
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

A new in silico classification model for ready biodegradability,
based on molecular fragments

Anna Lombardo a, Fabiola Pizzo a, Emilio Benfenati a,⇑, Alberto Manganaro a, Thomas Ferrari b,
Giuseppina Gini b

a IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via G. La Masa 19, 20156 Milano, Italy
b Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza L. da Vinci 32, 20133 Milano, Italy

h i g h l i g h t s

� A new fragment-based model to
predict ready biodegradability was
developed.
� A new software to extract fragments

was used: SARpy.
� Statistical and expert-based

fragments were used to build the new
model.
� The model is freely available and

useful for regulatory purposes.
� The model has performance

comparable to other existing models.
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a b s t r a c t

Regulations such as the European REACH (Registration, Evaluation, Authorization and restriction of
Chemicals) often require chemicals to be evaluated for ready biodegradability, to assess the potential risk
for environmental and human health. Because not all chemicals can be tested, there is an increasing
demand for tools for quick and inexpensive biodegradability screening, such as computer-based (in silico)
theoretical models. We developed an in silico model starting from a dataset of 728 chemicals with ready
biodegradability data (MITI-test Ministry of International Trade and Industry). We used the novel soft-
ware SARpy to automatically extract, through a structural fragmentation process, a set of substructures
statistically related to ready biodegradability. Then, we analysed these substructures in order to build
some general rules. The model consists of a rule-set made up of the combination of the statistically
relevant fragments and of the expert-based rules. The model gives good statistical performance with
92%, 82% and 76% accuracy on the training, test and external set respectively. These results are
comparable with other in silico models like BIOWIN developed by the United States Environmental
Protection Agency (EPA); moreover this new model includes an easily understandable explanation.
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1. Introduction

With their multiple possibilities of prolonged contact with sen-
sitive targets, chemicals that are stable in the environment arouse
concern because their potential harmful effects may last longer
and become chronic. Generally if a chemical is labile it is easier
to investigate its exposure scenarios and the chronic effects may
be less important. It is therefore important to assess whether a
chemical is persistent in the environment.

REACH legislation (Registration, Evaluation, Authorization and
restriction of Chemicals) (REACH, 2006) aims to raise the level of
protection for human health and the environment against the risk
of exposure to chemicals. Persistence is addressed under REACH
and ready biodegradability is a screening test for persistence. All
chemicals produced or imported for more than one ton/year must
be tested for ready biodegradability (REACH, 2006) (Annex VII of
REACH). Persistent and Non-Readily Biodegradable (NRB) are not
synonymous: the definitions and thresholds are different. A
compound is defined as persistent if it resists degradation and
remains in the environment for a long time (ECHA, 2008a). It is
considered persistent if its degradation half-life reaches the
thresholds of 60 d in marine water, 40 d in fresh or estuarine
water, 180 d in marine sediment and 120 d in fresh or
estuarine water sediment and in soil, as in the new Annex XIII of
REACH (REACH, 2011).

Ready biodegradability is defined as a screening test in which a
high concentration of the test substance is used and ultimate bio-
degradation is measured by non-specific parameters under aerobic
conditions. A substance is considered Readily Biodegradable (RB)
when it degrades by 60% within 28 d (OECD, 1992). This means
that a RB compound is also considered non-persistent but a NRB
one is not necessarily considered persistent without further tests.

The reference test for ready biodegradability is the OECD TG
301 (Organisation for Economic Co-operation and Development-
Test Guideline; OECD, 1992). Besides the European Community,
USA, Canada, and Japan have adopted the OECD TG 301C test for
evaluating ready biodegradability (OPPTS, 2008; CEPA, 1999;
Yoshioka, 2007).

Within REACH the use of Structure–Activity Relationships (SAR)
and Quantitative Structure–Activity Relationships (QSAR) models
is encouraged. These examine the compound’s properties starting
from its chemical structure, exploiting the principle that similar
compounds should have similar biological activities (ECHA,
2008b). SAR focuses on the rule determining the relationship, as
a classifier, while QSAR quantitatively assesses of the effect
(regression model).

We used SARpy (Ferrari et al., 2011) to build up a classifier for
ready biodegradation. This new general software automatically ex-
tracts knowledge from a dataset and detects the molecular struc-
tural fragments associated with the activity of interest. The
model we developed, based on ready biodegradability data for
the OECD TG 301C – modified MITI – I test, predicts whether a
compound is RB or not, to screen its persistence for the PBT (Persis-
tent, Bioaccumulative, Toxic)/vPvB (very Persistent very Bioaccu-
mulative) assessment.

