
263

From Goals to Manipulator Programs

Maria Gini
Department of Computer Science, University of Minnesota,
Minneapolis, USA

Giuseppina Gini
Department of Electronics, Politecnico di Milano, Milano, Italy

We describe an approach to robot programming that sup-
ports task-oriented specifications of manipulation activities.
Plan formation and program generation techniques are used to
transform task specifications into executable programs for vari-
ous robots. The plan formation operates on a database of
knowledge about the world to produce the sequence of actions
needed to execute the task. The program generation transforms
the sequence of actions into an executable program using
knowledge about the robot and its control system,

Keywords: Robot programming, Automatic Programming, Plan
generation, Knowledge bases.

Maria L. Gini is an Assistant Professor
at the University of Minnesota, De-
partment of Computer Science, in
Minneapolis. She has been a Research
Associate at the Department of Elec-
tronics, School of Engineering, Poly-
technic of Milan, Italy and a Visiting
Research Associate at the Artificial In-
telligence Laboratory at Stanford Uni-
versity. Her research is in the field of
artificial intelligence and its applica-
tions to robotics. She is the author of
several publications on those subjects.

Giuseppina C. Gini is a Senior Research Associate at the
Department of Electronics, School of Engineering, at the Poly-
technic of Milan, Italy. Her current research focuses on pro-
gramming languages, artificial intelligence applications and as-
sembly automation. She is a member of the Group on Robot
Standardization of the European Economic Community and
was one of a group of experts that defined the goals for the
development of computer integrated manufacturing in the
ESPRIT (European Strategic Precompetitive Research in Infor-
mation Technology) program.

Partial support for this work is gratefully acknowledged to the
Microelectronic and Information Sciences Center at the Uni-
versity of Minnesota, to the Graduate School of the University
of Minnesota, and to the Italian National Council of Research.

North-Holland
Computers in Industry 7 (1986) 263-273

1. Introduction

Robo t s are t oday opera t ing on a wide var ie ty of
tasks such as ob jec t handl ing, pa in t ing , and weld-
ing. Even though assembly is still cons idered a
diff icul t a rea more and more robots are used in
manufac tu r ing for assembly tasks. New areas out-
side manufac tur ing , l ike exp lora t ion of unknow n
env i ronments and medica l appl ica t ions , are be ing
considered.

Al l these new deve lopment s raise crucial p rob -
lems. P r o g r a m m i n g robots , which was easy when
tasks were s imple l ike p ick and place, becomes an
i m p o r t a n t issue. Sensors p rov ide a huge amoun t of
po ten t i a l ly useful da t a that have to be in te rp re ted
to be of any use. C o m p u t e r p rog ramming , which
was nonexis ten t in the early stages of robot ics ,
becomes a centra l issue.

Manufac tu re r s of robots are p rov id ing robo t s
wi th p r o g r a m m i n g languages. A l though this repre-
sents an i m p o r t a n t achievement in indus t r ia l
robot ics , cur ren t ly avai lable languages are not easy
to use. The p r o g r a m m e r has to specify complex
sequences of movements , to mon i to r sensors dur-
ing the execut ion of the task, to synchronize ex-
pl ic i t ly di f ferent robo t s opera t ing in the same
work ing area.

P r o g r a m m i n g a compu te r con t ro l led robo t is
rea l ly di f ferent f rom p r o g r a m m i n g a compute r .
R o b o t p rog rams run in a wor ld that is incom-
p le te ly known and imperfec t ly model led . This re-
quires strategies to detect and prevent po ten t ia l
ca tas t rophes , l ike coll isions, and to recover f rom
errors. M a n y act ions are irreversible. Af te r the
a rm has crashed there is no way to undo the ac t ion
tha t p r o d u c e d the crash.

Ac t ions are not exact ly reproducib le , mak ing it
d i f f icul t to de tec t causes of errors and to fix them.

Cur ren t ly users mus t d e p e n d on their experi-
ence, in tui t ion, and c o m m o n sense to decide how
to wri te p rograms .

This p a p e r presen ts an a p p r o a c h to robo t p ro-
g r a m m i n g based on the au toma t i c genera t ion of
p r o g r a m s f rom task or ien ted specif icat ions. The
speci f ica t ions are given to the p lan fo rma t ion
m o d u l e tha t p roduces the p l an of act ions. The
p l a n is then t r ans fo rmed into a p r o g r a m b y the

264 Industrial Robotics in Discrete Manufacturing ~ ornputclw m lmtu~Ir~

program generation module.
We discuss in this paper both plan formation

and program generation. These two activities are
performed using a knowledge base that contains
knowledge about the arm (work area, arm model,
sensors), about different tasks (inserting, grasping,
fitting), about the programming language of the
robot (syntax and semantics), as well as geometric
knowledge about the objects involved.

