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Abstract: The main challenge in today prostheses is the control; the user needs a simple and powerful 
way to move the prostheses without the need of additional hardware and training. Since the most used 
way to control, the hand is to classify EMG signals, we explore in this paper how feasible is the 
multiclass classification of the signals acquired by a miniaturized acquisition board. The goal is to create 
an association between a predefined set of hand/wrist motion patterns and the corresponding EMG 
signals generated by the forearm muscles. Our classifier recognizes up to seven different movements of 
the lower arm. The movements are chosen with the aim of producing a valid base for complex 
manipulation tasks. They involve only a few of the hand and wrist joints making so possible to design 
prosthesis with a reduced number of controlled degrees of freedom, and therefore controllable with 
modern under-actuated techniques. 
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1. INTRODUCTION 

The hand is the terminal part of the forearm and its multiple 
functions make it an important organ of the human body: 
people can use it to sense, manipulate and communicate. 
Therefore it has a primary role also in social activities, which 
makes its cosmetics even more important. It is easy to 
understand how the loss of the hand has significant 
consequences both from a psychological and functional point 
of view, in a person’s life. 

Prosthetic implants are the most common solution for the 
upper limb replacement, but since commercial devices suffer 
of low controllability, low functionality and low cosmetics, 
they are far away from being the biomimetic artificial hand 
we are looking for. The ideal prosthesis would be easy to 
control, comfortable to wear and aesthetically pleasing (Lai et 
al, 2006).  

This work is concerned with finding solutions to the first of 
the three objectives mentioned above, using a novel 
approach: since it is not easy to extract from the residual 
neural activity the commands we first explore how to obtain 
an EMG controller able to classify several basic movements 
of hand and wrist, then we could design a controllable 
prosthesis using the set of commands discriminated. It is well 
known that the movements of the single fingers cannot be 
extracted from the EMG signal, so it is not worth pursuing a 
design with too many degrees of freedom if it is not possible 
to move them according to the user command.  

The EMG control is the most used approach in today’s 
prosthetic devices, because it is non-invasive compared with 
other methods. Its goal is to create an association between a 
predefined set of hand motion patterns and the corresponding 
EMG signals generated by the forearm muscles, in order to 
control a prosthetic hand in a realistic way. 

To the authors’ knowledge, the best recognition accuracies 
obtained by other researchers range between 97% and 99.5%  
(Jun-Uk 2007 and Naik 2007) on a set of motion patterns  
going from six to eight, and using four acquisition channels. 
In these works the most of the patterns recognised is related 
with the motion of the wrist, while the hand can be controlled 
just with an open/close movement. Other approaches (Maier 
2008) are based on the increase of the number of channels, in 
order to control all the fingers individually. 

Our work collocates in the middle between the two types of 
approaches presented above: a method which guarantees a 
high accuracy on the classification of seven motion patterns, 
which mostly involve the finger motions instead of the wrist, 
in order to provide the prosthesis with the capability of 
executing a sufficient amount of complex tasks. 

In the following Sections we will analyze several common 
problems that a good hand-prosthesis has to solve in order to 
be accepted, then our hardware and software solution for 
creating the input to the controller, and finally our proposal 
for the hand design to execute the range of movements that 
can be correctly classified.  
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2.  AMPUTEE’S NEEDS  

In order to understand the extent of the upper-limb 
amputation phenomenon, a deep analysis has been performed 
by NHI in United States in 1988 and 1996. At that time, there 
was an average of 133,735 hospital discharges for amputation 
per year: in contrast with lower extremities amputations, 
which were mainly due to vascular causes, upper-limb 
amputations had been mostly trauma-related (68% out of all 
the trauma-related). The second reason for an upper-limb 
amputation is cancer (23.9% out of all the cancer cases), then 
the vascular one (3% out of all the vascular cases). More than 
half of the trauma-related upper-limb amputations occurred at 
finger level, then at the thumb (12%), at the trans-radial level 
(2%) and finally at the trans-humeral one (1.5%). Moreover, 
considering the congenital losses, in 1996 the incidence is of 
1,500 over 10,000 live births: the 58% out of all the 
discharges is related to the upper-limb, of which the 27% is at 
the longitudinal hand level (MacKenzie 2002). 

Currently it has been estimated that in the U.S.A., there are 
approximately 1.7 million people living without a limb: one 
out of every 200 people has had an amputation (Ziegler-
Graham 2008). 