2. Materials and methods

2.1. Data

The dataset described in (Toropov et al., 2012) was used. Two
compounds were eliminated, one inorganic and one tautomer.
The final dataset of 728 compounds was split into a training set
(582 compounds) and a test set (146 compounds), amounting to

respectively 80% and 20% of the total maintaining the same propor-
tions of classes as the original set in both subsets.

After the development of the model a new data set was avail-
able (Cheng et al., 2012), so their continuous and binary data were
extracted and combined in a single dataset. The doubtful com-
pounds (or data), compounds with a percentage of BOD > 100%
and duplicates were eliminated. If multiple data were available
for the same compounds, the arithmetic mean was maintained if
the data were consistent, otherwise the compound was eliminated.
From this extended dataset we used the compounds not present in
the training or the test set of the model presented here, for a total
of 874 new compounds, as the external set.

2.2. Software

SARpy takes in input a set of chemical structures paired with
their experimental activity label and produces as output a set of
structural fragments associated with the property under investiga-
tion. The input and the output structures of SARpy are all ex-
pressed as Simplified Molecular Input Line Entry System
(SMILES); a SMILES is a string of characters that provides a compact
representation of the structure of a molecule (http://www.day-
light.com/dayhtml/doc/theory/).

SARpy applies to the input structures (the training set) a frag-
mentation process to extract all the substructures, within a cus-
tomizable size range, expressed as the number of atoms (usually
2–18). Then, the software mines for correlations between the inci-
dence of any molecular substructure and the activity of the mole-
cules containing it. Finally, a subset of fragments is selected and
proposed to the user in the form of rules ‘‘IF fragment THEN
activity’’.

As outcome SARpy lists the SMILES fragments paired with an
activity label (e.g., positive, negative), ordered by descending
precision in identifying the property under investigation. The
statistical measure used for the precision is a likelihood ratio that
is computed for each fragment from the ratio of positive
(True Positives, TP) to negative predicted as positive (False Positive,
FP) elements in the subset of molecules containing the fragment,
and the ratio of negative to positive elements in the whole
training set.

likelihood ratio ¼ ðTP=FPÞ � ðnegatives=positivesÞ ð1Þ

The likelihood can be used as a quantitative attribute of the
fragment. Thus, the first fragments in the list identify the mole-
cules with the desired activity label with almost no errors, then
come the fragments with a higher misclassification rate. A more
detailed description of SARpy is in (Ferrari et al., 2011, 2013); its
code is available from the authors.

SARpy can be customized to improve the specificity of the mod-
el, or in a more balanced way to improve the accuracy. We ob-
tained different series of fragments (called rule-sets) considering
as active the RB compounds (and inactive the non-ready biode-
gradable ones). Each rule-set was obtained using the settings spec-
ified in ‘‘Supporting Information A’’.

3. Results and discussion

3.1. The procedure for obtaining the rules

The fragments for this model derive both from a statistical part
and an expert-based part. The modeling has been done in three
steps (Fig. 1). Initially, four rule-sets of fragments were generated
with SARpy: NRB fragments with high specificity (rule-set 1),
NRB fragments with balanced performance (rule-set 2), RB frag-
ments with high specificity (rule-set 3) and RB fragments with
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balanced performance (rule-set 4). Fragments with high specificity
appear only in one category of compounds (RB or NRB), while frag-
ments with balanced performance are present in both classes, but
prevalent in one. The statistical performance of the fragments ex-
tracted was checked and some fragments were eliminated (see
‘‘The SARpy fragments’’ section).

In the second step, compounds that could not be classified using
the four rule-sets were used to generate other rule-sets. In this
way, we obtained another rule-set: RB fragments extracted from
chemicals which were labelled unknown when processed together
with the others (rule-set 5). For details see ‘‘The SARpy fragments’’
section.

Not all the fragments listed in these five rule-sets can always be
assigned to an unambiguous mode of action. Finally, in the third
step, we grouped some fragments on the basis of their inherent
chemical meaning. In this case we manually added more general
rules, partly as a generalization of the fragments extracted using
SARpy and partly as formulated by experts. The rules are expressed
as SMARTS, which are an extension of SMILES notation including,
for instance, wildcards characters. Considering both the general-
ized and expert-knowledge based fragments, four new fragments
were added in rule-sets 6 and 7. For details see ‘‘The expert-based
fragments’’ section. These rules made the model more general and
consequently more able to correctly classify new compounds. The
seven rule-sets are reported in the ‘‘Supporting Information B’’.