This organization allows to capture part of the
experience that experienced programmers apply
when they develop new programs. We hope that it
will help also in obtaining a better understanding
of this process.

A preliminary system has been successfully im-
plemented to generate programs in a Basic-like
language for a cartesian robot without any sensor.
The knowledge base is small and only tasks related
to block movements have been programmed. Pro-
grams for the same tasks have been easily gener-
ated in a different robot language.

2. Programming Robots

Since computer controlled manipulators have
been introduced methods of controlling and of
programming them for new tasks have seen a great
deal of development [1,4,16,18].

Two completely different approaches to robot
programming have been considered in the past.

On one side within the Artificial Intelligence
community much research has been done on plan
formation systems to provide robots with autono-
mous reasoning capabilities [21]. None of these
systems have been used to control a real robot,
except STRIPS at SRI [9].

On the other side the need to control industrial
robots has pushed the development of simple but
effective methods for robot programming. More
complex systems have been designed over the years
to cope with increasing needs. None of them re-
quire the reasoning capabilities provided by plan-
ning systems.

We can simplify things by saying that Artificial
Intelligence researchers have taken a top-down
approach trying to solve the difficult problem of
reasoning and assuming that all the rest was easy.
The others have taken a bottom-up approach first
trying to control robots and only later realizing the

need for intelligence. A big gap still exists between
those two approaches.

The aim of this paper is to bridge this gap
trying to reconcile the exigencies that created this
situation. Before doing that we examine in more
details these two approaches.

2.1. Robot Programming Languages

Many of the existing industrial robots are ma-
chines capable only of simple motions. They con-
sist of a mechanical arm with a number of degrees
of freedom ranging from two to six. They have
little or no ability to sense conditions. These mach-
ines can simply execute a preprogrammed se-
quence of operations and can be trained to execute
different tasks.

A human operator, using a control box, can
program the robot by guiding the arm through the
desired sequence of positions. By pushing a button
for each position he may record the value of each
joint in the memory. Once the complete sequence
is stored, it can be played back over and over
again to accomplish the task in the production
environment. The control system has simply to
move each joint from one recorded value to the
next according to a preset timing cycle. Any user,
without specific training, can program the robot.

Teaching by guiding has been successful for
tasks where only simple operations or few posi-
tions are required. Where complex assemblies are
performed that method does not allow any change
or adjustment of the movements during the execu-
tion. The impossibility of expressing conditional
actions makes it impossible to use sensors. In the
case even small changes are made on the assembly
station the teaching has to be repeated. The lack of
a symbolic text makes it impossible to maintain,
document, and modify the robot program.

Programming languages have been designed to
overcome these difficulties. A main advantage is
that the robot becomes able to move its hand
using an external coordinate system instead of its
own joint angles. The user instead of specifying
joint angles can instruct the robot in work space
coordinates. The system will take care of convert-
ing positions and orientations into joint angles and
vice versa.

Writing programs for robots is not so easy as
one could think. Manipulation and assembly tasks
are hard to program mainly because it is difficult

Computers in Industry M. Gini, G. Gini / From Goals to Manipulator Programs 265

to visualize positions and orientations in three
dimensional space. Interactions with sensors are
hard to express because it is difficult to figure out
directions and values of forces.

Higher level languages have been designed over
the years. Among those AML [26], AL [41, AUTO-
PASS [14], PAL [241, RAPT [19], VAL [22], and
WAVE [17]. These languages reduce the amount
of details that programmers should consider, let-
ting them to concentrate on the most important
aspects.

Even those languages suffer from many draw-
backs that make it painful to write complex pro-
grams. Operations like inserting or fitting are dif-
ficult to express. They require long and complex
sequences of movements such as pushing the ob-
ject, rotating it, and pushing it again, while check-
ing forces to avoid jamming.

The specifications of forces to be used is a
tedious trial and error process. Learning from a
teach pendant is possible for position specifica-
tions, but comparable facilities are not available
for forces and torques.

Errors are difficult to identify.The real world is
much more unpredictable than the computer world.
The same program can work well hundreds of
times and then stop because the size of one part
has a minimal variation or because there is a little
spot of oil.

Another source of difficulty in writing pro-
grams is the lack of standardization in robot lan-
guages and in robot control systems. Industrial
robots have languages completely different from
each other [5]. Control systems tend to use differ-
ent interfaces, making it almost impossible to use
the same program for different robots. The cost of
training programmers is significant and that train-
ing may be nullified by the fact that a new robot is
bought and the new robot has a brand new lan-
guage.

