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Abstract: The aim of this review is description of the logic and evolution of optimal descriptors OCWLGI calculated 

with the molecular graph and the demonstration of their ability as tools for the modeling of biological and 

physicochemical parameters of chemical compounds. The ability of optimal descriptors calculated with hydrogen 

suppressed graph (HSG), hydrogen filled graph (HFG) and graph of atomic orbitals (GAO) is demonstrated as a collection 

of quantitative structure-property relationships (QSPR) and quantitative structure-activity relationships (QSAR) for 

properties and endpoints available from the literature. The Monte Carlo method optimization of the correlation weights of 

local and global invariants (OCWLGI) of molecular graphs is used as the principle for building up descriptors which are 

discussed in this article. The statistical quality of the QSPR and QSAR models for physicochemical and biological 

properties which were obtained with the optimal descriptors are reasonably high. 

Keywords: Global invariant, local invariant, Monte Carlo method, optimization of correlation weights of local and global 
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INTRODUCTION 

 Many quantitative structure-property relationships (QSPR) 
and quantitative structure-activity relationships (QSAR) models 
are influenced by the work of Wiener on molecular graphs, 
topological indices and prediction of physicochemical 
properties [1-4]. The main idea of these studies is the use of 
molecular graphs, molecular matrices and topological indices 
that may be correlated with biological and physicochemical 
properties of organic compounds. Starting in the 1980’s, the 
number of topological indices conceptually related to the 
Wiener number started to increase [5-14]. Most of these 
descriptors or indices were based on two matrices, namely the 
adjacency matrix and the distance matrix. Consider the 
molecular graph of 2-methyl butane, with the vertex labelling as 
shown in Fig. (1). 

 

 

 

 
Fig. (1). The molecular graph of 2-methyl butane (CAS 78-78-4). 

 The adjacency matrix A(G) and the distance matrix D(G) 
of 2-methyl butane are: 

  A(G)   D(G) 

1 2 3 4 5
1 0 1 0 0 0
2 1 0 1 0 1
3 0 1 0 1 0
4 0 0 1 0 0
5 0 1 0 0 0

1 2 3 4 5
0 1 2 3 2
1 0 1 2 1
2 1 0 1 2
3 2 1 0 3
2 1 2 3 0
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 Although the topological indices that may be computed 
for chemical structures are diverse [15], the main principles 
in developing topological indices can be illustrated with the 
Wiener number (W) and connectivity indices of zero-order 
(

0
 ) and first-order (

1
), which is also known as the Randi  

index [8,12-15]. For example, these topological indices for 
2-methyl butane (Fig. 1) are calculated with the formulae: 

W = (1 / 2) dij = (1 / 2)(0 +1+ 2 + 3+ 2 +

1+ 0 +1+ 2 +1+ 2 +1+ 0 +1+ 2 +

3+ 2 +1+ 0 + 3+ 2 +1+ 2 + 3+ 0) = 18

 (1) 

0
= i

1/2
= 1

1/2
+ 2

1/2
+ 3

1/2
+ 4

1/2
+ 5

1/2
=

= (1) 1/2 + (3) 1/2 + (2) 1/2 + (1) 1/2 + (1) 1/2 =

1+ 0.577 + 0.707 +1+1 = 4.284

 (2) 

1
= i j

1/2
= ( 1 2 )

1/2
+ ( 2 3 )

1/2
+ ( 3 4 )

1/2
+ ( 2 5 )

1/2
=

= (1 3) 1/2 + (3 2) 1/2 + (2 1) 1/2 + (3 1) 1/2 =

0.577 + 0.408 + 0.707 + 0.577 = 2.269

 (3) 

where i
 
is the vertex degree equal to the sum of the elements 

of the adjacency matrix in a row, and dij is the element of the 
D(G) matrix. Detailed information on other structural 
descriptors applied in the last years to develop QSPR and 
QSAR models may be found in [15, 16]. Some topics related 
to the investigation of the topological indices are related to 
their definition. For instance, why the exponent for the 
vertex degree in Eq. (2) and Eq. (3) have been selected as –
1/2, and not another value? Indeed, the QSAR analysis of 
several molecular properties [17] has shown that in most 
cases the optimal value of the degree, in models based on 
descriptors similar to the Eq.(2) or Eq. (3), is different from -
1/2. 

