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Abstract— Bio-inspired control systems attempt to reproduce
the intelligent behavior by simulating the internal architecture
and mechanisms of the biological counterpart. In this paper we
propose a bio-inspired algorithm for disparity estimation based
on the disparity energy model. In literature several models
have been proposed but actually each of these models seems
to have unique features and unique lacks due to the intrinsic
architecture. Different bio-inspired architectures are reviewed
and from the comparison among these algorithms we propose
a new architecture that takes into account the good properties
of the previous models and tries to overcome the limitations.
Simulations are performed on real images, and comparison with
published algorithms on Middlebury stereo database are shown.
We comment the obtained results from the point of view of
humanoid robotics and show how the study of neurophysiology
can inspire the design of vision systems.

Keywords: disparity map, bio-inspired vision system, neural
model, depth perception, primary visual cortex, humanoid
robotics

I. INTRODUCTION

The human primary visual cortex estimates the environ-
ment depth starting from a pair of stereo images. The visual
signal is captured by the photoreceptors of the retina; after
a brightness pre-processing, the signal is sent through the
Lateral Genicolate Nucleous (LGN) to the primary visual
cortex (V1). From photoreceptors to LGN the visual signal is
strictly monocular, so there is no way to estimate the depth of
the environment using the stereo image cues (e.g. the retinal
disparity). It is known that the depth perception depends
primarily on information about retinal disparity and not
on other information cues coming from high-level decision
areas (like prefrontal cortex) [9]. So, it exists an ”automatic
process” to estimate disparity that does not imply reasoning.
Therefore, if it was possible to simulate the mechanisms that
underlie the depth perception, we could design a system to
estimate retinal disparity in a bio-inspired way.

From the humanoid robotics point of view, that involves
different disciplines from biology to engineering, the ultimate
goal is to build a humanoid that can interact with humans
”like” a human. One of the main issues is to design a
controller for humanoid robots is to deal with the vastness
of the information available in the surrounding environment;
it is not feasible to simply copy a biological system ”as
is” (and this fact is true in general, even for biological
systems much simpler than humans). Rather, the goal is to

discover principles that underly the biological control and try
to transfer those to humanoid robotics [1].

Besides, the field of bionics seeks to design robots that
mimics biological structures and recent works show that a
successful design rely on embodiment [1][2]. It follows that
the design of the controller (the central nervous system) is
inseparable by the morphology of the robot because both
affect the efficiency of the robot [1] [3]. So, if we intend to
design a complete controller for a humanoid antropomorphic
robot that must interact with humans in hostile environments,
and with potentially infinite situations, it could be suitable
to try to exploit the intrinsic structure of the brain for
information processing.

The idea is to develop a vision system that can be easily
integrated in a more complex architecture which must take
into account also the structure and the embodiment of the
humanoid.

In the following sections we will introduce recent literature
on neural approaches to stereo vision based on neuroscience
evidence, and fully describe our solution. In the last part we
will present our results and compare them to other literature
results.

II. BACKGROUND

Stereo vision generally addresses the research field that
studies how to elicit some interesting features from two
images; one of the main features of interest is the perception
of depth. Then, generally speaking, we are searching for
algorithms or methods that allow to perform the perception
of depth with adequate reliability.

In this section we introduce the main algorithms and
methods published in recent literature.

The first model that explains the intrinsic function of
neurons in the primary visual cortex is the disparity energy

model [7] [8]. This model proposes the existence of two
different types of neurons, called respectively simple and
complex cells, and explains how they communicate in order
to maximally respond in presence of the disparity for what
they are tuned. It also shows that the receptive field of
binocular simple cells can be approximated as Gabor filters,
with proper parametrization (see equation 1). The Gabor
filter is typically used in signal processing and it has several
good properties (for a detailed description see [6]). However,
this model does not explain how it is possible to produce a
reliable disparity map.
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A first systematic study to explain some properties of
the disparity energy model, starting from its mathematical
definition, is developed in [10] [11]. They introduce topics
as spatial pooling, scale pooling, and orientation pooling;
each simulation presented there is done with random dot
stereograms synthetic images (RDS) [9]. The usage of syn-
thetic images is reasonable in order to explain properties but
in general it is not meaningful to evaluate the performance
of the system with them, because the synthetic images have
a simplified spatial structure and luminance intensity with
respect to natural scenes, and in our experience the result of
experiments with RDS are misleading.

In [14] the firing rate of complex neurons is taken as
an evidence of the disparity estimation. So, given different
complex neurons with different preferred disparities, the
estimated disparity is equal to the preferred disparity of the
most responsive neuron of the population.

A template-matching approach is proposed in [15]; it is
based on a scalar measure of the mismatch between the
neural responses and the templates of responses, given a
specific disparity.

