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Neuro-Fuzzy Knowledge Representation for Toxicity 
Prediction of Organic Compounds 

Dan Neagu1, Emilio Benfenati2, Giuseppina Gini3, Paolo Mazzatorta2, Alessandra Roncaglioni2 

Abstract.   Models based on neural and neuro-fuzzy structures are 
developed to represent knowledge about a large data set containing 
chemical descriptors of organic compounds, commonly used in 
industrial processes. The neuro-fuzzy models here proposed 
include both, QSARs and original numerical values. The developed 
approaches use various techniques to insert knowledge by training, 
and to map rules in neuro-fuzzy structures. These possibilities are 
evaluated and we show that the combination of neuro-fuzzy 
models, and strategies to insert data in the developed connectionist 
structures, improve over individual models for toxicity prediction. 
 

1 INTRODUCTION 
We are becoming increasingly aware of the need to understand and 
predict the consequences of chemicals to human health and the 
environment. The huge number of compounds to be studied makes 
this especially challenging. In toxicity prediction there are many 
variables: the toxicological endpoint, the number of molecules in 
the data set, the homogeneity of the data set, the methods to 
describe the physico-chemical properties of the molecules, the 
computational algorithm to produce the statistical relationship, and 
the validation method. 
 The problem of describing the bio-chemical action of different 
classes of chemical compounds through relations dependent on 
their structures is known as the quantitative structure-activity 
relation (QSAR) problem. Until now, several research papers have 
been published, discussing the role that artificial intelligence (AI) 
tools could play in the problem of toxicity prediction and QSAR 
modeling. Adamczak and Duch [1] applied neural networks to 
analyze two QSAR series and to compare the results with other 
three AI-related approaches. A hybrid expert system approach was 
done by Gini [7], and applied to predict phytotoxicity. A study on 
the usage of fuzzy logic for descriptors modeling has been 
presented by Exner [5]. In all cases, the neural network approach of 
the toxicity prediction is restricted to crisp modeling of data. 
 In recent years, the neuro-fuzzy systems have drawn increasing 
research interest [3][6][12][13]. A special focus in neuro-fuzzy 
processing is to develop some universal computing models, easy 
customizing to meet wide subjects of particular specifications [10]. 
For this purpose, it is indispensable to identify generic-processing 
modules, performing general computations on fuzzy sets, and 
specific knowledge representation. In this paper, connectionist 
models based on the MAPI formal neuron [20] are proposed for  
knowledge representation for toxicity prediction. In section 2, the 
toxicity prediction problem, and the QSAR problem are 
emphasized, and some original developed models are presented. In 
section 3, aspects for data analysis are reviewed. 
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In section 4 is presented the neuro-fuzzy knowledge representation 
applied for toxicity prediction. The problem is modeled with NIKE 
(Neural explicit&Implicit Knowledge inference system), a hybrid 
intelligent system (developed by the first author), based on 
modular neural/ neuro-fuzzy networks [9][21]. The results show 
that, combining various models about the same problem will gain 
better predictions against toxicity (section 5). The paper is ending 
with conclusions and ideas on future work. 
 

2 DATA DESCRIPTION 
The U.S. Environmental Protection Agency [22] provided to build 
up a data set, starting from a revision of experimental data from 
literature, referred to acute toxicity 96 hours (LC50), for fathead 
minnow (Pimephales promelas). An accurate analysis of the 
experimental information will permit to associate besides a mode 
of toxic action (MOA) to each compound. The data set contains 
568 organic compounds, commonly used in industrial processes. 
This is a large set of compounds belonging to different chemical 
classes: a positive characteristic is the homogeneity and reliability 
of this toxicological data. A large number of descriptors was 
calculated by Istituto di Ricerche Farmacologiche "Mario Negri". 
 