There is no general agreement about a standard
language for robots. Many problems, mainly the
interaction with sensors [20] require further re-
search, and it might be too early for a serious
standardization.

Complex tasks requiring more than one robot
working at the same time are difficult to program.
Parallel actions are hard to express. Time con-
straints and optimization in the use of available
resources require a considerable programming ef-
fort. None of the robot languages offer reasonable

primitives to do that, while some plan formation
systems can deal with resource sharing [28], time
[27], and parallel operations [21].

2.2. Plan Formation Systems

The task of a plan formation system is to
generate a sequence of actions that transform the
initial state of the environment into a final state in
which some specified goal conditions are true.
Such sequence is called a plan for achieving the
goal [21].

A planner must have some knowledge about the
world, the task, and the robot's possible actions. A
classical representation is based on the description
of the world in form of variable free predicates, a
specification of the task in form of a goal to
achieve, and a description of the actions in term of
operators. Each operator has associated some pre-
conditions that specify the world configuration in
which the operator can be applied, and some
postconditions that specify how the application of
the operator changes the world. Those are in gen-
eral expressed as additions and deletions to the
current state of the world.

Plan generation can be regarded as a graph
search problem. The initial state and the operators
define a graph, in which each arc correspond to an
operator. A plan is a path from the initial state to
a state in which the goal is achieved.

Plan formation has been used to generate pro-
grams for robot tasks, mainly for finding paths in
a set of rooms and for stacking blocks [8,9,21].

Programs generated by plan formation systems
cannot be directly executed because too many
important details are missing. Typically a plan
formation system is independent of the robot used
to execute the task. So, for instance, it is not
within the scope of the plan formation system to
check whether positions are reachable or not. Since
the purpose of plan formation systems is to do
reasoning this is considered a detail unessential for
the reasoning process.

The STRIPS system [9] is the only plan forma-
tion system used to control a real robot, Shakey.
Shakey was able to move in a set of rooms pushing
boxes and dealing with unexpected events. It was
controlled by the plan formation system with a
complex execution monitor. The low level program
implementing the set of actions considered by
STRIPS required a large effort because of the

266 Industrial Robotics in Discrete Manufacturing ('omputers in lndustr~

details needed to control the real robot.
Plan formation systems have not been used

with real robots because in manufacturing the
sequence of actions needed to perform a task is
known in advance. There is no need to do plan-
ning and planning requires large computer power.
However, when the task is difficult to specify as a
sequence of steps or when the environment changes
in unpredictable ways the capability of autono-
mous reasoning becomes essential [12].

3. On-Line Versus Off-Line Programming

Recently new problems have received consider-
able attention from the designers of programming
languages for robots.

Extensive use of computers and increased com-
puting power available at a reduced cost allow a
different philosophy in designing programming
systems. What in the past had to be designed to
run on a small microprocessor, can today run on a
fancy workstation with powerful graphic capabili-
ties.

Artificial Intelligence systems have an economic
payoff by reducing the time to design, implement,
test, and maintain programs even though they
require larger computing power.

The attention is shifting from on-fine to off-line
programming.

Typically robot programs are developed on-fine.
The program is written, translated, and tested on
the robot. The robot is also used as a measuring
tool to gather three dimensional data. In this way
robots are used for large amounts of time to
develop and test programs.

Tools have been developed to aid users in this
process. Most of those tools require on-line pro-
gramming. The POINTY system [10] has solved
most of the problems in constructing data struc-
tures and checking the correctness of programs,
proving that complex programs can be developed
with a good software environment in a reasonable
time.

Although POINTY reduces considerably the
time needed to produce new programs it has the
major disadvantage of taking the robot out of the
production line for the time needed to test the
program.

The idea of programming robots off-line is be-
coming more and more appearing. Robots can do

useful work while new programs are being devel-
oped. This reduces at the minimum the period of
time in which the production has to be inter-
rupted. When robots are components of complex
industrial automation systems this aspect is par-
ticularly important [2].

On the other hand it is well known that it is
impossible to test completely a program off-line.
Problems come from the lack of sensor data since
there is no plausible way to simulate sensors. Even
though the use of sensors is still primitive in
industrial robots, the simulation of even simple
sensory environments, such as the sense of touch,
has not been included in any system.

A reasonable solution seems to rely on a combi-
nation of off-line and on-fine programming, where
most of the programming is performed off-line
using the robot only to gather data and for the
final test of the program. In this way there is no
need to run complex programs in real time. With
off-line programming sophisticated systems deal-
ing with knowledge and reasoning have good rea-
sons to exist.

Our approach to robot programming requires
an off-line programming system that takes care of
generating "reasonably correct" programs from
task level specifications so minimizing the time
required to test the program on-line. We want to
generate programs from task level specifications
using plan formation and program generation
techniques.