 QSPR and QSAR studies [18-21] have shown that the 
correction of the adjacency matrix (e.g. ethyl isopropyl 

1875-6697/13 $58.00+.00 © 2013 Bentham Science Publishers



OCWLGI Descriptors: Theory and Praxis Current Computer-Aided Drug Design, 2013, Vol. 9, No. 2      227 

sulphide, CAS 5145-99-3, Fig. 2) by means of replacing the 
zero values on the diagonal of the adjacency matrix with 
special selected coefficients x and y (Fig. 3) may produce 
considerable improvement of correlation between the 
connectivity indices (

0
 and 

1
) and various properties. 

 

 

 

 

Fig. (2). The hydrogen-suppressed graph (HSG) of ethyl isopropyl 

sulfide (CAS 5145-99-3). 

ADJACENCY MATRIX 

1 2 3 4 5 6
1 0 1 0 0 0 0
2 1 0 1 0 0 1
3 0 1 0 1 0 0
4 0 0 1 0 1 0
5 0 0 0 1 0 0
6 0 1 0 0 0 0

i

1
3
2
2
1
1

 

MODIFIED ADJACENCY MATRIX 

1 2 3 4 5 6
1 x 1 0 0 0 0
2 1 x 1 0 0 1
3 0 1 y 1 0 0

4 0 0 1 x 1 0
5 0 0 0 1 x 0
6 0 1 0 0 0 x

i

1+ x
3+ x
2 + y

2 + x
1+ x
1+ x

 

 It has to be noted that by adding these parameters on the 
diagonal of the adjacency matrix, the calculated values for i 
are also modified. Similar modifications have been carried 
out for the graph distance matrix [22], and the result was a 
significant improvement of the QSPR models. These 
descriptors have been named “variable” or “flexible”, 
however, we will use the term “optimal descriptors”, because 
descriptors which are discussed here are calculated by means 
of the Monte Carlo method optimization. All these optimal 
descriptors [18-22] have been computed from the hydrogen–
suppressed molecular graph. 

CONSTRUCTION OF OPTIMAL DESCRIPTORS 

 The first optimal descriptor, based on the hydrogen-
suppressed graph, has been suggested by Randi  [23, 24]. 
The main idea of the approach was to use diagonal entries of 
the adjacency matrix to consider the influence of 
heteroatoms, similarly to the well known generalization of 
the Hückel molecular orbitals method [23]. 

 The optimal descriptors have been successfully used for 
the QSPR modeling of aliphatic alcohols [25], nitrogen-
containing compounds [26], and sulfides [27]. Later on, 

optimal descriptors based on the hydrogen-filled graph have 
been suggested [28]. 

 The optimization target may be the standard error of 
estimation (s) [23-27] (i.e. searching for minimum of s), or 
the correlation coefficient (r) [28, 29] (i.e. searching for 
maximum of r), and by comparing the results obtained with 
these target functions it has been shown that the 
maximization of correlation coefficient gave models with 
better statistical quality [29]. 

OPTIMAL DESCRIPTORS BASED ON HSG AND 
HFG 

 As an example of the general scheme based on the 
hydrogen-suppressed graphs we consider ethyl isopropyl 
sulfide (Fig. 2). Accordingly to [30], the use of x=+0.25 and 
y=-0.95 in the calculation of the optimal connectivity index

 

1
 (x,y) for the correlation with normal boiling points of 21 

sulfides gave the more accurate model in comparison with 
the standard formula with fixed coefficients 

1
 (0,0). 

 An optimal descriptor is a modification of fixed 
coefficients (e.g., vertex degree, path of length 2, etc.), in the 
calculation of a “classic” topological index. This 
modification is made by using parameters that improve the 
statistical indices of the QSPR and QSAR models. In other 
words, each descriptor is a mathematical function of the 
representation of the molecular structure (MSR). Any MSR 
contains molecular invariants (MI), which define the 
molecular individuality. An MSR can be represented by 

D = F(MSR) = F(MI1,MI2 , ...,MIm )   (4) 

where MIk is the k-th molecular invariant (k = 1, …, m, 
where m is the total number of molecular invariants in the 
molecule). The descriptor that is calculated with Eq. (4) is 
the fixed version which is similar to descriptors calculated 
with Eq.(1), Eq.(2), and Eq.(3). 

