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We describe an approach to robot programming that sup- 
ports task-oriented specifications of manipulation activities. 
Plan formation and program generation techniques are used to 
transform task specifications into executable programs for vari- 
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1. Introduction 

Robo t s  are  t oday  opera t ing  on  a wide var ie ty  of  
tasks  such as ob jec t  handl ing,  pa in t ing ,  and  weld-  
ing. Even though assembly  is still cons idered  a 
diff icul t  a rea  more  and more  robots  are used in 
manufac tu r ing  for assembly  tasks. New areas  out-  
side manufac tur ing ,  l ike exp lora t ion  of  unknow n  
env i ronments  and  medica l  appl ica t ions ,  are be ing  
considered.  

Al l  these new deve lopment s  raise crucial  p rob -  
lems. P r o g r a m m i n g  robots ,  which was easy when 
tasks were s imple  l ike p ick  and  place,  becomes  an 
i m p o r t a n t  issue. Sensors  p rov ide  a huge amoun t  of 
po ten t i a l ly  useful  da t a  that  have to be  in te rp re ted  
to be  of  any  use. C o m p u t e r  p rog ramming ,  which 
was nonexis ten t  in the early stages of robot ics ,  
becomes  a centra l  issue. 

Manufac tu re r s  of robots  are p rov id ing  robo t s  
wi th  p r o g r a m m i n g  languages.  A l though  this repre-  
sents  an i m p o r t a n t  achievement  in indus t r ia l  
robot ics ,  cur ren t ly  avai lable  languages  are not  easy 
to use. The  p r o g r a m m e r  has to specify complex  
sequences of  movements ,  to mon i to r  sensors dur-  
ing the execut ion of the task, to synchronize  ex- 
pl ic i t ly  di f ferent  robo t s  opera t ing  in the same 
work ing  area. 

P r o g r a m m i n g  a compu te r  con t ro l led  robo t  is 
rea l ly  di f ferent  f rom p r o g r a m m i n g  a compute r .  
R o b o t  p rog rams  run in a wor ld  that  is incom-  
p le te ly  known  and  imperfec t ly  model led .  This  re- 
quires  strategies to detect  and  prevent  po ten t ia l  
ca tas t rophes ,  l ike coll isions,  and  to recover  f rom 
errors.  M a n y  act ions  are irreversible.  Af te r  the 
a rm has  crashed there is no  way  to undo  the ac t ion 
tha t  p r o d u c e d  the crash. 

Ac t ions  are not  exact ly  reproducib le ,  mak ing  it 
d i f f icul t  to de tec t  causes of  errors  and  to fix them. 

Cur ren t ly  users mus t  d e p e n d  on  their  experi-  
ence, in tui t ion,  and  c o m m o n  sense to decide  how 
to wri te  p rograms .  

This  p a p e r  presen ts  an  a p p r o a c h  to robo t  p ro-  
g r a m m i n g  based  on  the au toma t i c  genera t ion  of 
p r o g r a m s  f rom task or ien ted  specif icat ions.  The  
speci f ica t ions  are given to the p lan  fo rma t ion  
m o d u l e  tha t  p roduces  the p l an  of act ions.  The  
p l a n  is then t r ans fo rmed  into  a p r o g r a m  b y  the 
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program generation module. 
We discuss in this paper both plan formation 

and program generation. These two activities are 
performed using a knowledge base that contains 
knowledge about the arm (work area, arm model, 
sensors), about different tasks (inserting, grasping, 
fitting), about the programming language of the 
robot (syntax and semantics), as well as geometric 
knowledge about the objects involved. 

This organization allows to capture part of the 
experience that experienced programmers apply 
when they develop new programs. We hope that it 
will help also in obtaining a better understanding 
of this process. 

A preliminary system has been successfully im- 
plemented to generate programs in a Basic-like 
language for a cartesian robot without any sensor. 
The knowledge base is small and only tasks related 
to block movements have been programmed. Pro- 
grams for the same tasks have been easily gener- 
ated in a different robot language. 