The automatic generation of programs has been
a dream in Artificial Intelligence for many years.
Practical systems have been implemented [3]. Al-
though limited they have shown the feasibility of
generating programs from high level specifications.
We consider automatic programming particularly
interesting for robotics since robot programmers
are not computer scientists.

4. State of the Art in Automatic Programming of
Robots

Numerous attempts to design intelligent pro-
gramming systems for robots can be found in the
literature. Most of them, as we have seen before,
come from the Artificial Intelligence community in
form of various plan formation systems.

What we want to examine here are the contri-
butions that consider real robots. They have

Computers in Industry

focused on problems encountered in real applica-
tions.

AUTOPASS [14] was designed in an attempt to
provide a formal language with task level descrip-
tions. Many of the underlying problems were un-
solved at the time of the design, so that a consider-
able amount of time had to be spent solving them.
For instance, a geometric modeling had to be
designed to deal with objects described in AUTO-
PASS programs. Another problem that required
much attention is the automatic planning of colli-
sion free paths [15]. The main difficulties in AU-
TOPASS come from the limited use of sensors and
the limitations in the structure of the program
introduced to simplify world modeling.

A less ambitious work has been done by Taylor
[25]. In his thesis he presents an approach to the
fine motion synthesis. His work is based on repre-
senting accuracy information in a world model,
and on numerical methods to propagate location
constraints through relations among features of
objects.

He discusses the way in which a program to
insert a pin into a hole can be generated automati-
cally using information from the AL world model.
Various pickup strategies can be defined at system
creation time. He does not address the problem of
providing a formal language to describe assembly
tasks. A big effort is aimed at generating control
instructions and accuracy tests that could predict
errors in location values.

RAPT [2,19] is probably the most complete
design of an off-line programming system. It gen-
erates VAL [22] instructions from geometrical de-
scription of objects and constraints among them.
Unfortunately, it has an APT flavor that makes its
syntax unpleasant. The other problem mentioned
by its authors is that it is not clear whether it is
really easier to write programs in RAPT, or to use
a complex geometric modeling system, or to learn
how to use VAL. In some sense with RAPT the
problem is shifted from the procedural description
of sequences of actions to the description of
knowledge about objects and relations.

5. A System for Automatic Generation of Robot
Programs

Our approach requires plan formation and au-
tomatic program generation in addition to the

M. Gini, G. Gini / From Goals to Manipulator Programs 267

programming system of the robot that executes the
resulting program. Since a programming language
is often available on the robot we want to use it. In
this way the off-line programming system does not
have to know too many details. The lower level
control is carried on by the control system of the
robot. We are also more independent of the par-
ticular robot used since we need to know only how
to communicate with it.

We require two basic components, in addition
to the control system of the robot, one devoted to
the planning and the other to the generation of the
robot program. The output of the first part is an
intermediate high level language that can be trans-
formed into various target languages. The logical
organization is illustrated in Fig. 1. Since we should
be able to generate programs for various robots it
is important to know the physical configuration of
the robot, and its own programming language. The
generation of the robot program is based on a
database of knowledge which contains both gen-
eral knowledge about tasks and specific knowledge
about the arm that should be used [23].

In Fig. 2 we show the logical organization of
the knowledge base. The knowledge depends on
the specific robot system (arm knowledge, and
language knowledge), on the application area in
which we are interested, and on the task that we
want to perform.

Further investigation is needed in this area. We
will mention some of the problems that we plan to
study. This large body of knowledge has to be
constructed and maintained to preserve con-
sistency [7].

The user has to interact with the knowledge
base to update and to extend it. In robotics inter-
action with the real world is important. We want,
for instance, to be able to extract the information
available in running programs and to use it to
develop the program itself. An extension to the
philosophy of the POINTY system [10] would
allow to gather data from sensors during the ex-
ecution of a sample task, and to use those data to
generate the symbolic code. The generation of fine
motion could be done in that way.

A precise form of the output of the plan genera-
tion system has to be defined, taking care of
sensors and of parallel operations. Some of those
problems, typically the expression of parallel oper-
ations and synchronization, require the selection
of appropi'iate formalisms.

268 Industrial Robotics in Discrete Manufacturin~ ("omputer~ m htdu,~t;'~

k

n

0

W

I

e

d

g

e

b
a

S

e

<

task-level description of the task

$
, ,,

plan generation system

r
p l a n o f a c t i o n s

/
program

simulat or/interpreter/compiler 1

Fig. 1. Logical organization of the off-line programming system.

The knowledge about the specific robot could
be expressed using a robot description language.
This language is considered an important step

toward the portability of robot programming sys-
tems and it may become available soon.