 Formula (4) can be modified by replacing the fixed 
components MIk with flexible ones CW(MIk): 

D = F(MSR) = F(CW (MI1 ),CW (MI2 ), ...,CW (MIm )   (5) 

where CW(MIk) is the correlation weight of the k-th 
molecular invariant. The descriptor D calculated with Eq. (5) 
is a flexible version of the descriptor calculated with Eq. (4). 
The correlation weights CW(MIk) are numerical coefficients 
used in the calculation with Eq.(5). 

 The correlation coefficient between a descriptor 
calculated with Eq. (5) and the property/activity (PA) of 
interest is also a mathematical function of the CWs, 

R(PA,D) = R[PA,F(CW (MI1 ),CW (MI2 ), ...,CW (MIm )   (6) 

where R(PA,D) is the correlation coefficient between the PA 
and D, calculated with Eq. (5). 

 The optimization of the parameters CW*
(MI1), CW*

(MI2), 
… CW*

(MIm) is performed with the Monte Carlo method, 
which results in a maximum value for the R(PA,D) for the 
training set of compounds. The predictive ability of the 
model can be tested with an external set of compounds. 

 As a possible extension of the scheme based on the Eq. 
(6), these correlation weights can be calculated not only for 
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numerical invariant of a molecular graph such as vertex 
degrees [28], extended connectivity of increasing orders 
[31], paths of length 2 and 3 [9], valence shells of increasing 
orders [9], but also for non-numerical features of a molecular 
structure, such as presence of different atoms, 
presence/absence of different cycles, and so on. The 
optimization of correlation weights of the local and global 
graph invariants (OCWLGI) is the basic principle of building 
up optimal descriptors considered in this article. Thus, these 
descriptors can be named OCWLGI descriptors. 

 Owing to this possibility (involving of local and global 
invariants in the modeling) one can estimate a measure of the 
influence for a given molecular attribute (invariant of 
molecular graph) on the property/activity of interest, that can 
be used as a hint on the study of mechanism related to the 
phenomena (property/activity) under consideration. 

 A comparison of the hydrogen-suppressed graph based 
and the hydrogen-filled graph (HFG) based optimal 
descriptors has been carried out [32]. It has been shown that 
the optimal descriptor based on the hydrogen-filled graph 
gave better models for the normal boiling points of alkyl 
alcohols. 

OCWLGI DESCRIPTORS BASED ON GAO 

 The graph of atomic orbitals (GAO) is an attempt to take 
into account the structure of atoms in QSPR/QSAR analysis 
[31-37]. The conversion of the hydrogen filled graph into 
GAO can be carried out by the scheme: 

1. Each vertex of the hydrogen filled graph is replaced by 
the group of atomic orbitals. Such groups of the atomic 
orbitals are listed in Table 1. 

2. Elements of the adjacency matrix of the graph of atomic 
orbitals are defined as 

aij =

1, if
i th and j th GAO vertices

fall in different atoms in

HFG and these atoms have joint

edge in HFG

0, otherwise

  

 The groups of atomic orbitals for some chemical 
elements are listed in Table 1. 

 For a training set of graphs of atomic orbitals, one can 
carry out the same Monte Carlo optimization of correlation 
weights of the invariants using the same algorithms [31-38]. 
However, the models based on the HSG or HFG and GAO-
based model are different. For the same list of compounds 
the number of different vertexes as well as vertex degree 
values for the GAO representation is larger. This approach 
improves the statistical quality of a model (calculated with 
the optimal descriptors) for the training set, but the statistical 
quality for the external test set can be poor [31]. 
Consequently, one should be careful with the GAO 
representation of chemical compounds, because it may lead  
to overtraining [31]. However, quite good GAO-based 
models are also possible [31-34]. 