2. Programming Robots 

Since computer controlled manipulators have 
been introduced methods of controlling and of 
programming them for new tasks have seen a great 
deal of development [1,4,16,18]. 

Two completely different approaches to robot 
programming have been considered in the past. 

On one side within the Artificial Intelligence 
community much research has been done on plan 
formation systems to provide robots with autono- 
mous reasoning capabilities [21]. None of these 
systems have been used to control a real robot, 
except STRIPS at SRI [9]. 

On the other side the need to control industrial 
robots has pushed the development of simple but 
effective methods for robot programming. More 
complex systems have been designed over the years 
to cope with increasing needs. None of them re- 
quire the reasoning capabilities provided by plan- 
ning systems. 

We can simplify things by saying that Artificial 
Intelligence researchers have taken a top-down 
approach trying to solve the difficult problem of 
reasoning and assuming that all the rest was easy. 
The others have taken a bottom-up approach first 
trying to control robots and only later realizing the 

need for intelligence. A big gap still exists between 
those two approaches. 

The aim of this paper is to bridge this gap 
trying to reconcile the exigencies that created this 
situation. Before doing that we examine in more 
details these two approaches. 

2.1. Robot Programming Languages 

Many of the existing industrial robots are ma- 
chines capable only of simple motions. They con- 
sist of a mechanical arm with a number of degrees 
of freedom ranging from two to six. They have 
little or no ability to sense conditions. These mach- 
ines can simply execute a preprogrammed se- 
quence of operations and can be trained to execute 
different tasks. 

A human operator, using a control box, can 
program the robot by guiding the arm through the 
desired sequence of positions. By pushing a button 
for each position he may record the value of each 
joint in the memory. Once the complete sequence 
is stored, it can be played back over and over 
again to accomplish the task in the production 
environment. The control system has simply to 
move each joint from one recorded value to the 
next according to a preset timing cycle. Any user, 
without specific training, can program the robot. 

Teaching by guiding has been successful for 
tasks where only simple operations or few posi- 
tions are required. Where complex assemblies are 
performed that method does not allow any change 
or adjustment of the movements during the execu- 
tion. The impossibility of expressing conditional 
actions makes it impossible to use sensors. In the 
case even small changes are made on the assembly 
station the teaching has to be repeated. The lack of 
a symbolic text makes it impossible to maintain, 
document, and modify the robot program. 

Programming languages have been designed to 
overcome these difficulties. A main advantage is 
that the robot becomes able to move its hand 
using an external coordinate system instead of its 
own joint angles. The user instead of specifying 
joint angles can instruct the robot in work space 
coordinates. The system will take care of convert- 
ing positions and orientations into joint angles and 
vice versa. 

Writing programs for robots is not so easy as 
one could think. Manipulation and assembly tasks 
are hard to program mainly because it is difficult 
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to visualize positions and orientations in three 
dimensional space. Interactions with sensors are 
hard to express because it is difficult to figure out 
directions and values of forces. 

Higher level languages have been designed over 
the years. Among those AML [26], AL [41, AUTO- 
PASS [14], PAL [241, RAPT [19], VAL [22], and 
WAVE [17]. These languages reduce the amount 
of details that programmers should consider, let- 
ting them to concentrate on the most important 
aspects. 

Even those languages suffer from many draw- 
backs that make it painful to write complex pro- 
grams. Operations like inserting or fitting are dif- 
ficult to express. They require long and complex 
sequences of movements such as pushing the ob- 
ject, rotating it, and pushing it again, while check- 
ing forces to avoid jamming. 

The specifications of forces to be used is a 
tedious trial and error process. Learning from a 
teach pendant is possible for position specifica- 
tions, but comparable facilities are not available 
for forces and torques. 

Errors are difficult to identify.The real world is 
much more unpredictable than the computer world. 
The same program can work well hundreds of 
times and then stop because the size of one part 
has a minimal variation or because there is a little 
spot of oil. 

Another source of difficulty in writing pro- 
grams is the lack of standardization in robot lan- 
guages and in robot control systems. Industrial 
robots have languages completely different from 
each other [5]. Control systems tend to use differ- 
ent interfaces, making it almost impossible to use 
the same program for different robots. The cost of 
training programmers is significant and that train- 
ing may be nullified by the fact that a new robot is 
bought and the new robot has a brand new lan- 
guage. 