On the basis of the chemical and statistical meaning of each of
the seven rule-sets, we built a decision tree (Fig. 2) illustrating the
workflow of the final model. Fragments related to non-ready

biodegradability are initially checked; if some are found in rules-
set 1, the compound is predicted as NRB: if only fragments from
rule-sets 2 or 6 (but not 1) are found it is predicted as possible
NRB. Thus, also a degree of reliability is provided, coming from
the statistical quality of the fragments found. If no fragments re-
lated to non-biodegradability are found, but there are some related
to biodegradability, a similar prediction is provided: RB (if frag-
ments from set 3 are found) or possible RB (if only fragments from
sets 4, 5 or 7 are found). If no matching fragments are found at all,
the compound is considered non-predictable (not assignable).

The overall model is conservative, and if conflicting fragments
are present the prediction is for non-ready biodegradability. The
logic of the model comes directly from chemical reasoning: a sub-
stance is always considered non-biodegradable if at least one frag-
ment related to non-biodegradability is found, even if there are
easily biodegradable fragments too, because this means that part
of the compound is anyway persistent.

3.2. The SARpy fragments

As mentioned, four rule-sets were extracted with SARpy (using
the settings reported in the ‘‘Supporting Information A’’). For each
fragment we took into account the number of TPs (correctly pre-
dicted as active) and False Positives (FP, wrongly predicted as ac-
tive), considering as matched compounds only those matched
first by the fragment under examination (e.g. if a compound was
matched for instance by fragments 2 and 16, we considered it
matched only by fragment 2). We removed the fragments that

Fig. 1. The procedure for generating the model. (N)RBs and (N)RBb stand for (N)RB specific (s) and balanced (b) fragments respectively.
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did not reach an arbitrary threshold of 70% of well predicted com-
pounds out of the total. Then, we removed fragments with likeli-
hood ratio (as calculated by SARpy) less than 2, as the ratio of
active/inactive compounds was too low.

SARpy was used again to process the 154 compounds which had
no matching fragment. We extracted two new rule-sets (one for
NRB and one for RB) (see ‘‘Supporting Information A’’ for setting).
The fragments were analysed with the same procedure explained
above. We selected fragments that could be used to classify some
of the 154 compounds, with a low (below 30%) percentage of errors
in the remaining compounds, and added them to the original rule-
sets. We added six fragments related to ready biodegradability
(rule-set 5), while no fragments related to non-ready biodegrad-
ability passed the check.

3.3. The expert-based fragments

As SARpy builds rule-sets on a statistical basis, the last step in-
volved human expertise. The remaining compounds were analysed
and some new expert-based fragments were extracted. Each new
fragment was verified, studying the literature to check whether
there was any general behaviour (i.e. to see why it was statistically
related to a positive or a negative activity). This analysis showed
that some fragments could be grouped and expressed in a more
generic form on the basis of their common chemical meaning.
We produced two sets of new rules (rule-set 6 for ready biodegrad-
ability and rule-set 7 for non-ready biodegradability) mostly writ-
ten as SMARTS (SMiles Arbitrary Target Specification) strings
(http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html)
which describe the chemical structure in a more general way.

The first fragment (rule-set 6) is the double bond nitrogen-
nitrogen (azo group). This bond is related to a low biodegradation
rate. The azo group is mainly present in azo dyes and there is am-
ple literature about the biodegradation of single dyes. In general
the group is reported in the literature as non-readily degradable
under natural conditions (Rajaguru et al., 2000). Indeed, the initial

step of the biodegradation of azo dyes is cleavage of the azo group.
This reaction is catalyzed by the enzyme azoreductase, which is
inhibited by molecular oxygen (Sandhya et al., 2005). Since in this
study we considered aerobic biodegradation (through the modified
MITI-I test), it is reasonable to consider this group as a NRB frag-
ment. The azo group is also included in the list of persistent func-
tional groups of the Canadian Guidance Manual (2003).