In [16] a model that successfully integrates spatial pooling,
orientation pooling, and scale pooling is proposed; they
present a coarse-to-fine mechanism with phase and position-
shift integration. Due to the neural architecture, the system is
robust to the image acquisition noise but the disadvantage is
that the system was designed to work with small disparities
and typically in real scenes the disparity range is quite wide.

Another approach to design a bio-inspired vision system
is discussed in [17] where the cooperation between phase
and position-shift mechanisms is interpreted in a way quite
different respect to [16]. Both methods are based on disparity
energy model but in [17] the system is intrinsically mono-
scale and mono-orientation and it provides a mechanism
in order to evaluate a large range of disparities. Besides,
the authors suggest to use a normalized feature in order
to assess whether the estimation is reliable or not and if
an image point belongs to occluded regions. Their results,
compared to [16], seem to denote a better ability to estimate
the disparity map; however this architecture does not include
the orientation and scale pooling, that should improve the
disparity estimation. In [18] the previous model is extended
with orientation pooling in order to accumulate ”evidence” to
support a disparity hypothesis. This model is mainly based on
a Bayes filter and it uses a Bayes factor to test the hypothesis
with the maximum support. Moreover, the proposed model
identifies the occluded pixels. In [18] they publish the results
of the model tested on Middlebury stereo images [4] [5].

Another approach to disparity map estimation, proposed
in [19], is essentially a coarse-to-fine algorithm, with ori-
entation and spatial pooling. To obtain a robust disparity
estimation a weighted sum of the complex responses for each
orientation is computed. Then, they define a vector disparity
as the vector difference from corresponding points in the left
and the right images, that permits to evaluate disparities that
are not only horizontal. In fact the model can estimate even
disparities that have also a vertical component (it is necessary

to compute this component when the principal axes of the
stereo cameras are not parallel).

Our model combines the technique proposed in [18] for
the computation of large disparities and the capability of the
neural architecture of [19] to estimate the vertical component
of the disparity. Moreover, in order to improve the robust-
ness, we introduce a weighted coarse-to-fine mechanism in
a way similar to [16].

III. THE NEURAL ALGORITHM

The primary visual cortex (or area V1) is the first area that
integrates information afferent from both the eyes to produce
a three-dimensional representation of the environment based
on two-dimensional retinal images; this process is also called
binocular fusion.

The perception of the environment depth is closely related
to the estimation of retinal disparity; retinal images are not
strictly equal because of the physical distance between the
two eyes. Computing the disparity between the two retinal
images allows to estimate the environment depth, relative to
the fixation plan determined by the eyes convergence.

For our purpose, the problem of depth perception can be
reduced to the computation of retinal disparity.

A. Image preprocessing

Generally the image sizes are not know at prior, so we
need to develop a system able to deal with stereo pairs of
different dimension. Obviously, this approach involves to
take care about some system parameters, as we will later
explain. From now on we consider only aspects that are
independent of the size of the images. The acquired images
are, in general, color images so it is necessary to convert
them to luminance data in order to preserve only the intensity
component. After this, the mean luminance is subtracted
from the pair of the two images in order to improve the
edge enhancement, like the human retina [8].

B. Disparity energy neurons

The disparity energy model explains the response prop-
erties of the binocular neurons in V1 [7]. This model uses
two types of neurons, the simple and complex cells, that
are tuned to specific disparities [8][10]. The left and the
right images coming from the preprocessing stage are then
filtered with Gabor filters of different orientation, scale and
shape according to the disparity energy model and the coarse-
to-fine technique with both the phase and position shift
mechanisms [16]. Let rs and rq be the simple and the
complex response of the simple and the complex neurons
respectively, and let g(x,y,θ ,φ ,Δφ ,ω) be the Gabor filter.
Then,

g(x,y,θ ,φ ,Δφ ,ω) = s(x,y,θ ,φ ,Δφ ,ω)w(x,y,θ) (1)

where s(x,y,θ ,φ ,Δφ ,ω) is a cosinusoid and w(x,y,θ) is
a 2D Gaussian-shaped function (known as envelope). The
cosinusoid is defined as follows,



s(x,y,θ ,φ ,Δφ ,ω) = cos(ω [xcosθ + ysinθ ]+φ +Δφ) (2)

where ω is the preferred spatial frequency, θ is the filter
orientation, φ is the phase parameter that will be used in the
complex response mechanism (to define a quadrature pair of
simple responses) and Δφ is the phase difference between
a pair of receptive fileds (RFs). The envelope is defined as
follows,

w(x,y,θ) = k exp(− [xcosθ + ysinθ ]2

2σ2
x

− [xsinθ + ycosθ ]2

2σ2
y

)