There is no general agreement about a standard 
language for robots. Many problems, mainly the 
interaction with sensors [20] require further re- 
search, and it might be too early for a serious 
standardization. 

Complex tasks requiring more than one robot 
working at the same time are difficult to program. 
Parallel actions are hard to express. Time con- 
straints and optimization in the use of available 
resources require a considerable programming ef- 
fort. None of the robot languages offer reasonable 

primitives to do that, while some plan formation 
systems can deal with resource sharing [28], time 
[27], and parallel operations [21]. 

2.2. Plan Formation Systems 

The task of a plan formation system is to 
generate a sequence of actions that transform the 
initial state of the environment into a final state in 
which some specified goal conditions are true. 
Such sequence is called a plan for achieving the 
goal [21]. 

A planner must have some knowledge about the 
world, the task, and the robot's possible actions. A 
classical representation is based on the description 
of the world in form of variable free predicates, a 
specification of the task in form of a goal to 
achieve, and a description of the actions in term of 
operators. Each operator has associated some pre- 
conditions that specify the world configuration in 
which the operator can be applied, and some 
postconditions that specify how the application of 
the operator changes the world. Those are in gen- 
eral expressed as additions and deletions to the 
current state of the world. 

Plan generation can be regarded as a graph 
search problem. The initial state and the operators 
define a graph, in which each arc correspond to an 
operator. A plan is a path from the initial state to 
a state in which the goal is achieved. 

Plan formation has been used to generate pro- 
grams for robot tasks, mainly for finding paths in 
a set of rooms and for stacking blocks [8,9,21]. 

Programs generated by plan formation systems 
cannot be directly executed because too many 
important details are missing. Typically a plan 
formation system is independent of the robot used 
to execute the task. So, for instance, it is not 
within the scope of the plan formation system to 
check whether positions are reachable or not. Since 
the purpose of plan formation systems is to do 
reasoning this is considered a detail unessential for 
the reasoning process. 

The STRIPS system [9] is the only plan forma- 
tion system used to control a real robot, Shakey. 
Shakey was able to move in a set of rooms pushing 
boxes and dealing with unexpected events. It was 
controlled by the plan formation system with a 
complex execution monitor. The low level program 
implementing the set of actions considered by 
STRIPS required a large effort because of the 
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details needed to control the real robot. 
Plan formation systems have not been used 

with real robots because in manufacturing the 
sequence of actions needed to perform a task is 
known in advance. There is no need to do plan- 
ning and planning requires large computer power. 
However, when the task is difficult to specify as a 
sequence of steps or when the environment changes 
in unpredictable ways the capability of autono- 
mous reasoning becomes essential [12]. 

3. On-Line Versus Off-Line Programming 

Recently new problems have received consider- 
able attention from the designers of programming 
languages for robots. 

Extensive use of computers and increased com- 
puting power available at a reduced cost allow a 
different philosophy in designing programming 
systems. What in the past had to be designed to 
run on a small microprocessor, can today run on a 
fancy workstation with powerful graphic capabili- 
ties. 

Artificial Intelligence systems have an economic 
payoff by reducing the time to design, implement, 
test, and maintain programs even though they 
require larger computing power. 

The attention is shifting from on-fine to off-line 
programming. 

Typically robot programs are developed on-fine. 
The program is written, translated, and tested on 
the robot. The robot is also used as a measuring 
tool to gather three dimensional data. In this way 
robots are used for large amounts of time to 
develop and test programs. 

Tools have been developed to aid users in this 
process. Most of those tools require on-line pro- 
gramming. The POINTY system [10] has solved 
most of the problems in constructing data struc- 
tures and checking the correctness of programs, 
proving that complex programs can be developed 
with a good software environment in a reasonable 
time. 

Although POINTY reduces considerably the 
time needed to produce new programs it has the 
major disadvantage of taking the robot out of the 
production line for the time needed to test the 
program. 

