modular, easily ex-
pandable architecture. We used a strongly standard-
ized language like ANSI-C, and whenever possible
public domain software.

We used the LVQ NN for classification, obtaining a
100% correct assignment. The quantitative prediction
was obtained with trained ANN. For triazines the net
dimensions were 7=7=1 and the predictive power
87.7%; for haloarenes, referring to the prediction of
pRB the net dimensions were 34=12=1 and the
predictive power 85.4%; for the pAHH activity, the
net dimensions were 34=19=1 and the predictive
power 76.8%.

The qualitative module was implemented with
CLIPS as inference engine; the rules extracted with
CART are four for triazines and gave a predictive
power of 76%; for pRB there were four rules and the
predictive power was 79%; for pAHH there were five
rules and the predictive power was 78%.

Here CLIPS was definitely under-used, since KB
were usually made of just four or five rules and we

Ž .Fig. 6. Final architecture of hybrid toxicology expert HyTEx
prototype.
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never had conflict of resolution problems. CLIPS was
anyway used to integrate more and much wider KB
in the future. A complete architecture of the proto-
type is shown in Fig. 6.

This new architecture has not solved all the prob-
lems related to ES in toxicology. We believe that the
ultimate solution would be to create a hybrid system
approaching the problem from all possible angles:
considering the metabolic decay, the structural alerts
in residues, the molecule as a whole and as a set of
different substructures. Biochemical mechanisms
must not be neglected either. We are still far from this
target, mainly because of the lack of databases with
enough coherent information. This work is just one of
the several steps needed to achieve these goals.

At this stage, only two classes of chemicals can be
recognized by this prototype. Because of HyTEx’s
modular structure, we can easily add new classes of
molecules. A crucial point is always the classifica-
tion module. If needed, this can be improved with a
multi-level classifier.

The HyTEx prototype can also be used as part of
a more complex system considering metabolic decay,
if required for every metabolite. When prompted with
a compound whose class is recognizable by the sys-
tem, HyTEx gives good results; similarly, the quanti-
tative and qualitative modules were successful.
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