The second fragment (rule-set 6) comprised all compounds con-
taining halogen atoms (chlorine, bromine, fluorine and iodine). As
several fragments of this type are present in the first two rule-sets
(non-biodegradable, specific and balanced), we tried to find out
how the halogens influenced biodegradability beyond the particu-
lar fragments found. All these halogenated fragments could be
summarized in a more general rule, with a clearer chemical sense:
chemicals containing a halogen-substituted ring structure. Indeed,
the presence of halogenated organic compounds in the environ-
ment in significant quantities is the result of human activities over
the past 50 years or so. As a result the enzymes that have evolved
to metabolize these compounds are considered to be in a relatively
early stage of development (Allpress and Gowland, 1998). The ini-
tial conversion of non-toxic compounds yields toxic products (e.g.
the monooxygenase-catalyzed oxidations of xenobiotics per-
formed by various microorganisms) (Van Hylckama Vlieg et al.,
2000). Halogenated compounds are included in the list of persis-
tent compounds of the Canadian Guidance Manual (2003) like:
aromatic-I, aromatic-F, aromatic-Cl, aliphatic-Cl, aliphatic-Br, tri-
fluoromethyl group –CF3, two halogen substitutions on un-
branched, non-cyclic and one or more halogen substitutions on
branched, non-cyclic or cyclic chemicals. Some of the Canadian
rules for halogenated compounds overlap ours (both extracted
with SARpy and expert-based).

The third fragment (rule-set 7) comprises aromatic aldehydes
(defined as a carbonyl group linked to any aromatic ring) which
is linked to ready biodegradability. Several species of bacteria oxi-
dize aromatic aldehydes to aromatic acids (Crawford et al., 1982).
A broad range of peripheral reactions convert a huge variety of

Fig. 2. The model tree. It shows how a compound is classified on the basis of the fragments found.

A. Lombardo et al. / Chemosphere 108 (2014) 10–16 13
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aromatic compounds into a restricted set of central intermediates,
which are subject to ring-cleavage and subsequent funnelling into
the Krebs cycle (Pérez-Pantoja et al., 2004). For supporting the
decision to include aromatic aldehydes in the list of fragments
linked to ready biodegradability in the model presented here, the
Canadian Guidance Manual (2003) considers both aromatic alde-
hydes and acids as easily biodegradable.

The fourth expert-based fragment (rule-set 7) is the nitrile
group which is also included in the Canadian Guidance Manual list
with easily biodegraded structural features (2003). Nitriles are
readily biodegraded by several strains of bacteria (common in sew-
age sludge, natural water and soil), fungi and plants under aerobic
conditions (Ebbs, 2004; Bhalla et al., 2012).

3.4. Results with the model

The model gave good statistical performance. The accuracy (i.e.
the correctly predicted compounds), the sensitivity (percentage of
correctly predicted NRB compounds), specificity (percentage of

correctly predicted RB compounds) and the Matthews Correlation
Coefficient (MCC, Matthews, 1975) (Table 1) were calculated con-
sidering the possible NRB or RB output values for the RB or NRB
classes respectively. We did not consider the unknown compounds
for this general evaluation since they are like non-predicted values.
Table 1 also lists the numbers of correctly and wrongly predicted
compounds. FP are the ones wrongly predicted as RB, FN those
wrongly predicted as NRB; TP are those correctly predicted as RB
and True Negatives (TN) the ones correctly predicted as NRB. These
results are comparable with other classifiers such as BIOWIN 5 and
6 (Tunkel et al., 2000), built to estimate the modified MITI-I test for
ready biodegradability (Table 1).

Figs. 3–5 show details of the performance of the model. The dis-
tribution of the experimentally RB and NRB compounds in the five
predicted classes for each set (Fig. 3) gives few wrongly predicted
compounds considering the NRB and possible NRB predicted clas-
ses. For the compounds predicted as RB and possible RB, there
were several errors in prediction for the external set (about 50%),
mainly in the possible RB predictions. A possible explanation,

Table 1
Performance of the SARpy model for ready biodegradability for the training, test, test and external in AD sets. The statistics published (Tunkel et al., 2000) for BIOWIN 5 and 6
(both training and test sets) are reported, so they are not the same training and tests set used in this work.