The idea of programming robots off-line is be- 
coming more and more appearing. Robots can do 

useful work while new programs are being devel- 
oped. This reduces at the minimum the period of 
time in which the production has to be inter- 
rupted. When robots are components of complex 
industrial automation systems this aspect is par- 
ticularly important [2]. 

On the other hand it is well known that it is 
impossible to test completely a program off-line. 
Problems come from the lack of sensor data since 
there is no plausible way to simulate sensors. Even 
though the use of sensors is still primitive in 
industrial robots, the simulation of even simple 
sensory environments, such as the sense of touch, 
has not been included in any system. 

A reasonable solution seems to rely on a combi- 
nation of off-line and on-fine programming, where 
most of the programming is performed off-line 
using the robot only to gather data and for the 
final test of the program. In this way there is no 
need to run complex programs in real time. With 
off-line programming sophisticated systems deal- 
ing with knowledge and reasoning have good rea- 
sons to exist. 

Our approach to robot programming requires 
an off-line programming system that takes care of 
generating "reasonably correct" programs from 
task level specifications so minimizing the time 
required to test the program on-line. We want to 
generate programs from task level specifications 
using plan formation and program generation 
techniques. 

The automatic generation of programs has been 
a dream in Artificial Intelligence for many years. 
Practical systems have been implemented [3]. Al- 
though limited they have shown the feasibility of 
generating programs from high level specifications. 
We consider automatic programming particularly 
interesting for robotics since robot programmers 
are not computer scientists. 

4. State of the Art in Automatic Programming of 
Robots 

Numerous attempts to design intelligent pro- 
gramming systems for robots can be found in the 
literature. Most of them, as we have seen before, 
come from the Artificial Intelligence community in 
form of various plan formation systems. 

What we want to examine here are the contri- 
butions that consider real robots. They have 
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focused on problems encountered in real applica- 
tions. 

AUTOPASS [14] was designed in an attempt to 
provide a formal language with task level descrip- 
tions. Many of the underlying problems were un- 
solved at the time of the design, so that a consider- 
able amount of time had to be spent solving them. 
For instance, a geometric modeling had to be 
designed to deal with objects described in AUTO- 
PASS programs. Another problem that required 
much attention is the automatic planning of colli- 
sion free paths [15]. The main difficulties in AU- 
TOPASS come from the limited use of sensors and 
the limitations in the structure of the program 
introduced to simplify world modeling. 

A less ambitious work has been done by Taylor 
[25]. In his thesis he presents an approach to the 
fine motion synthesis. His work is based on repre- 
senting accuracy information in a world model, 
and on numerical methods to propagate location 
constraints through relations among features of 
objects. 

He discusses the way in which a program to 
insert a pin into a hole can be generated automati- 
cally using information from the AL world model. 
Various pickup strategies can be defined at system 
creation time. He does not address the problem of 
providing a formal language to describe assembly 
tasks. A big effort is aimed at generating control 
instructions and accuracy tests that could predict 
errors in location values. 

RAPT [2,19] is probably the most complete 
design of an off-line programming system. It gen- 
erates VAL [22] instructions from geometrical de- 
scription of objects and constraints among them. 
Unfortunately, it has an APT flavor that makes its 
syntax unpleasant. The other problem mentioned 
by its authors is that it is not clear whether it is 
really easier to write programs in RAPT, or to use 
a complex geometric modeling system, or to learn 
how to use VAL. In some sense with RAPT the 
problem is shifted from the procedural description 
of sequences of actions to the description of 
knowledge about objects and relations. 

5. A System for Automatic Generation of Robot 
Programs 

Our approach requires plan formation and au- 
tomatic program generation in addition to the 
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programming system of the robot that executes the 
resulting program. Since a programming language 
is often available on the robot we want to use it. In 
this way the off-line programming system does not 
have to know too many details. The lower level 
control is carried on by the control system of the 
robot. We are also more independent of the par- 
ticular robot used since we need to know only how 
to communicate with it. 