2.1 Molecular descriptors 
A set of about 150 descriptors was examined. They were calculated 
by different software (Hyperchem 5.0-Hypercube Inc., USA, 
CODESSA 2.2.1-SemiChem Inc., USA, Pallas 2.1-CompuDrug, 
Hungary). The descriptors are classified (according to CODESSA 
[11][4][24]), in: constitutional descriptors (34), depending on the 
number and type of atoms, bonds and functional groups; 
geometrical descriptors (14), which give molecular surface area 
and volume, moments of inertia, shadow area, projections and 
gravitational indices; topological descriptors (38), which are 
molecular connectivity indices, related to the degree of branching 
in the compounds; electrostatic descriptors (57), such as partial 
atomic charges and others depending on the possibility for some 
sites in the molecule to form hydrogen bonds; quantum–chemicals 
descriptors (6), i.e. total energy of the molecule, the energies of the 
lowest unoccupied and highest occupied orbital (HOMO and 
LUMO), ionisation potentials, heat of formation, etc.; and 
hydrophobic descriptors (7), which are logP, logD, the expression 
of lipophilicity of the molecule at various pH. 
 A pre-processing phase is necessary to make a selection of the 
variables, to describe better the molecules. Some of these 
descriptors doesn’t add information, but increase the noise making 
more complex the result analysis. Furthermore using a relatively 
low number of variables the risk of overfitting is reduced. The 
descriptors selection was obtained by Principal Components 
Analysis (PCA) and Correlation Analysis techniques [24] (table 1). 
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2.2 The QSAR approach 
The quantitative structure-activity relationship method has been 
applied to chemical design and toxicity prediction tasks. Finding a 
QSAR is essentially a regression process and, historically, linear 
regression methods have been used. Some regression-based models 
results in exhibiting instability when trained with noisy data. 
 For the current set, three original QSAR equations were 
developed at Istituto “Mario Negri”, from a different number of 
descriptors, using the PLS (Partial Least Squares) algorithm. The 
variables were normalized using autoscaling procedure for PLS: 
data were centred and standard deviation made equal to 1. 
 Two models were obtained with five parameters (QSAR1, 2), 
while the third model is dependent on 2 descriptors (QSAR3): 

 
log(1/LC50) = 0.7919 + 0.09772*QM6 – 0.2045*C35 + 

0.1276*G2 – 0.3509*pH9 – 0.3879*logP 
 

log(1/LC50) = 0.8779 + 0.1385*QM6 – 0.06703*C35 – 
0.02937*T6 – 0.06165*G12 – 0.6854*logP 

 
log(1/LC50) = 0.8237 + 0.1711*QM6 – 0.7974*logP 

 

 
(1) 

 
 

(2) 
 
 

(3) 

 where logP is the octanol-water partition coefficient calculated 
with Pallas software, QM6 (LUMO) is the energy of the lowest 
unoccupied molecular orbital. LC50 is expressed in mmoles/l. 
 In figure 1 is reported the observed versus predicted values for 
LC50 relating to QSAR2, as generated by the specific software 
used. All the models identified a restricted number of 5 outliers 
that doesn’t satisfy the normal distribution required for residuals. 
Discharging these compounds, the performance increased reaching 
accuracy values (for an absolute error level of 0.1) around 70%. 
Large part of the compounds belong to reactive mode of action. 
 

3 DATA ANALYSIS 
Both, the input data set values and the output ones, were fuzzified 
with respect of the 568 organic compounds descriptors values. The 
input data set consists of the 17 descriptors (table 1), while the 
output is toxicity: log(1/LC50). 
 For fuzzy processing, the membership functions were 
considered to simplify the calculus and to reduce the number of 
input neurons: all the descriptors followed a trapezoidal 
fuzzification. The linguistic variables considered for descriptors, 
and for toxicity, are characterized by the term sets: 

 
{ } 17..1,,, == iHighMedLowDi  

 

{ }VeryHighHighMediumLowVeryLowLC ,,,,)50/1log( =  

 
(4) 

 
(5) 

 
 Five levels of toxicity are defined for the normalized 
log(1/LC50): VeryLow (0-0.2), Low (0.2-0.4), Medium (0.4-0.6), 
High (0.6-0.8), and VeryHigh (0.8-1). The membership functions 
shapes could be finally chosen from the list of: Bell, Gaussian, Pi, 
S, Z, Triangular, Trapezoidal, and Sigmoidal. 

3.1 Data preparation 
The whole set of available patterns was divided in two independent 
pattern subsets, each one having its own task in the model training 
and testing processes (table 2). A pattern is defined as a vector of 
values of the inputs (descriptors) and values of the output, toxicity. 
The training set was used for the adjustment of the connections of 
the neural and neuro-fuzzy networks with the backpropagation [21] 
(traingdx) algorithm. 

 

Figure 1. Observed versus predicted values (QSAR2). 