(3)
where σx and σy define the envelope dimensions (and the

RF extension) and k, involved in the filter gain, is defined as

k =
1

2πσxσy
(4)

Therefore the receptive fields (RFs), based on biological
evidences [7][8], can be modelled as,

gl(x,y) = g(x,y,θ ,φ ,
Δφ
2
,ω) (5)

gr(x,y) = g(x−d,y,θ ,φ ,−Δφ
2
,ω) (6)

where l,r subscripts represent the left and the right RF,
respectively; d is the position-shift parameter, Δφ is the
phase-shift parameter. Then the simple cell response is
written as,

rs = {
∫ ∞

−∞

∫ ∞

−∞
[gl(x,y)Il(x,y)+gr(x,y)Ir(x,y)]dxdy}2 (7)

where Il and Ir are the input images coming from the
preprocessing stage. Finally, the complex response cell is
defined as,

rq = rs,1 + rs,2 (8)

where rs,1 and rs,2 are simple responses in quadrature phase,
i.e. φ1 = 0, φ2 =

π
2 and Δφ1 = Δφ2. The preferred disparity

of the complex cell response is given by,

Dpre f =
Δφ

ω sinθ
+d (9)

which means that the complex cell will response max-
imally when the RFs of the complex neuron contain the
preferred disparity.

C. Neural Architecture

In this section we explain the neural architecture of our
system (see Figure 1). Motivated by the previous section
we integrate some interesting features of other proposed
models. For each pixel in the left image we want to estimate
the corresponding pixel in the right image to produce the
disparity map. The spatial frequency is ω = π

2 and σx = 2.
The position shift across the population is ΔC = {0,1, ...,55}.
The aspect ratio is 2.

1) Spatial pooling: To improve the response of complex
cell it is possible to take into account the physiological fact
that the RF size of the biological complex cell is larger
than that of the complex cell model [10]. Moreover, a
given complex cell response is improved by the responses
of the complex cells of the near neurons. This observation
is included into our model by averaging several pairs of
complex cells with overlapping RFs. Spatial pooling can be
mathematically defined as,

rc(x0,y0) =
1

(a+1)2

x0+
a
2

∑
i=x0− a

2

y0+
a
2

∑
j=y0− a

2

rq(i, j)w(i, j) (10)

where rq is the complex cell response at the (i, j) stereo
images location (see equation 8), w(i, j) is a spatial weighting
function and rc is the spatial pooling response of the complex
cell with RFs centered at (x0,y0) over stereo images. In our
system the chosen weighting function is a symmetric two-
dimensional gaussian with σpooling = 2σx.

2) Normalized response: In [18] they propose to evalu-
ate the population responses at different locations in order
to estimate the position-shift component and to refine the
estimation with the chosen population via phase-shift mech-
anism. To evaluate the position-shift component they suggest
to use a normalized feature R defined as,

R =
P−M

M
(11)

where P and M are respectively the peak and the mean
of the population response curve. It can be demonstrated
that the feature R takes values between 0 and 1, since M ≥
(P−M). In order to choose the most probable position shift,
they choose the population response curve (each of them is
localized at different horizontal locations) that maximizes the
feature RΔc, where Δc denotes the current position disparity.
Due to the good properties of this normalized feature we use
it in order to estimate the disparity.

3) Orientation pooling: According to [18], we implement
a similar orientation pooling mechanism.

R̂ = ∑
θ

wθ RΔC,θ (12)

where R̂ formally depends from the position shift ΔC and
the scale, RΔC,θ is the normalized response at equation 11
and the weights wθ , that are estimated through an exhaustive
search in the space problem using a set of Middlebury stereo
images.

According to previous results [16] we use 5 orientations
ranging from −60o to 60o in 30o steps.

4) Scale pooling: Differently from [18] we propose to
introduce a scale pooling phase in order to make robust
the estimated disparity. However, despite [16] and [19]
we introduce the scale pooling as weighted average across
scales. Formally,

R = ∑
s

wsR̂ (13)
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Fig. 1: Neural architecture

where ws are the weights that are estimated through an
exhaustive search. Due some empirical results, we choose to
use only two scales because the overall performance seems
to increase for two scales only.

Now, taking the maximum R at each position shift loca-
tion, we estimate the most probable disparity.

D. Disparity direction

For each pixel it is possible to determine the direction of
the estimated disparity. We take the preferred direction of the
filter (i.e. the normal direction respect to the principal axis
of the filter) that is the direction of the the bi-dimensional
preferred disparity associated to the corresponding complex
neuron.