Table 1. Groups of Atomic Orbitals, for Some Chemical 
Elements, Used in Constructing the Graph of 
Atomic Orbitals 

 

Chemical Elements  Group of Atomic Orbitals 

H  1s1  

C  1s2, 2s2, 2p2  

N  1s2, 2s2, 2p3  

O  1s2, 2s2, 2p4  

F  1s2, 2s2, 2p5  

P  1s2, 2s2, 2p6, 3s2, 3p3  

S  1s2, 2s2, 2p6, 3s2, 3p4  

Cl  1s2, 2s2, 2p6, 3s2, 3p5  

Br  1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4s2, 4p5  

 

 For the hydrogen-filled graph of nitrapyrin (CAS 1929-
82-4) with vertex numbering shown in Fig. (4), this 
conversion gives the GAO shown in Fig. (2). 

 

 

 

 

 

Fig. (3). The numbered HFG of nitrapyrin (CAS 1929-82-4). 

COLLECTION OF QSPR/QSAR BASED ON OCWLGI 
DESCRIPTORS 

 The QSPR/QSAR models in this study are characterized 
by the number of compounds in a dataset (n); the square of 
correlation coefficient (r2

); standard error of estimation (s); 
and Fischer F-ratio. The generalized form of the optimal 
descriptor is the following: 

DCW = CW (G) + { CW ( Ak ) + W (VIk )
k=1

N

k=1

N

}   (7) 

where N is the number of vertex in molecular graph, i.e. the 
number of atoms in the case of HSG (Fig. 2) and HFG (Fig. 
4) and the number of AO in the case of GAO (Fig. 5); 
CW(Ak) is the correlation weight of chemical element (or AO 
in the case of the GAO) which is an image of the k-th vertex; 
CW(VIk) is the correlation weight of the invariant of k-th 
vertex such as vertex degree, Morgan extended connectivity 
[31, 38], valence shells [9, 47], the number of paths of length 
2 or 3 [47]; CW(G) is the correlation weight of a global 
invariant of the molecular graph, such as the number of 
cycles [7, 47], hydrogen bond indices [39], etc. As an 
alternative to the additive scheme for optimal descriptor (i.e. 
Eq. 7), the multiplicative scheme [31] can be used. Table 2 
contains a collection of QSPR/QSAR models which were 
built up with OCWLGI descriptors. 
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DISCUSSION 

 The model for normal boiling points [48] (developed 
with the same chemical compounds as for Model 7, Table 2) 
is characterized by n = 134, r2

 = 0.9886, s = 2.86 
o
C, F = 

3770. Thus, the statistical characteristics for the Model 7 are 
better. The statistical indices of the best QSPR for molar heat 
capacity (at 300

o
K) [48] are n = 134, r2

 = 0.9771, s = 3.89 
J

.
K

-1
 mol

-1
, F = 1848. The statistical characteristics of the 

Model 8 are better (Table 2). The best QSPR for standard 
Gibbs energy of formation in the gas phase at 300

o
K has n = 

134, r2
 = 0.9172, s = 4.29 kJ/mol, F = 480 [48]. The 

statistical quality of the Model 9 is better. The best model for 
alkane vaporization enthalpy at 300

o
K is characterized by n 

= 134, r2
 = 0.9801, s = 0.61 kJ/mol, F = 2138 [48]. The 

statistical quality of the Model 10 is better. The best QSPR 
for refractive index nD

25
 [48] is characterized by n = 134, r2

 
= 0.9683, s = 0.0025, F = 1309. The statistical quality of the 
Model 11 is better. Finally, the statistical quality of the best 
model for alkane density is n = 134, r2

 = 0.9805, s = 3.73 
kg/m

3
, F = 2156 [48]. The statistical quality of the Model 12 

is better. It is to be noted, that in ref. [48] the external test set 
is absent. 

 A QSAR analysis based on the quantum chemical 
descriptors for 57 anti-HIV-1 agents of tetrahydro-
imidazo[4,5,l-jk][1,4]-benzodiazepin-2-(1H)-one (TIBO) 
derivatives together with 1-[(2-hydroxyethoxy)methyl]-6-
(phenylthio)thymine (HEPT) derivatives is presented. The 
QSAR model for TIBO derivatives has r2

 = 0.8649, s = 
0.597 [49], and the statistical quality of the QSAR model for 
HEPT derivatives is r2

 = 0.9063, s = 0.371. The Model 15 is 
related to both TIBO and HEPT derivatives. The model is 
checked with the external test dataset. Thus, the statistical 
quality of Model 15 and statistical quality of models from 
ref. [49] should be considered as similar. 