Table 1. The selected descriptors. 
DESCRIPTORS CODE 
Total Energy (kcal/mol) QM1 
Heat of Formation (kcal/mol) QM3 
LUMO (eV) QM6 
Relative number of N  atoms C9 
Relative number of single bonds C24 
Molecular weight C35 
Kier&Hall index (order 0) T6 
Average Information content (order 1) T22 
Moment of inertia B G2 
Molecular volume G10 
Molecular surface area G12 
TMSA Total molecular surface area E13 
FPSA-2 Fractional PPSA (PPSA-2/TMSA) E24 
PPSA-3 Atomic charge weighted PPSA E28 
FPSA-3 Fractional PPSA (PPSA-3/TMSA) E31 
logD pH9 pH9 
logP logP 

Table 2. The distribution of testing + training sets. 
Toxicity VeryLow Low Medium High VeryHigh 
Testing cases 15 66 72 12 2 
Training cases 35 156 173 34 3 
568  cases 50 222 245 46 5 
 
 The network training function traingdx updates weight and bias 
values according to gradient descent momentum and an adaptive 
learning rate. The same set was used for both, the trained neural 
and neuro-fuzzy networks. 
 The data set (568 compounds) was randomly divided, paying 
attention to conserve the distribution of the five fuzzy values of the 
output linguistic variable. The algorithm was a 70-30 partitioning, 
as it is used in the majority of comparative tests for predictive 
algorithms: 401 training cases and 167 testing cases (table 2). 
 

4 NEURO-FUZZY STRUCTURES FOR 
TOXICITY REPRESENTATION 

The proposed system, NIKE, automates the tasks involved in this 
process, from the data representation for toxicity measurements, to 
the prediction of toxicity for given new input. It also suggests how 
the fuzzy inference produced the result, when required [16][17]. 
 Consequently, we define the implicit knowledge as the 
knowledge represented by neural/ neuro-fuzzy networks, created 
and adapted by a learning algorithm. We define the explicit 
knowledge as a knowledge base represented by neural networks, 
which are computationally identical to the I/O relations set, and are 
created by mapping the given fuzzy rules into hybrid neural 
networks. 
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Table 3. Comparison of the accuracy prediction for neural/ neuro-fuzzy 
structures: the maximum absolute error. 
Toxicity QSAR3 CNN CNN* FNN FNN* 
VeryLow 0.2225 0.2425 0.2053 0.2133 0.2086 

Low 0.1704 0.1637 0.1662 0.1483 0.1612 
Medium 0.3023 0.3181 0.3343 0.2502 0.2551 

High 0.3659 0.4451 0.4359 0.4030 0.3496 
VeryHigh 0.2726 0.2713 0.2971 0.3258 0.3785 
CNN*, FNN*: pre-trained/retrained neural networks. 

Table 4. Comparison of the accuracy prediction for neural/ neuro-fuzzy 
structures: number of cases predicted with absolute error lower than 0.1 
Toxicity QSAR3 CNN CNN* FNN FNN* 
VeryLow 24 24 29 30 30 

Low 189 196 203 205 201 
Medium 210 200 198 212 219 

High 30 28 26 27 31 
VeryHigh 3 1 2 2 0 
CNN*, FNN*: pre-trained/retrained neural networks. 
 

  
(a) (b) 

Figure 2. Comparing FNN during the application of concept support 
technique: fuzzy inference result (real value 0.8436, FNN prediction 
0.76189 (a), FNN* prediction 0.72325 (b). 
 

  
(a) (b) 

Figure 3. Comparing FNN during the application of concept support 
technique: predicted versus observed values for FNN (a), and FNN* (b). 
 

4.1 The implicit knowledge representation 
The first module, called IKM-CNN (Implicit Knowledge Module-
based on Crisp Neural Networks), takes charge of modeling the 
data set as a multilayer perceptron (MLP) [21], for which a 
procedure of extracting an equivalent fuzzy rules system is added, 
based on the interactive fuzzy operators [2][16]. The MLP model is 
also used to compare the overall performance of the neurosymbolic 
system with neuro-fuzzy and QSAR approaches [18]. 
 The second module, called IKM-FNN (Implicit Knowledge 
Module-based on Fuzzy Neural Networks) is implemented as a 
multilayered neural structure with an input layer, establishing the 
inputs to perform the membership degrees of the current values, a 
fully connected three-layered FNN2 [6], and a defuzzification 
layer. The weights of the connections between layer 1 and layer 2 
are set to one. The linguistic variable Xi is described by mi fuzzy 
sets, Aij, having the degrees of membership performed by the 
functions µij(xi), j=1,2,...,mi, i=1,2,..,p., (in our case, on the 