There are approximately 1,908 upper-limb amputations a 
year versus 56,912 lower-limb amputations: the upper-limb 
amputee’s population is much smaller. Therefore, it is often 
noted that upper-limb amputees feel isolated from their peers. 
The upper-limb amputees often reject their prosthetic 
devices; therefore researchers are questioning about the 
resources needed to enable the patients to cope with their 
limb loss and eventually with their prosthesis. It has been 
found that individuals with upper-limb loss who are fitted 
within 30 days of amputation are more likely to accept 
prostheses than those fitted after 30 days. Also differences 
between unilateral and bilateral amputees have an important 
consequence on acceptance. Unilateral amputees tend to 
master tasks with one hand, rejecting prostheses, as opposed 
to bilateral amputees, who require prostheses for some 
prehensile activities. 

In a 2002 survey, seventy Australian upper limb amputees 
responded to a detailed postal questionnaire asking how often 
they wore their prostheses and their level of satisfaction with 
both their prostheses and their functional abilities. According 
to (Davidson 2002) only 44% of amputees reported wearing 
their prosthetic limbs half the time or more. These low levels 
of use might be partly due to dissatisfaction with the 
prostheses regarding cosmetic, discomfort of the harness and 
strong pain.  

Looking at the kinds of hand prosthesis available on the 
market, we can observe that even the most advanced ones 
provide five separately actuated fingers but a maximum of 
two commands (open or close). Different grip positions are 
manually obtained changing the position of the thumb, 
improving the versatility of the prosthetic device. No degree 
of freedom on the wrist is provided. Controllers based on 
EMG are common, but the only commands in use are 
open/close. Figure 1 shows one of the most advanced 
prosthesis, iLimb. 

 

Fig. 1. The ilimb hand, from Touch Bionics 

3. NATURE AND CLASSIFICATION OF EMG SIGNALS 

The neuromuscular system is an association of several 
functional units, called motor units(MUs), constituted by an 
alpha motoneuron and the sum of the muscle fibres it 
innerves. Nervous and muscular cells react to external events 
and have electrical polarity on both sides of their 
cytoplasmatic membrane. The measured membrane potential 
is stable within -70mV and -90mV. After excitation, cells 
react with a transitory variation depolarization of the 
electrical polarity of the membrane that is called the action 
potential (AP). APs are always identical in duration and 
characteristics; propagate along the membrane of nervous 
cells from the axons to the muscle cells via the motor end 
plate, a chemical unit using neurotransmitters. A single axon 
is subdivided at its end into branches, innerving many fibres. 
Muscles are associated with many MUs. When a motoneuron 
is activated, an AP is generated and propagated along the 
axon and its branches to muscle fibres; each muscle fibre 
generates a signal, called MFAP (muscle fibres action 
potential). The algebraic sum of MFAPs of the single motor 
unit defines the MUAP (motor unit action potential).  

Surface EMG techniques (sEMG) detect a large number of 
MUAP, so it’s considerable as the spatial and temporal 
integration of a signal composed of several identical signals. 
Detecting the single contribution of each motor unit is a well 
known problem called cross-talking.  

Many sources in literature establish that the amplitude of the 
EMG signal is stochastic in nature, and can be represented by 
a Gaussian distribution function. The amplitude of the signal 
ranges from 0 to 10mV (peak-to-peak) or 0 to 1;5mV (rms). 
The usable energy of the signal is limited to a specific 
frequency range (0 to 500Hz), with the frequencies that most 
suit our purposes centred in a range between 50 to 150Hz. 
EMG signals present two main issues that strongly influence 
the quality of the signal: the signal to noise ratio, and the 
distortion of the signal. Noise may emanate from a wide 
range of sources: electrical components, which can be 
eliminated through intelligent circuit design, the ambient 
(external disturbances), the body itself (cross talking, 
endogenous disturbances) or movement artifacts. Motion 
artifacts can be limited reducing signal cables length, while it 
is still partially unresolved how to deal with the noise 
generated by our body. 

Multifunction single-channel systems are able to recognize 
more than one function by means of just one channel. The 
approach is usually based on pattern recognition methods, or 
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on artificial neural networks (ANN) that receive in input a 
few statistic features: the mean absolute value, the mean 
absolute value slope, the zero crossing, the slope sign 
changes and the waveform length (Hudgins 1993). 