 The statistical indices of the best model for the acute 
aquatic toxicity are n = 69, r2

 = 0.863, s = 0.30 [50]. The 
statistical characteristics for Model 19 are better. In 
conclusion, these comparisons with models for the same 
endpoints from the literature indicate that the optimal 
OCWLGI-descriptors can be useful for the QSPR/QSAR 
analyses. Finally, we note that there are several topological 
indices which can be translated into their OCWLGI type of 
molecular descriptors [54-61]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The numbered, accordingly HFG from Fig. (3), GAO of nitrapyrin. 
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Table 2. A Collection of QSPR/QSAR Based on the OCWLGI-Descriptors 
 

No. Description Statistical Characteristics Refs. 

Physicochemical Parameters 

1 
QSPR models for normal boiling points of alkanes, alkylbenzenes, 

and polyaromatic hydrocarbons  

n = 70, r2 = 0.9988, s = 5.8° C, F = 57437 (training set) 

n = 70, r2 = 0.9985, s = 6.7° C, F = 45154 (test set) 
[38] 

2 
QSPR modelling of the constants of stability of 110 biometal M2+ 

complexes with -amino acids and phosphate derivatives of 
adenosine  

n = 55, r2 = 0.9843, s = 0.279, F = 3328 (Training set) 
n = 55, r2= 0.9935, s = 0.248, F = 4027 (Test set) 

[39] 

3 QSPR model of normal boiling points of alcohols  
n=29, r2=0.9906, s=2.9oC F=5733 (training set) 

n=29, r2=0.9896, s=3.0oC F=2595 (test set) 
[32] 

4 
QSPR model of normal boiling points of acyclic carbonyl 

compounds  
n = 100, r2 = 0.972, s = 6.12°C, F = 3464 (training set) 

n = 100, r2 = 0.975, s = 6.00°C, F = 3905 (test set) 
[40] 

5 
QSPR model of normal boiling points of normal boiling points of 

haloalkanes (GAO) 
n = 138, r2 = 0.9841, s = 9.80°C, F = 3464 (training set) 

n = 138, r2 = 0.9854, s = 7.39°C, F = 3905 (test set) 
[35] 

6 

The challenged study involved predictions of normal boiling points for 
organic molecules of varied composition. These molecules included 

species with both linear and cyclic structures, comprise ketones, esters, 
aldehydes, nitriles, amines, alcohols, and hydrocarbons and a wide variety 

of atoms, such as C, H, O, N, Si, Cl, Br, F, P, and S 

n = 126, r2 = 0.9279, s = 33.3°C, F = 1599 (training set); 
n = 32, r2= 0.8819, s = 39.1°C, F = 224 (test set) 

[41] 

7 
The short list of additional examples relevant to this review includes: 

Normal boiling points of alkanes 
n = 67, r2 = 0.9984, s = 1.126°C, F = 39180 (training set); 

n = 67, r2 = 0.9910, s = 2.553°C, F = 7118 (test set) 
[31] 

8 Molar heat capacity at 300 K (J/(K mol)) of alkanes 
n = 67, r2 = 0.9892, s = 2.790, F = 5869 (training set); 

n = 67, r2 = 0.9902, s = 2.442, F = 6607 (test set) 
[31] 

9 
Standard Gibbs energy of formation in the gas state at 300 K 

(kJ/mol) of alkanes 
n = 67, r2 = 0.9884, s = 1.804, F = 5465 (training set); 

n = 67, r2 = 0.9803, s = 1.791, F = 3224 (test set) 
[31] 

10 Vaporization enthalpy at 300 K (kJ/mol) of alkanes 
n = 67, r2 = 0.9884, s = 0.471, F = 5428 (training set); 

n = 67, r2 = 0.9858, s = 0.537, F = 4529 (test set) 
[31] 

11 Refractive index at 25oC of alkanes 
n = 67, r2 = 0.9735, s = 0.0024, F = 2385 (training set); 

n = 67, r2 = 0.9627, s = 0.0024, F = 1684 (test set) 
[31] 

12 Density (kg/m3) of alkanes 
n = 67, r2 = 0.9844, s = 3.602, F = 4036 (training set) 

n = 67, r2 = 0.9763, s = 3.790, F = 2680 (test set) 
[31] 