descriptors and toxicity values). Since the layers 1 and 5 are used 
in the fuzzification process in the training and prediction steps, the 
layers 2-4 are organized as a feedforward network to represent the 
implicit rules through FNN training [6][8][10]. 
 Two steps were used to insert QSAR information in the implicit 
knowledge representation: This strategy follows an updated form 
of concept support techniques [19], viewing the method used to 
insert a priori knowledge [14]. The pre-training phase is based on a 
data collection generated by a selected QSAR function. Then the 
model is trained with the original data set. The specific results are 
compared below with the results coming from the normal training 
procedure, based on a random initialization of the weights of the 
neural networks. The neural and neuro-fuzzy networks resulted 
through QSAR insertion in a pre-training phase were retained for 
further combination of modules. The results in accuracy of 
prediction (tables 3 and 4) are similar, and better than QSARs. The 
method is based on inserting the given QSAR2 predictions, and 
learning the training samples. 
 For the prediction accuracy, error is calculated as the predicted 
value from the model minus the actual value, for all observations. 
The absolute value of each error was then taken. The maximum 
absolute error was calculated across all 568 observations for each 
fuzzy value of toxicity (table 3). A second measure to compare the 
models is determining how many of the 568 observations were 
high accurately predicted (absolute error less than 0.1), relative to 
the number of specific cases (table 4). A learning rate of 0.7 and a 
momentum term of 0.9 were used (a relatively high learning rate 
ensures rapid finding of the error function minimum, and a high 
momentum term prevents too many oscillations of the error 
function). The networks were trained up to 5000 epochs. The 
chosen structures were 23 hidden neurons for CNN, and 25 hidden 
neurons for FNN. 
 Since the results are moderately better, the pre-training method 
is suitable for modular networks in which the expert is interested to 
insert through the initialization of the start point of learning, some 
knowledge about the domains with an increased number of 
outliers. An example of the improving result of prediction 
inference (for a given test record) is given in figure 2, and the 
performance for trained FNN and FNN* is shown in figure 3. 
 

4.2 The explicit knowledge representation 
The capabilities of MAPI-based neural network to perform fuzzy 
computing [20] are used to implement the explicit knowledge 
module. The neural reasoning engine is accorded to multiple 
premises fuzzy rules using fuzzy connectives. 
 The extended version of Modus Ponens, proposed in [25]: 

 
IF X1 is A1 ^ ... ^ Xj is Aj THEN Y is B 

(X  1 is A'  1) ^ ... ^ (X j is A' j) 
Y is B' 

 

 
(6) 

 
 

was used to infer results from the developed structures, equivalent 
to the QSARs given above.  This process is performed in four 
steps: 1) Matching (the compatibility between A' and A), 2) 
Aggregation (based on triangular norm), 3) Projection: the 
compatibility of (Y is B') with (Y is B) is obtained as an 
aggregation function; 4) Inverse-Matching and Defuzzification, 
performed at the MAPI axonic terminals. Aggregation and 
projection are performed by generalized aggregative neurons, 
involving triangular norms or co-norms in Multi Purpose Neural 
Networks (MPNN) [3][6][20]. There are two different types of 
relations mapped in MPNNs: empirical fuzzy rules about the 
descriptors, and QSARs. 
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Figure 4. MAPI-based neuro-fuzzy network equivalent with the fuzzy Rule 1 (eq. 7) with two premises. 
 

4.3 Mapping Fuzzy Rules into MPNN 
The fuzzy rules are described as a discrete fuzzy rule-based system 
(DFRBS) [6][20], in order to be mapped in MPNNs. The intrinsic 
representation of explicit knowledge is based on MAPI fuzzy 
neurons. The numerical weights corresponding to the connections 
between neurons are computed using Combine Rules First Method 
or Fire Each Rule Method [3][6]. We used to insert a single fuzzy 
rule (Rule 1), an empirically developed relation between toxicity 
and two of the most important descriptors: logP and QM6: 

 

IF (QM6 is Low) AND (logP is High) 
THEN log(1/LC50) is Low 

 
(7) 

 

 
 The implementation of the explicit multi-premise rule (7) in the 
equivalent neuro-fuzzy network using MAPI neurons [15][17] with 
fuzzy abilities is shown in figure 4. The weights between input/ 
associative, respective associative/output neurons are processed 
according to [15][20]; the setting neurons Si, i=0,1,...,3*3, provide 
the synchronism H11<H3,1<H1,3<H3,3 ("<" means fires before). 
 For the cases requiring explicit QSAR forms, the approximators 
given by implicit knowledge modules, will be replaced, following 
the same mapping procedure as described above, by the explicit 
knowledge module implementing a first-order Sugeno fuzzy model 
[23]. The output of MPNN will be a single MAPI neuron, acting as 
an arithmetical device [20]. This mechanism permit the 
implementation of neuro-fuzzy modules, equivalent with QSARs. 