Multifunction multi-channel systems try enhancing the EMG 
control systems using more channels: other electrodes have to 
be positioned on the forearm. A two-channel system used a 
neural network to classify four functions, with a performance 
of 90% (Doershuk 1983). Four channels were used to extract 
five time-domain features per channel, in order to train a 
network on six functions and 99.5 performances using 
wavelet coefficient features (Xiao wen Zhang et al, 2005).  

In 2004 an investigation was carried on about increasing 
classification performance with number of channels. The 
performance in classifying 10 functions with a linear 
discriminant classifier increased with the number of channels, 
reaching 94% at sixteen channels. The performance at eight 
and four channels dropped to 93% and 87% respectively 
(Parker et al, 2006). 

Another system using Wavelet Packet Transform is able to 
recognize nine hand motions from four-channels (Jun-Uk 
2007). In 2008 a new learning method was proposed, which 
can detect extension and flexion of all human fingers, as well 
as sideways movements (abduction/adduction) using lower 
arm surface EMG with ten channels (Maier et al, 2008).  

An interesting and potentially effective approach to 
independent simultaneous control is Independent Component 
Analysis and blind source separation. Applied to the signals 
generated by a group of muscles and detected by an array of 
electrodes, it is theoretically possible, under certain 
conditions, to recover the individual muscle signals for 
control purposes (Naik et al, 2007.) 

4.  HARDWARE AND SOFTWARE SOLUTION  

Since this work is a feasibility study about the real possibility 
to integrate in an active prosthesis a controller based on a 
multiclass classifier, the decision was to program the whole 
project in Matlab and later export it into a programming 
language suitable for a microcontroller. Work is in progress 
to port the system on a NVIDIA tegra hardware using Python 
and C languages.  

This paper shows the results of the feasibility study, therefore 
only the accuracy and theoretical results are presented, while 
considerations about speed and other implementation aspects 
are left to future works. Previous work is described in 
(Arvetti et al, 2007) 

4.1. EMG acquisition 

In the current work the recording of the EMG signal is 
carried out by means of three different channels in bipolar 
configuration (6 electrodes plus one reference), which are 
positioned respectively along the Extensor Carpi Ulnaris, the 
Extensor Digitorum Communis, and along the group of  
flexor muscles, while the reference is on the elbow. Since the 
electrodes have a big surface (5cm X 5cm), they are prone to 

detect also the contractions of muscles nearby the ones 
mentioned above. Because of this configuration we expect 
Channel 1 and Channel 2 to detect stronger signals when 
extension movements are performed and Channel 3 to detect 
more accurately the flexion movements. The positions are 
illustrated in Figure 2. The electrodes send the signals to a 
computer through a small acquisition board, designed and 
realized at Politecnico di Milano (Figure 3). 

 
Fig. 2. The positions of the electrodes for acquisition 

 
Fig. 3. The acquisition board and the 3 EMG signals. 

4.2. Burst extraction 

The acquisition system is able to record the whole muscle 
activity, which comprehends the relaxation and contraction 
phase, but we need just the parts of the signal related to the 
muscle contraction (burst). To extract them, each incoming 
signal is rectified, enveloped and subject to a dynamic 
threshold (modified moving average). Since the signals come 
from three different sources, their segmentation is 
characterized by parallelism issues: these are solved by 
dynamically selecting, at each burst, the leading channel (the 
one with the strongest signal), which “decides” when a 
contraction starts and ends, consistently for all the three 
channels. 

4.3. Feature Extraction 

The features extraction module has the role of identifying 
particular numeric parameters from the single signal burst. 
Such parameters are called features, and the whole set of 
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features is called feature vector. The temporal approach to 
signal analysis is based on parameters like mean absolute 
value (MAV), mean absolute value slope, slope sign changes, 
and waveform length. The above temporal features do not 
help much in recognizing the hand motion, with the 
exception of MAV which can be loosely related to the signals 
energy. Also we build the linear envelope, often referred to as 
the integral EMG (iEMG) of the rectified burst. MAV and 
iEMG are the first two features. 