The description of the various programming

objects

arm

task

generic
knowledge

geometric

work area,
arm model,
sensors

knowledge
about
tasks

language syntax &
semantics

Fig. 2. Logicalorganizationoftheknowledgebase.

application
specific
knowledge

position
independent

hints about
tasks
accomplishing

task specific
knowledge

position
dependent,
initial state

task description

Computers in Industry M. Gini, G. Gini / From Goals to Manipulator Programs 269

languages to be used can be done using precondi-
tions and postconditions. This same form is used
in our error recovery system [12] and we have
found it useful to describe the effect on the world
of each instruction.

Even though the approach that we present here
is intended for use at compile time, we think that
the knowledge needed to generate the program can
be used also to monitor the execution of programs.

We see a strong interaction between the off-line
activity of automatic program generation and the
on-line activity of error identification and re-
covery. To do automatic error recovery the system
should be able to uderstand what is happening in
the real world and to generate a sequence of
instructions to recover from the error. Both those
activities require intelligent interpretation of sensor
data and automatic program generation. The sys-
tem for error recovery [12] that we are developing
uses the same knowledge base as the program
generation system.

6. An Example of Program Generation

A system able to generate programs from task
level specifications is a complex system. Owing to
the complexity of the task we have decided to start
designing a preliminary system with limited capa-
bilities.

We consider a world model, where simple ob-
jects are described by their geometric shape and
physical relations. A rudimentary collision avoid-
ance is used. No interaction with sensors is consid-
ered.

The system operates in two stages. In the first
phase it transforms declarative knowledge into
procedural knowledge producing a plan of actions.
It then generates a robot program in a specific
programming language starting from the descrip-
tion of actions produced by the planner.

The preliminary implementation of our system
has a planner written in PROLOG [6,13], a pro-
gram generation module for MAL [11], and one
for AL [10].

6.1. An Example of Plan Formation

Assume that we want to move some blocks
from an initial configuration to a final state.

The knowledge is described as a set of clauses

in PROLOG. Some clauses express known facts,
other clauses express inference rules that can be
used to obtain new knowledge. The PROLOG
interpreter tries to prove the truth of each relation.
Since the relations may contain variables part of
the proof process involves variable bindings. Each
relation has a left side, that expresses what we
want to prove, and a right side that expresses how
to prove it. Known facts have only a left side since
they do not have to be proved. The interpreter
matches the goal with the left side of a clause and
tries to prove its truth by proving each of the
components on the fight side.

The positions of objects are defined by the
coordinates of their point closest to the origin.
Their geometrical shape is described, as well as
their relative positions. Inference rules allow to
compute the grasping position of each object, its
size in three dimensions, and its position after it
has been moved.

For instance, the relation "g rasp ing_of ' shown
below says that the grasping position of any paral-
lelepiped 0 is a vector (X, Y, Z) obtained by com-
puting half of the size of the parallelepiped itself.
Once this information has been computed it is
asserted as a known fact, so there is no need to
compute it again. Only a part of the knowledge
base is listed.

The plan formation produces as output a list of
declarations and a plan of actions. The output has
the same flavor as AL, although it differs from it
in many points. The generation of the program in
AL will show these differences.

INPUT

specific knowledge about objects

cube(a).
cube(b).
cube(c).
dimension of(a,2).
dimension of(b,2).
dimension of(c,2).

transient knowledge about objects

on(a,c).
position_of(b,vector(15,5,0)).
posit ion_ of(c,vector(10,5,0)).
on(c,table).
on(b,table).

270 Industrial Robotics in Discrete Manufacturing Computers in Industry

generic knowledge about grasping, positions, etc.

grasping_ of(0,vector(X,Y,Z)) :-
parallelepiped(0),
size_ of(0,vector(SX,SY,SZ)),
X is SX/2, Y is SY/2, Z is SZ/2 ,
asserta(grasping_of(0,vector(X,Y,Z))).

posi t ion_ of(0,vector(X,Y,Z)) :-
on(0,W), W / = = table,
posi t ion_ of(W,vector(PX,PY,PZ)),
size_ of(W,vector(SX,SY,SZ)),
vectadd(vector(PX,PY,PZ), vector(0,0,SZ), vec-
tor(X,Y,Z)),
asserta(position_ of(0,vector(X,Y,Z))).

size_ of(0,vector(X,X,X)) : -
cube(0), dimension_of(0,X),
asserta(size_ of(0,vector(X,X,X))).

parallelepiped(0) :-cube(0).
vectadd(vector(X1,Y1,Z1),vector(X2,Y2,Z2),vector

(RX,RY,RZ)) : -
RX is X1 + X2, RY is Y1 + Y2, RZ is Z1 + Z2.

task description

puton(b,c).
puton(a,b).