Training set Test set External set External set in AD BIOWIN 5 (training) BIOWIN 5 (test) BIOWIN 6 (training) BIOWIN 6 (test)

No. of compounds 582 146 874 491 – – – –
No. of TN 228 50 385 249 – – – –
No. of TP 221 48 173 147 – – – –
No. of FN 12 7 34 15 – – – –
No. of FP 26 15 142 80 – – – –
No. of unknown 95 26 140 – – – – –
Accuracy % 92.2 81.7 76.0 80.7 82.2 81.4 82.7 80.7
Sensitivity % 94.8 87.3 73.1 75.6 – – – –
Specificity % 89.8 76.9 83.6 90.7 – – – –
MCC 0.85 0.64 0.51 0.63 – – – –

Fig. 3. Percentages of compounds (calculated on the entire set, i.e. including the compounds predicted as ‘‘not assignable’’) experimentally RB and NRB for each class of
prediction for the three sets.

14 A. Lombardo et al. / Chemosphere 108 (2014) 10–16
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taking into consideration the good general performance of the
model on the external set, is the unbalanced distribution of the
dataset: more than the 70% of the compounds are NRB (both the
training and the test set had 52% of NRB compounds).

Fig. 4 shows the distribution of the five predicted classes for the
experimentally RB and NRB compounds. Apart from the small loss
of performance passing from the training set to test set or external
set, which is normal performance was comparable for each set of
compounds. For both RB and NRB compounds, the errors were
mostly among the compounds predicted as possible (N)RB. Thus,
the predictions can be considered more reliable if the label ‘‘possi-
ble’’ does not appear, which is reasonable.

Considering separately the sets of RB and NRB compounds, the
percentages of correctly predicted, wrongly predicted and not
assignable compounds are shown in Fig. 5. There is an increase

in the errors for the external set, but they remain comparable to
those in the training and test sets. There were 176 wrongly pre-
dicted compounds: 20 (11% of the total) NRB compounds were pre-
dicted as RB, 122 (69%) NRB as possible RB, 24 (14%) RB as NRB and
10 (6%) RB as possible NRB. So the errors among NRB compounds
were mainly due to possible RB fragments.

A detailed output (like the indication of ‘‘possible’’ compounds)
gives the user more useful information for analysing and under-
standing the prediction, thus making it more valuable than the
net statistics. The majority of the errors, involved the balanced
fragments, but as they gave a prediction of possible ready (or
non-ready) biodegradability, they illustrate the uncertainty of the
predicted value.

The percentage of NRB compounds correctly predicted (‘‘NRB’’
and ‘‘possible NRB’’) was high (75.2% for the training set, 64.9%

Fig. 4. Percentages of compounds (calculated on the entire set, i.e. including the compounds predicted as ‘‘not assignable’’) for each predicted class that are experimentally RB
and NRB for the three sets.

Fig. 5. Percentages of compounds (calculated on the entire set, i.e. including the compounds predicted as ‘‘not assignable’’) correctly predicted, wrongly predicted or
predicted as not assignable for experimentally NRB and RB compounds for each set.

A. Lombardo et al. / Chemosphere 108 (2014) 10–16 15
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for the test set and 60.7% for the external set). This was slightly
higher for the correctly predicted RB compounds: 79.2% for the
training set, 69.6% for the test set and 72.1% for the external set

These percentages were calculated including the compounds
predicted as not assignable, to give the real distribution of the
classes.

For this model, which is available on the VEGA web site (http://
www.vega-qsar.eu/index.php), an Applicability Domain (AD) is
available as explained in (Pizzo et al., 2013). The AD evaluates
the prediction, assigning a reliability score. If we consider chemi-
cals with a high AD value (greater than 0.65, that indicates a more
reliable prediction), the performance of the 491 compounds of the
external set that are inside the AD increases (see Table 1).

The model is a combination of computer modeling and human
skill. The first is used to make certain chemical features related to
the property of interest more transparent. Recursive use of the
model improved the extraction of knowledge from the data, estab-
lishing a dialogue between the computer and the human experts.
The computer program can give the expert valuable facilitating
data analysis. The information extracted from the data was care-
fully evaluated by the human expert, who smoothed certain rules
linked inevitably to the specific data. Generalization was done
using expert knowledge based on the chemistry and the environ-
mental sciences. SARpy proved to be efficient and helpful. The
model supports the user in assessing the prediction, because frag-
ments with lower accuracy classify the compounds as possible (N)
RB. It can therefore be used for regulatory purposes, particularly in
Europe (i.e. for REACH), USA, Japan and Canada where a ready bio-
degradability assessment is required for registration of a com-
pound. It also fulfills the OECD principles: it is scientifically valid
since it was tested on new data sets (the test and external sets),
and it has a well-defined AD when used through the VEGA plat-
form, because this platform implements and combines several
ways to define the AD.
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