We require two basic components, in addition 
to the control system of the robot, one devoted to 
the planning and the other to the generation of the 
robot program. The output of the first part is an 
intermediate high level language that can be trans- 
formed into various target languages. The logical 
organization is illustrated in Fig. 1. Since we should 
be able to generate programs for various robots it 
is important to know the physical configuration of 
the robot, and its own programming language. The 
generation of the robot program is based on a 
database of knowledge which contains both gen- 
eral knowledge about tasks and specific knowledge 
about the arm that should be used [23]. 

In Fig. 2 we show the logical organization of 
the knowledge base. The knowledge depends on 
the specific robot system (arm knowledge, and 
language knowledge), on the application area in 
which we are interested, and on the task that we 
want to perform. 

Further investigation is needed in this area. We 
will mention some of the problems that we plan to 
study. This large body of knowledge has to be 
constructed and maintained to preserve con- 
sistency [7]. 

The user has to interact with the knowledge 
base to update and to extend it. In robotics inter- 
action with the real world is important. We want, 
for instance, to be able to extract the information 
available in running programs and to use it to 
develop the program itself. An extension to the 
philosophy of the POINTY system [10] would 
allow to gather data from sensors during the ex- 
ecution of a sample task, and to use those data to 
generate the symbolic code. The generation of fine 
motion could be done in that way. 

A precise form of the output of the plan genera- 
tion system has to be defined, taking care of 
sensors and of parallel operations. Some of those 
problems, typically the expression of parallel oper- 
ations and synchronization, require the selection 
of appropi'iate formalisms. 
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languages to be used can be done using precondi- 
tions and postconditions. This same form is used 
in our error recovery system [12] and we have 
found it useful to describe the effect on the world 
of each instruction. 

Even though the approach that we present here 
is intended for use at compile time, we think that 
the knowledge needed to generate the program can 
be used also to monitor the execution of programs. 

We see a strong interaction between the off-line 
activity of automatic program generation and the 
on-line activity of error identification and re- 
covery. To do automatic error recovery the system 
should be able to uderstand what is happening in 
the real world and to generate a sequence of 
instructions to recover from the error. Both those 
activities require intelligent interpretation of sensor 
data and automatic program generation. The sys- 
tem for error recovery [12] that we are developing 
uses the same knowledge base as the program 
generation system. 

6. An Example of Program Generation 

A system able to generate programs from task 
level specifications is a complex system. Owing to 
the complexity of the task we have decided to start 
designing a preliminary system with limited capa- 
bilities. 

We consider a world model, where simple ob- 
jects are described by their geometric shape and 
physical relations. A rudimentary collision avoid- 
ance is used. No interaction with sensors is consid- 
ered. 

The system operates in two stages. In the first 
phase it transforms declarative knowledge into 
procedural knowledge producing a plan of actions. 
It then generates a robot program in a specific 
programming language starting from the descrip- 
tion of actions produced by the planner. 

The preliminary implementation of our system 
has a planner written in PROLOG [6,13], a pro- 
gram generation module for MAL [11], and one 
for AL [10]. 

6.1. An Example of Plan Formation 

Assume that we want to move some blocks 
from an initial configuration to a final state. 

The knowledge is described as a set of clauses 

in PROLOG. Some clauses express known facts, 
other clauses express inference rules that can be 
used to obtain new knowledge. The PROLOG 
interpreter tries to prove the truth of each relation. 
Since the relations may contain variables part of 
the proof process involves variable bindings. Each 
relation has a left side, that expresses what we 
want to prove, and a right side that expresses how 
to prove it. Known facts have only a left side since 
they do not have to be proved. The interpreter 
matches the goal with the left side of a clause and 
tries to prove its truth by proving each of the 
components on the fight side. 

The positions of objects are defined by the 
coordinates of their point closest to the origin. 
Their geometrical shape is described, as well as 
their relative positions. Inference rules allow to 
compute the grasping position of each object, its 
size in three dimensions, and its position after it 
has been moved. 

For instance, the relation "g rasp ing_of '  shown 
below says that the grasping position of any paral- 
lelepiped 0 is a vector (X, Y, Z) obtained by com- 
puting half of the size of the parallelepiped itself. 
Once this information has been computed it is 
asserted as a known fact, so there is no need to 
compute it again. Only a part of the knowledge 
base is listed. 