In [19] the authors propose a weighted sum of the complex
cell responses for each orientation (i.e. center of gravity).
Here, we propose a weighted average of the estimated
disparity for each orientation with optimized weights (es-
timated with an exhaustive search through the orientations).
Formally,

V (x,y) = ∑
i

wθi
dθi

(14)

where wθi
is the estimated weight that depends from the

orientation θ (again, it is estimated through an exhaustive
search) and dθi

is the vector with module equal to the
estimated disparity at the given orientation θ . The resultant
vector V (x,y) will have the direction of the estimated dispar-
ity (in our case we expect to have always horizontal vectors
because our test images have only horizontal disparities). Our
simulations show the effectivness of the proposed formula,
see Table I; for each pixel in the images we compute the

Stereo images Mean Square Error [rad2]
Venus 0.043
Cones 0.036
Teddy 0.094

Tsukuba 0.180

TABLE I: The angle deviation from the optimality

(a) Cones ground truth dispar-
ity map

(b) Cones estimated disparity
map

Fig. 2: Cones estimation

estimated disparity direction and after that we extract the
mean square error.

IV. COMPARISON AND RESULTS

In this section we present the results obtained through
simulation. The bio-inspired model was first coded in Matlab
to prove its correctness and afterward, in order to minimize
the computational time, some key functions (e.g. 2D convo-
lution) were implemented in CUDA.

Qualitatively we can perform a dense stereo estimation
map of 383x434 pixels (the size of some Middlebury images)



Fig. 6: Comparison among the proposed neural architecture for disparity estimation and some state-of-art algorithms [4];
the table is extracted from the online evaluation page of Middlebury Database [5].

(a) Teddy ground truth dispar-
ity map

(b) Teddy estimated disparity
map

Fig. 3: Teddy estimation

(a) Venus ground truth dispar-
ity map

(b) Venus estimated disparity
map

Fig. 4: Venus estimation

(a) Tsukuba ground truth dis-
parity map

(b) Tsukuba estimated disparity
map

Fig. 5: Tsukuba estimation

in about 12 seconds. The performed simulations are relative
to the disparity estimation and the estimated disparity direc-
tion. The estimated disparity maps are then submitted to the
Middlebury evaluation system and the results are presented
(see Figure 6).

The evaluated stereo images are ’Cones’, ’Teddy’, ’Venus’
and ’Tsukuba’ (see Figures 2,3,4,5).

It is worth noting that the proposed algorithm is biologi-
cally plausible and this should be taken into account when
comparing our approach to the other algorithms. We have
obtained an improvement of the performance with respect to
[18].

The simulations also show that the architecture, with the
weighted sum of the direction of the oriented Gabor filter,
is able to correctly identify the horizontal directions of the
disparity (remember that the stereo images from Middle-
bury database have only horizontal disparities). Simulations
should be performed in order to validate the model even for
non-horizontal only disparities.

With respect to the performance reported in [19] we have
obtained comparable results, in terms of bad pixel errors.

V. CONCLUSION AND FUTURE WORKS

A. Conclusions

In this paper we have presented a bio-mimetic system
that computes a disparity map starting from a pair of stereo
images. Previous works show the possibility to develop a bio-
inspired system and here we proposed a different bio-inspired
mechanism in order to improve the performance reported in
[18] [19].

In fact, experimental evidences show that the system is
more reliable for small disparities than for large disparities
[16]. However, as previously shown, natural images have a
wide range of possible disparities even in the same scene.
One way to overcome this issue is to use coarse Gabor
filter large enough to cover large disparities, but empirical
evidence (results not published) seems to indicate that the



estimation is not reliable. Besides, the computational cost is
too expensive and further research is needed to adopt the
simulator for a real-time implementation. Another approach,
implemented in our system, is to use a smaller coarse Gabor
filter in order to cover small but reliable disparities [16] with
an initial position-shift [18] mechanism at the coarse scale.

Experimental evidences and the results presented in [18]
seem to confirm the reliability of this type of approach.
We proposed a strategy in order to integrate the pooling
mechanisms, proposed in [16] and [19], with the position-
shift selection at coarse scale based on a bio-mimetic feature
analysis proposed in [18].

The obtained results point out that the stereo simulator
of the primary visual cortex is a possible candidate for
a physical implementation in hardware. Other works show
this possibility but in general these implementations do not
include the pooling mechanisms of orientations and scales
[20] [21], while it has been pointed out how their contribute
is fundamental in natural scenes.

The output of the system is a disparity map with associated
disparity directions (in the current implementation only hor-
izontal directions); with these decoded features it is possible
to correctly estimate the depth of the environment.

B. Future Works

Future work includes the study of the statistics of the
scenes in order to improve the disparity estimation and to
reduce the number of neurons in the population. Moreover
we will study how to include the color information in the
system, that currently works on gray scalar stereo pairs.
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