Extracting information contained in time-frequency domain 
needs the use of spectrum analysis. Fourier Transform (FT) 
and its inverse provide a relation between the time domain 
and the frequency domain; it is an optimal solution when 
there is no frequency change with time. However, it does not 
give any information on a time localization of the frequency 
component of the signal. Time-frequency analysis based on 
short-time Fourier transform (STFT) treats time and 
frequency simultaneously. The basic idea of STFT is to 
divide a signal into short pieces and apply FT to each piece. 
STFT is a very useful mathematical method. However, there 
are many sorts of signals in nature that are non-stationary, 
non-periodic, ”fractal” or seemingly chaotic. 

Since EMG-signals are typically non-stationary and irregular, 
new methods of analysis could supplement the traditional 
ones. The best known of these new tools is the wavelet 
analysis. The basic idea underlying wavelet analysis consists 
of expressing a signal as a linear combination of a particular 
set of functions, obtained by shifting and scaling the mother 
wavelet. The decomposition of the signal into the basis of 
wavelet functions implies the computation of the inner 
products between the signal and the basis functions, leading 
to a set of coefficients called wavelet coefficients. The 
Continuous Wavelet Transform (CWT) is here used. 

Computing the CWT of a single burst composed by 270 
samples produces a matrix of size 5x270; it has five rows 
because of the empirical choice to make the scale vary 
between 1 and 5. The dimensions of the matrix are reduced to 
5x1through the Singular Value Decomposition (SVD) 
method. So the vector of the extracted features has seven 
elements. In this way a feature vector representing a hand 
movement is composed by seven features per channel, for a 
total of 21 elements.  

An Artificial Neural Network (ANN) is then trained to 
associate each feature vector with the corresponding hand 
movement (Fig 4).  

4.4. Movement Classification 

Often classifiers are black box models, trained to learn 
associations between a specified set of input-output pairs. 
Actually, each training sample is labelled by a human, 
according to its corresponding abstract class (supervised 
learning). Then in the training phase the classifier learns how 
to associate each training input to its target output. After 
being trained, the classifier is able to predict the class of 
membership of a whatsoever unlabelled input taken from a 
test set.  

 

 

Fig. 4: Schematic representation of the system  

ANN is the technique selected to perform supervised 
learning. This method is very flexible and general (since it 
makes only the assumption that the mapping function to learn 
is non-linear), but as a shortcoming it requires a trial and test 
approach to build the classifier. The net is designed to 
recognize the following seven simple motions:  

1) hand closing; 
2) hand opening; 
3) wrist extension; 
4) wrist flexion; 
5) thumb abduction; 
6) thumb opposition; 
7) index extension. 
To obtain good performance the same user who provides the 
signals for training will use the trained net. In the developed 
protocol for network training, the user makes sessions to 
acquire signals for each movement repeated ten times. The 
signals are divided into training set, validation set, and test 
set in the proportions 3/5, 1/5, 1/5.  

After trials, it came out that the best classification 
performance is obtained by a feed-forward network with 7 
input neurons (the feature vector described in 4.3), 7 output 
neurons corresponding to the movements, and one hidden 
layer composed by 35 neurons. Activation function is Tan-
Sigmoid, and the Levenberg Marquardt algorithm is used for 
training. The network outputs are linear, thus binary encoding 
is needed. For example if the first neuron output is the nearest 
to 1, then all the other outputs are set to 0. The resulting 
binary string, in this particular case, represents the event 
“Hand closed” [1 0 0 0 0 0 0]. Each of the seven movements 
has its own binary encoding. 

5. RESULTS 

The general idea behind this project was to work in a 
different way compared to the majority of works present in 
literature: i.e. starting from the analysis of the signal and its 
problems in order to define the specifics for a final robotic 
hand prototype. This approach permits to identify a set of 
movement that will be recognized by the control system with 
good performances, avoiding realizing a complex prosthesis 
that is impossible to correctly actuate or a simple hand unable 
to exploit the capability of the actual signal classification 
devices.  

In order to evaluate the performance of our acquisition and 
classification system, we collected four sound subjects, and 
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asked them to attend some acquisition sessions, in order to 
collect a sufficient amount of data to produce some statistics.  

All the subjects performed the seven movements (close hand, 
open hand, wrist extension, wrist flexion, thumb abduction, 
thumb opposition and index extension), repeating each one 
ten times before taking a break. Each train of ten repetitions 
has been performed twice by subjects A & B, and twice by 
subjects C & D, for a total of 30 repetitions for movement in 
subjects A & B and 20 for subjects C & D. Each train has 
been acquired slightly shifting the position of the electrodes, 
in order to improve the independence from each session, and 
to avoid an excessive rising of the muscular fatigue.  