The plan formation produces as output a list of 
declarations and a plan of actions. The output has 
the same flavor as AL, although it differs from it 
in many points. The generation of the program in 
AL will show these differences. 

INPUT 

specific knowledge about objects 

cube(a). 
cube(b). 
cube(c). 
dimension of(a,2). 
dimension of(b,2). 
dimension of(c,2). 

transient knowledge about objects 

on(a,c). 
position_of(b,vector(15,5,0)). 
posit ion_ of(c,vector(10,5,0)). 
on(c,table). 
on(b,table). 
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generic knowledge about grasping, positions, etc. 

grasping_ of(0,vector(X,Y,Z)) :-  
parallelepiped(0), 
size_ of(0,vector(SX,SY,SZ)), 
X is SX/2,  Y is SY/2,  Z is SZ/2 ,  
asserta(grasping_of(0,vector(X,Y,Z))). 

posi t ion_ of(0,vector(X,Y,Z)) :-  
on(0,W), W / =  = table, 
posi t ion_ of(W,vector(PX,PY,PZ)), 
size_ of(W,vector(SX,SY,SZ)), 
vectadd(vector(PX,PY,PZ), vector(0,0,SZ), vec- 
tor(X,Y,Z)), 
asserta(position_ of(0,vector(X,Y,Z))). 

size_ of(0,vector(X,X,X)) : -  
cube(0), dimension_of(0,X), 
asserta(size_ of(0,vector(X,X,X))). 

parallelepiped(0) :-cube(0). 
vectadd(vector(X1,Y1,Z1),vector(X2,Y2,Z2),vector 

(RX,RY,RZ)) : -  
RX is X1 + X2, RY is Y1 + Y2, RZ is Z1 + Z2. 

task description 

puton(b,c). 
puton(a,b). 

O U T P U T  

declarations 

SIZE-A-X := SIZE-A-Y := SIZE-A-Z := 2; 
SIZE-B-X := SIZE-B-Y := SIZE-B-Z := 2; 
SIZE-C-X := SIZE-C-Y := SIZE-C-Z := 2; 
G R A S P I N G - A - X  := G R A S P I N G - A - Y  := 
G R A S P I N G - A - Z  -'= 1; 
GRASPING-B-X .'= GRASPING-B-Y .'= 
G R A S P I N G - B - Z  ,= 1; 
G R A S P I N G - C - X  := G R A S P I N G - C - Y  := 
G R A S P I N G - C - Z  -'= 1; 
A := F R A M E  (NILROTN,  VECTOR (10, 5, 2)); 
B -'= F R A M E  (NILROTN,  VECTOR (15, 5, 0)); 
C .'= F R A M E  (NILROTN,  VECTOR (10, 5, 0)); 

plan of actions 

MOVE A TO 
(5,5,0)); 
MOVE B TO 
(10,5,2)); 
MOVE A TO 
(10,5,4)); 

F R A M E ( N I L R O T N ,  VECTOR 

F R A M E ( N I L R O T N ,  VECTOR 

F R A M E ( N I L R O T N ,  VECTOR 

6.2. The Generation of MAL Programs 

MAL [11] is an interactive system used to pro- 
gram a cartesian robot with two arms. Each arm 
has three degrees of freedom plus the hand open- 
ing. The mechanical structure is the same as the 
Sigma of the C. Olivetti Company although the 
electronic control has been completely redesigned. 

MAL is a complete programming language, that 
can be considered as an extension to BASIC. In 
addition to the classical set of BASIC instructions 
MAL has instructions to define and synchronize 
parallel tasks and instructions oriented to the con- 
trol of mechanical devices. 

The instruction MOVE sends commands to the 
motors to move the arm. Each axis is individually 
controlled. The same MOVE instruction can move 
up to six axes. The names of the axes are XR, YR, 
and ZR for the right arm, XL, YL, and ZL for the 
left arm. The system does not have to wait for the 
completion of movements before starting execut- 
ing the next instruction. A W after MOVE means 
that the movement  has to be completed before 
executing the next instruction. 