O U T P U T

declarations

SIZE-A-X := SIZE-A-Y := SIZE-A-Z := 2;
SIZE-B-X := SIZE-B-Y := SIZE-B-Z := 2;
SIZE-C-X := SIZE-C-Y := SIZE-C-Z := 2;
G R A S P I N G - A - X := G R A S P I N G - A - Y :=
G R A S P I N G - A - Z -'= 1;
GRASPING-B-X .'= GRASPING-B-Y .'=
G R A S P I N G - B - Z ,= 1;
G R A S P I N G - C - X := G R A S P I N G - C - Y :=
G R A S P I N G - C - Z -'= 1;
A := F R A M E (NILROTN, VECTOR (10, 5, 2));
B -'= F R A M E (NILROTN, VECTOR (15, 5, 0));
C .'= F R A M E (NILROTN, VECTOR (10, 5, 0));

plan of actions

MOVE A TO
(5,5,0));
MOVE B TO
(10,5,2));
MOVE A TO
(10,5,4));

F R A M E (N I L R O T N , VECTOR

F R A M E (N I L R O T N , VECTOR

F R A M E (N I L R O T N , VECTOR

6.2. The Generation of MAL Programs

MAL [11] is an interactive system used to pro-
gram a cartesian robot with two arms. Each arm
has three degrees of freedom plus the hand open-
ing. The mechanical structure is the same as the
Sigma of the C. Olivetti Company although the
electronic control has been completely redesigned.

MAL is a complete programming language, that
can be considered as an extension to BASIC. In
addition to the classical set of BASIC instructions
MAL has instructions to define and synchronize
parallel tasks and instructions oriented to the con-
trol of mechanical devices.

The instruction MOVE sends commands to the
motors to move the arm. Each axis is individually
controlled. The same MOVE instruction can move
up to six axes. The names of the axes are XR, YR,
and ZR for the right arm, XL, YL, and ZL for the
left arm. The system does not have to wait for the
completion of movements before starting execut-
ing the next instruction. A W after MOVE means
that the movement has to be completed before
executing the next instruction.

The instructions ACT and DEACT operate the
hand.

The program is generated in MAL with the
following conventions:
- - the position of the object 0 is denoted by

PX-0, PY-0, PZ-0;
- - the size of the object 0 is denoted by DX-0,

DY-0, DZ-0;
- - the grasping point of the object 0, with respect

to the position of the object itself, is denoted
by GX-0, GY-0, GZ-0;

- - the maximum height of objects stacked on the
assembly plane is denoted by MAXZ.

The position of the arm to pick up the object 0
should be:

PX-ARM = PX-0 + GX-0
PY-ARM = PY-0 + GY-0
PZ-ARM = PZ-0 + GZ-0

Let FLX, FLY, and FLZ to denote the coordi-
nates of the destination of the object. The corre-
sponding arm position should be:

PX-ARM = FLX + GX-0
PY-ARM = FLY + GY-0
PZ-ARM = FLZ + GZ-0

Computers in Industry

After that the object posi t ion should be upda ted to

PX-0 -- F L X
PY-0 -- FLY
PZ-0 = F L Z

Since the robot that we use is cartesian, each
movemen t is decomposed in to the sequence:
go over ini t ial posi t ion - go down - grasp - go up

- go to des t ina t ion - go down - ungrasp - go up

6.3. Program Generated in MAL

1 " ini t ia l izat ion

2 M O V E XR, YR, Z R
3 SET R H = 9
4 " declarat ions
5 SET PX-A = 10, PY-A = 5, PZ-A = 2
6 SET PX-B = 15, PY-B = 5, PZ-B = 0

7 SET PX-C = 10, PY-C = 5, PZ-C = 0

8 SET G X - A = G Y - A = G Z - A = 1
9 SET GX-B = GY-B = GZ-B = 1

10 SET D Z - A = 2
11 SET DZ-B = 2
12 SET DZ-C = 2
13 " collision avoidance

14 SET M A X Z -- D Z - A + D Z - C
15 " move a to frame(ni lrotn, vector (5,5,0));
16 SET F L X = 5, FLY = 5, F L Z = 0

17 M O V E W X R = PX-A + GX-A, Y R = PY-A
+ G Y - A

18 M O V E W Z R = PZ-A + G Z - A
19 A C T R H

20 M O V E W Z R = D Z - A ÷ M A X Z

21 MOVE W X R = FLX + GX-A, Y R = F L Y +
G Y - A

22 M O V E W Z R = F L Z + G Z - A

23 D E A C T R H
24 SET M A X Z = D Z - C
25 SET PX-A = FLX, PY-A = FLY, PZ-A = F L Z
26 M O V E W Z R = D Z - A + M A X Z