4.4 The integration of the developed structures: 
Fire Each Module Strategy 

Fire Each Module Strategy (FEM) strategy is the simplest mode to 
integrate IKM and EKM within the general context of fuzzy 
processing. A general form of this modular structure is proposed in 
[9] and shown in figure 5. After off-line training applied to implicit 
neuro-fuzzy module, the general output of the system is composed 
as a T-conorm [16][25] of fuzzy outputs of each module: the four-
layered IKM structure for global network and the EKM 
(implemented using combine rules first or fire each rule method). 
 The system is viewed as equivalent to a set of given fuzzy rules: 
the overall output is computed using firing (implicit and explicit) 
rules first method [3][6][17]. The method of combining the specific 
membership degrees provided by both, IKM and EKM structures, 
would be done by an aggregating operator, in particular the max 
fuzzy operator. In the hidden aggregative layer (AL), all the 

weights are set to one, and the neurons aggregate the computed 
membership degrees from the implicit, and explicit modules. In our 
case, the average of the outputs of all the modules is processed by 
AL+MAPI defuzzifier (figure 5). The final neuron is a MAPI 
device, which computes the crisp value of the output. 
 The final structure of the modules is based on the CNN* (the 
pre-trained version), FNN* (as implicit knowledge structures), and 
QSAR2 and QSAR3 (as explicit knowledge structures). The final 
output of the system (based on FEM strategy) is the averaged 
output of the modules. The overall results are depicted in table 5 
(the number of the well predicted cases, and the accuracy of 
prediction) and figures 6, 7. 

Figure 5. Integration of explicit and implicit knowledge modules in the 
global architecture of NIKE. 
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Figure 6. Observed versus predicted values for QSAR3, FNN*, CNN* and 
the averaging FEM combination. 

Table 5. General results for accuracy of prediction (absolute error <0.1). 
QSAR2 QSAR3 CNN CNN* FNN FNN* FEM 

447 456 449 458 476 481 507 
78.69% 80.28% 79.05% 80.63% 83.80% 84.68% 89.26% 
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Figure 7. The accuracy of toxicity prediction, by classes (fuzzy values). 

5 CONCLUSIONS 
Our study wants to contribute to the understanding of the 
possibilities to represent the knowledge about the toxicity of 
industrial organic compounds. The present approach represents an 
example of a hybrid system, combining artificial neural 
networks (ANN) and QSARs, on the basis of neuro-fuzzy 
modules implementation. The proposed neuro-fuzzy knowledge 
representation gives an encouraging alternative to the stochastic 
models. We proved these kinds of models are able to learn from 
sophisticated collections of descriptors about industrial organic 
compounds. In addition, they are capable of representing 
knowledge acquired from human experts in order to improve the 
prediction results. Another important feature of our model is its 
validation with a large test set, which shows a certain capability to 
generalize. 
 Classification of the toxicity correlated to the descriptors for 
organic compounds requires a high degree of experience from 
computational chemistry experts. Several approaches were 
described to generate suitable computer-based classifiers for these 
patterns. The described classifiers range from a QSAR to a neuro-
fuzzy system, through classical ANN architectures. The main 
problem regarding the symbolic approach is the difficulty of 
improvement and correlation analysis, due to the existence of 
limitations in knowledge elicitation, as this is a complex domain. 
Several implicit knowledge models with different number of 
neurons on the hidden layer were trained and analyzed. 
 The presented evaluation shows that neuro-fuzzy architectures 
can learn the describing patterns of organic compounds. Further, 
ANNs can be used to predict the behaviour of such chemicals, and 
to classify under a toxicity scale. The evaluation shows that these 
predictions are about 10% more accurate than those of the classical 
approaches. This offers the possibility of improving the 
performance of experts by using the neuro-fuzzy combined 
modules to guide and refine further decisions. 
 We also evaluated the use of ensembles of ANNs to improve on 
the error of an individual net on this task. Significant improvement 
was found, since explicit knowledge was inserted in the 
connectionist system. This suggests that the 568 training samples 
used in this study do not provide a best coverage of the problem 
domain, which is split in contiguous sub domains (since a good 
model, that does not overfit to training data, could be built with just 
one ANN. Future work will be carried out following the outlined 
new possibilities of neural and neuro-fuzzy integration of implicit 
knowledge with explicit QSARs into the hybrid system NIKE. 
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