13 Flory-Huggins parameter for binary polymer-solvent mixtures 
n = 30, r2 = 0.9990, s = 0.028, F = 27537 (training set); 

n = 30, r2 = 0.9972, s = 0.053, F = 10294 (test set);  
[42] 

14 The intrinsic viscosity of polymers 
n = 17, r2 = 0.9130, s = 0.126 cm3/g, F = 157 (training set); 

n = 9, r2 = 0.9231, s = 0.143 cm3/g, F = 84 (test set).  
[42] 

Biological Activity  

15 Anti-HIV-1 activity TIBO and HEPT derivatives 
n = 37, r2 = 0.8688, s = 0.557, F = 232 (training set) 

n = 20, r2 = 0.8759, s = 0.588, F = 127 (test set) 
[43] 

16 
Toxicity, V. fischeri, log(1/IGC50), valence shells has been used as 

local graph invariant  
n = 45, r2 = 0.8299, s = 0.402, F = 210 (training set) 

n = 21, r2 = 0.8902, s = 0.339, F = 154 (test set) 
[44] 

17 
Toxicity to Tetrahymena pyriformis of heterogeneous set of benzene 

derivatives 
n = 157, r2 = 0.883, s = 0.27, F = 1170 (training set); 

n = 60, r2 = 0.863, s = 0.28, F = 372 (test set); 
[45] 

18 
The mutagenic activities of 95 heteroaromatic compounds in S. 

typhimurium TA98 S9, graph of atomic orbitals 

n = 47, r2 = 0.7637, s = 1.05, F = 145 (training set); 

n = 48, r2 = 0.7569, s = 0.86, F = 144 (test set) 
[34] 

19 
Aquatic toxicity, Pimephales promelas, log(1/LC50), Morgan 

extended connectivity is used as local graph invariant 
n = 44, r2 = 0.8982, s = 0.251, F = 371 (training set) 

n = 25, r2 = 0.9181, s = 0.234, F = 258 (test set) 
[46] 

20 
Acute toxicity LC50-96h to rainbow trout (Oncorhynchus mykiss) of 

274 organic pesticides 
n = 233, r2 = 0.7689, s = 0.75, F = 769 (training set) 

n = 41, r2 = 0.6421, s = 1.14, F = 70 (test set) 
[47] 

21 
Carcinogenic activity of methylated polycyclic aromatic 

hydrocarbons 
n=30, r2=0.8909, s=0.689 (training set) 

n=16, r2=0.9247, s=0.594 (test set) 
[51] 

22 Lipophilicity (logP) of 76 industrial chemicals 
n=36, r2=0.8857, s=0.500, F=279 (training set) 

n=36, r2=0.9251, s=0.382, F=414 (test set) 
[52] 

23 
The mutagenic activities of these compounds in S. typhimurium 

TA100 + S9 microsomal preparation are expressed in log of revertant 
per nonamole, ln R. 

n=36, r2=0.6446, s=0.861, F=62 (training set) 
n=37, r2=0.7843, s=0.616, F=142 (test set) 

[53] 
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CONCLUSIONS 

 The OCWLGI descriptors calculated from the molecular 
graph are a robust approach for the predictive modeling of 
physicochemical and biomedical properties. Our experience 
with the OCWLGI descriptors may be summarized in the 
following rules to obtained high quality QSPR and QSAR 
models: (1) complex molecular descriptors, such as the 
Morgan extended connectivity, or valence shells, may result 
in overfitting and poor prediction statistics; (2) the QSPR 
and QSAR models based on the OCWLGI descriptors should 
be validated by splitting the dataset into a training dataset 
and a test dataset, and then repeating several times this 
procedure; (3) infrequent structural descriptors computed 
from the molecular graph should be removed from the 
process of training a QSPR or QSAR model. The CORAL 
software (http://www.insilico.eu/coral/) is available for 
building up described models. 
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ABBREVIATIONS 

OCWLGI = Optimization of correlation weights of local  
   and global invariants of graph 

QSPR/QSAR = Quantitative structure-property/activity  
   relationships 

HFG = Hydrogen-filled graph 

HSG = Hydrogen-suppressed graph 

GAO = Graph of atomic orbitals 
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