27 " move b to frame(ni lrotn, vector (10,5,2));
28 SET FLX = 10, F L Y = 5, F L Z = 2

29 MOVE W X R = PX-B + GX-B, Y R = PY-B +

GY-B
30 MOVE W Z R = PZ-B + GZ-B
31 A C T R H
32 M O V E W Z R = DZ-B + M A X Z
33 MOVE W X R = FLX + GX-C, Y R = F L Y +

GX-C
34 M O V E W Z R = F L Z + GZ-B
35 D E A C T R H

M. Gini, G. Gini / From Goals to Manipulator Programs 271

36 SET M A X Z = DZ-B + DZ-C
37 SET PX-B = FLX, PY-B = FLY, PZ-B = F L Z

38 M O V E W Z R - DZ-B + M A X Z
39 " move a to frame(ni lrotn, vector (10,5,4));
40 SET F L X = 10, FLY = 5, F LZ = 4

41 M O V E W XR = PX-A + GX-A, Y R = PY-A

+ G Y - A
42 M O V E W Z R = PZ-A + G Z - A

43 A C T R H
44 MOVE W Z R = D Z - A + M A X Z

45 M O V E W X R = F LX + GX-B, Y R = F LY +

GY-B
46 M O V E W Z R = F LZ + G Z - A
47 D E A C T R H

48 SET M A X Z = DZ-C + DZ-B + D Z - A
49 SET PX-A = FLX, PY-A = FLY, PZ-A = F L Z

50 MOVE W Z R = D Z - A + M A X Z
51 M O V E XR, YR, Z R

6.4. The Generation of AL Programs

A second module for program generat ion of
s imple AL [4] programs has been implemented.
The system knows only a l imited subset of AL. We
take advantage of the AL data types V E C T O R

and F R A M E to describe points and posi t ions in
the space. Object posi t ions are defined as frames.
Assuming again that objects posi t ions are defined

by the coordinates of their po in t closest to the
origin, their grasping posi t ions are defined by the
vector G RA S P - 0 relative to the object posit ion. To

pick up the object 0 the posi t ion of the arm should

be:

A R M = PX-0 + G R A S P - 0

Every time an object is moved the ins t ruct ions
A F F I X and U N F I X take care of upda t ing the

object 's posit ion.
Each movement is decomposed in to the sequence:
open hand - go to init ial posi t ion - close hand -
affix object - go to des t inat ion - open hand -
unf ix object

6.5. Program Generated in AL

B E G I N
S C A L A R SIZE-A, SIZE-B, SIZE-C;
V E C T O R GRASP-A, GRASP-B, G R A S P - C ;
F R A M E BGRASP, A, B, C;
A F F I X B G R A S P TO B A R M A T T R A N S
(ROT(XHAT,180) ,NILVECT) ;

272 Industrial Robotics in Discrete Manufacturing ('omputer~ m lndu~tr~

SIZE-A := 2; G R A S P - A := V E C T O R (1, 1, 1);
SIZE-B := 2; G R A S P - B := V E C T O R (1, 1, 1);
S IZE-C .'= 2; G R A S P - C := V E C T O R (1, 1, 1);
A := F R A M E (N I L R O T N , V E C T O R (10, 5,
2));
B := F R A M E (N I L R O T N , V E C T O R (15, 5, 0));
C := F R A M E (N I L R O T N , V E C T O R (10, 5,
0));

{ move a to frame(ni lrotn, vector (5,5,0))}
OPEN BHAND TO SIZE-A + .5;
MOVE BGRASP TO A + GRASP-A;
CENTER BARM;
AFFIX A TO BGRASP;
MOVE A TO FRAME(NILROTN, VECTOR
(5,5,0));
UNFIX A;

(move b to frame(ni lrotn, vector (10,5,2))}
OPEN BHAND TO SIZE-B + .5;
MOVE BGRASP TO B + GRASP-B;
CENTER BARM;
AFFIX B TO BGRASP;
MOVE B TO FRAME(NILROTN, VECTOR
(10,5,2));
UNFIX B;

{ move a to frame(nilrotn, vector (10,5,4))}
OPEN BHAND TO SIZE-A + .5;
MOVE BGRASP TO A + GRASP-A;
CENTER BARM;
AFFIX A TO BGRASP;
MOVE A TO FRAME(NILROTN, VECTOR
(10,5,4));
UNFIX A;

(park the arm}
OPEN BHAND TO SIZE-A + .5;
MOVE BARM TO PARK;

END;

7. Conclusion

We have presented issues in robot pro-
gramming. We have described the logical design of
a complex system aimed at producing robot pro-
grams in various robot programming languages
starting from a task level description of the oper-
ation. We have presented preliminary experimen-
tal results.