The instructions ACT and DEACT operate the 
hand. 

The program is generated in MAL with the 
following conventions: 
- -  the position of the object 0 is denoted by 

PX-0, PY-0, PZ-0; 
- -  the size of the object 0 is denoted by DX-0, 

DY-0, DZ-0; 
- -  the grasping point of the object 0, with respect 

to the position of the object itself, is denoted 
by GX-0, GY-0, GZ-0; 

- -  the maximum height of objects stacked on the 
assembly plane is denoted by MAXZ. 

The position of the arm to pick up the object 0 
should be: 

PX-ARM = PX-0 + GX-0 
PY-ARM = PY-0 + GY-0 
PZ-ARM = PZ-0 + GZ-0 

Let FLX, FLY, and FLZ to denote the coordi- 
nates of the destination of the object. The corre- 
sponding arm position should be: 

PX-ARM = FLX + GX-0 
PY-ARM = FLY + GY-0 
PZ-ARM = FLZ + GZ-0 
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After  that the object posi t ion should be upda ted  to 

PX-0 -- F L X  
PY-0 -- FLY 
PZ-0 = F L Z  

Since the robot  that we use is cartesian, each 
movemen t  is decomposed in to  the sequence: 
go over ini t ial  posi t ion - go down - grasp - go up 

- go to des t ina t ion  - go down - ungrasp - go up 

6.3. Program Generated in MAL 

1 " ini t ia l izat ion 

2 M O V E  XR, YR, Z R  
3 SET R H  = 9 
4 " declarat ions 
5 SET PX-A = 10, PY-A = 5, PZ-A = 2 
6 SET PX-B = 15, PY-B = 5, PZ-B = 0 

7 SET PX-C = 10, PY-C = 5, PZ-C = 0 

8 SET G X - A  = G Y - A  = G Z - A  = 1 
9 SET GX-B = GY-B = GZ-B = 1 

10 SET D Z - A  = 2 
11 SET DZ-B = 2 
12 SET DZ-C  = 2 
13 " collision avoidance 

14 SET M A X Z  -- D Z - A  + D Z - C  
15 " move a to frame(ni lrotn,  vector (5,5,0)); 
16 SET F L X  = 5, FLY = 5, F L Z  = 0 

17 M O V E  W X R  = PX-A + GX-A,  Y R  = PY-A 
+ G Y - A  

18 M O V E  W Z R  = PZ-A + G Z - A  
19 A C T  R H  

20 M O V E  W Z R  = D Z - A  ÷ M A X Z  

21 MOVE W X R  = FLX + GX-A,  Y R  = F L Y  + 
G Y - A  

22 M O V E  W Z R  = F L Z  + G Z - A  

23 D E A C T  R H  
24 SET M A X Z  = D Z - C  
25 SET PX-A = FLX,  PY-A = FLY,  PZ-A = F L Z  
26 M O V E  W Z R  = D Z - A  + M A X Z  

27 " move b to frame(ni lrotn,  vector (10,5,2)); 
28 SET FLX = 10, F L Y  = 5, F L Z  = 2 

29 MOVE W X R  = PX-B + GX-B, Y R  = PY-B + 

GY-B 
30 MOVE W Z R  = PZ-B + GZ-B 
31 A C T  R H  
32 M O V E  W Z R  = DZ-B + M A X Z  
33 MOVE W X R  = FLX + GX-C,  Y R  = F L Y  + 

GX-C 
34 M O V E  W Z R  = F L Z  + GZ-B 
35 D E A C T  R H  
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36 SET M A X Z  = DZ-B + DZ-C  
37 SET PX-B = FLX,  PY-B = FLY, PZ-B = F L Z  

38 M O V E  W Z R  - DZ-B + M A X Z  
39 " move a to frame(ni lrotn,  vector (10,5,4)); 
40 SET F L X  = 10, FLY = 5, F LZ  = 4 