References

[1] Albus, J., Brains, behavior and robotics. BYTE Publ., 1981.
[2] Ambler. A.P., et al, "An experiment in the off line pro-

gramming of robots," in Proc. 12th lnternatumal S~'m-
posium on Industrial Robots. Paris, France, June 1982. pp
491-504.

[3] Barstow, D.R., "An experiment in knowledge based auto-
matic programming," Artificial Intelligence, Vol 12, pp
7-119, Aug 1979.

[4] Binford, T., "The AL language for intelligent robot," in
Languages et Methodes de programmation des robots in-
dustriels. Paris, France: IRIA Press, 1979.

[5] Bonner, S., and Shin, K., "A comparative study of robot
languages," Computer Magaz., pp 82-96, December 1982.

[6] Clocksin, W.F., and Mellish, C.S., Programming in Prolog.
Springer-Verlag, 1981.

[7] Doyle, J., "A truth maintenance system," Artificial Intelli-
gence, Vol 12, pp 231 272, 1979.

[8] Fahlman, S.E., "A planning system for robot con-
struction," Artificial Intelligence, Vol. 5, pp 1-50, 1974.

[9] Fikes, R.E., and Nilsson, N.J., "STRIPS: a new approach
to the application of theorem proving to problem solving."
Artificial Intelligence, Vol. 2, pp 189-208, 1971.

[10] Gini, G., and Gini, M., "Dealing with world model based
programs" A C M TOPLAS, Vol 7, N 2, pp 334-347, 1985.

[11] Gini, G., and Gini, M., "Explicit programming languages
in industrial robots," Journal of Manufacturing Systems,
Vol 2, N 1, pp 53-60, 1983.

[12] Gini, M., Gini, G., "Towards automatic error recovery in
robot programs," in Proc 1JCAI-83, August 1983.

[13] Kowalsky, R., "Algorithm = logic + control," Comm of the
ACM, Vol 22, pp 424-436, July 1979.

[14] Lieberman, L.I., Wesley, M.A., "AUTOPASS: an auto-
matic programming system for computer controlled mech-
anical assembly," IBM Journal of Research and Develop-
ment, Vol. 21, N. 4, pp 321-333, July 1977.

[15] Lozano-Perez, T., "Automatic planning of manipulator
transfer movements," 1EEE Trans on Systems, Man, and
Cybernetics, Vol SMC-ll, N. 10, 1981.

[16] Nitzan, D. and Rosen, C.A., "Programmable industrial
automation," IEEE Trans on Computers, Vol. C-25, pp
164-171, December 1976.

[17] Paul, R.P., "WAVE: a model based language for manipu-
lator control," The Industrial Robot, Vol 4, N I, pp 10-17,
March 1977.

[18] Paul, R.P., Robot manipulators: mathematics, programming
and control, Boston, Mass: The MIT Press, 1981.

[19] Popplestone, R.J. et al, "An interpreter for a language for
describing assemblies," Artificial Intelligence, Vol 14, pp
79-107, 1980.

[20] Rosen, C.A. and Nitzan, D., "Use of sensors in program-
mable automation," Computer, pp 12-23, December 1977.

[21] Sacerdoti, E., A structure for plans and behavior, American
Elsevier Publ. Company, 1977.

[22] Shimano, B., "VAL: a versatile robot programming and
control system." in Proc IEEE Third Int. COMPSAC79,
Chicago, Ill, November 1979, pp 878-883.

[23] Stefik, M., et al., "The organization of expert systems: a
tutorial," Artificial Intelligence, Vol 18, pp 135-173, 1982.

[24] Takase, K., Paul, R.P. and Berg, J., "A structured ap-

Computers in Industry M. Gini, G. Gini / From Goals to Manipulator Programs 273

proach to robot programming and teaching," IEEE Trans.
on Systems, Man, and Cybernetics, Vol SMC-11, pp
274-289, April 1981.

[25] Taylor, R.H., "A synthesis of manipulator control programs
from task-level specifications," Artificial Intelligence
Laboratory, AIM-282, Stanford University, Stanford, Ca,
July 1976.

[26] Taylor, R.H., Summers, P.D., Meyer, J.M., "AML: a

manufacturing language," International Journal of Robotics
Research, Vol 1, N. 3, 1982.

[27] Vere, S.A., "Planning in time: windows and durations for
activities and goals," IEEE Trans on Pattern Analysis and
Machine Intelligence, Vol PAMI-5, pp 246-267, May 1983.

[28] Wilkins, D., "Parallelism in planning and problem solving:
reasoning about resources," SRI International, AIC, TN
258, January 1982.