41 M O V E  W XR = PX-A + GX-A,  Y R  = PY-A 

+ G Y - A  
42 M O V E  W Z R  = PZ-A + G Z - A  

43 A C T  R H  
44 MOVE W Z R  = D Z - A  + M A X Z  

45 M O V E  W X R  = F LX  + GX-B, Y R  = F LY  + 

GY-B 
46 M O V E  W Z R  = F LZ  + G Z - A  
47 D E A C T  R H  

48 SET M A X Z  = DZ-C  + DZ-B + D Z - A  
49 SET PX-A = FLX,  PY-A = FLY, PZ-A = F L Z  

50 MOVE W Z R  = D Z - A  + M A X Z  
51 M O V E  XR, YR, Z R  

6.4. The Generation of AL Programs 

A second module  for program generat ion of 
s imple AL [4] programs has been  implemented.  
The  system knows only a l imited subset of AL. We 
take advantage of the AL data  types V E C T O R  

and  F R A M E  to describe points  and  posi t ions in  
the space. Object  posi t ions are defined as frames. 
Assuming  again that  objects posi t ions are defined 

by  the coordinates  of their po in t  closest to the 
origin, their grasping posi t ions are defined by  the 
vector G RA S P - 0  relative to the object posit ion. To 

pick up the object 0 the posi t ion of the arm should 

be: 

A R M  = PX-0 + G R A S P - 0  

Every time an object is moved the ins t ruct ions  
A F F I X  and  U N F I X  take care of upda t ing  the 

object 's  posit ion. 
Each movement  is decomposed in to  the sequence: 
open  hand  - go to init ial  posi t ion - close hand  - 
affix object - go to des t inat ion - open hand  - 
unf ix  object 

6.5. Program Generated in AL 

B E G I N  
S C A L A R  SIZE-A, SIZE-B, SIZE-C;  
V E C T O R  GRASP-A,  GRASP-B,  G R A S P - C ;  
F R A M E  BGRASP,  A, B, C; 
A F F I X  B G R A S P  TO B A R M  A T  T R A N S  
(ROT(XHAT,180) ,NILVECT) ;  
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SIZE-A := 2; G R A S P - A  := V E C T O R  (1, 1, 1); 
SIZE-B := 2; G R A S P - B  := V E C T O R  (1, 1, 1); 
S IZE-C .'= 2; G R A S P - C  := V E C T O R  (1, 1, 1); 
A := F R A M E  ( N I L R O T N ,  V E C T O R  (10, 5, 
2)); 
B := F R A M E ( N I L R O T N ,  V E C T O R  (15, 5, 0)); 
C := F R A M E  ( N I L R O T N ,  V E C T O R  (10, 5, 
0)); 

{ move a to frame(ni lrotn,  vector  (5,5,0))} 
OPEN BHAND TO SIZE-A + .5; 
MOVE BGRASP TO A + GRASP-A; 
CENTER BARM; 
AFFIX A TO BGRASP; 
MOVE A TO FRAME(NILROTN, VECTOR 
(5,5,0)); 
UNFIX A; 

( move b to frame(ni lrotn,  vector  (10,5,2))} 
OPEN BHAND TO SIZE-B + .5; 
MOVE BGRASP TO B + GRASP-B; 
CENTER BARM; 
AFFIX B TO BGRASP; 
MOVE B TO FRAME(NILROTN, VECTOR 
(10,5,2)); 
UNFIX B; 

{ move a to frame(nilrotn, vector (10,5,4))} 
OPEN BHAND TO SIZE-A + .5; 
MOVE BGRASP TO A + GRASP-A; 
CENTER BARM; 
AFFIX A TO BGRASP; 
MOVE A TO FRAME(NILROTN, VECTOR 
(10,5,4)); 
UNFIX A; 

( park the arm} 
OPEN BHAND TO SIZE-A + .5; 
MOVE BARM TO PARK; 

END; 

7. Conclusion 

We have presented issues in robot pro- 
gramming. We have described the logical design of 
a complex system aimed at producing robot pro- 
grams in various robot programming languages 
starting from a task level description of the oper- 
ation. We have presented preliminary experimen- 
tal results. 
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