A MATLAB(R) script has been developed to analyze 
collected data and produce some statistics to evaluate the 
general behaviour of the proposed system. The whole 
collected dataset for each subject has been divided into two 
sets, one dedicated to train the ANN (training and validation 
sets) and the other to test it (test set). The number of 
repetitions of the same movement to recognize in the test set 
was 6 for the first two subjects and 4 for the last two. 

For each subject a net was trained and tested. Results in table 
I show that the movement recognition rate of a trained net 
using our system is very high, with a mean for all movement 
of near 100%. The two errors are in recognizing wrist 
extension or thumb abduction for the last two subjects, 
namely a teenager fat boy and a middle aged woman; for both 
the muscular tone is low. 

Table I. Number of errors in recognition of movements in 
four subjects. In bold the errors. 

BEST Sub A Sub B Sub C Sub D 
Mov 1  0/6 0/6 0/4 0/4 
Mov 2 0/6 0/6 0/4 0/4 
Mov 3 0/6 0/6 1/4 0/4 
Mov 4 0/6 0/6 0/4 0/4 
Mov 5 0/6 0/6 0/4 1/4 
Mov 6 0/6 0/6 0/4 0/4 
Mov 7 0/6 0/6 0/4 0/4 
 

A second MATLAB script was developed to assess the 
independence of the results from the choice of input data to 
train the nets. This script tests cyclically generates different 
partitions of training/test data and tests them. In this way, all 
data entered at least once the test data set for some nets; the 
results indicate the stability of the approach.  

In table II, results produced by the second script indicate that 
the error hit rate increases, but proportionally to the increase 
of the number of movement tested, maintaining the ratio 
quite stable.  

This suggests that the proposed system is stable on the 
dataset, and shows a good independence on the training set 
used to train the ANN classifier. 

 

Table II. Number of errors in recognition of movements in 
four subjects. In bold the biggest errors. 

AVERAGE Sub A Sub B Sub C Sub D 
Mov 1  1/120 1/120 0/40 1/40 
Mov 2 5/120 6/120 3/40 0/40 
Mov 3 0/120 4/120 240 1/40 
Mov 4 1/120 0/120 0/40 1/40 
Mov 5 6/120 7/120 0/40 3/40 
Mov 6 3/120 2/120 0/40 0/40 
Mov 7 9/120 2/120 2/40 1/40 
 

Eventually, the influence of other factors, like muscle fatigue, 
patient’s concentration, motivation and training level was 
also analyzed, leading to the conclusion that a patient needs 
to be well trained and prepared before the customization of 
his own prosthetic controller, as well as motivated and 
assisted. This topic deserves further investigation. 

It is also important to make few considerations on the utility 
of the motion patterns that the system is able to recognise. 
Combining them in the right way it is possible to reproduce 
many complex grips, described by Cutkosky. (1989). Lateral 
Pinch, Small Diameter, Disk, Sphere, Thumb-Index Finger, 
Tripod, Platform and, the index point. 

To create the abstract mapping between the seven basic 
movements recognized by the classifier and the complex 
patterns taken from the Cutkosky’s taxonomy, we will 
develop a high level controller, here presented in an abstract 
way. The first task is to create the following commands: 

1. hand closing detected: all the DC motors in the 
metacarpophalangeal joint, plus the flexion/extension DC 
motor of the thumb start to flex the fingers; 
2. hand opening detected: all the DC motors in the 
metacarpophalangeal joint, plus the flexion/extension DC 
motor of the thumb start to extend the fingers; 
3. wrist extension detected: the single motor in the wrist 
performs the extension; 
4. wrist flexion detected: the single motor in the wrist 
performs the flexion; 
5. thumb abduction detected: if the hand is in the “opened” 
configuration, then the thumb can be abducted by its 
abduction/opposition DC motor ; 
6. thumb opposition detected: if the hand is in the “open” 
configuration, then the thumb can be opposed by its 
abduction/opposition DC motor; 
7. index extension detected: flexion/extension DC motor of 
the index finger starts to extend, while all the other 
flexion/extension DC motors in the fingers, thumb included, 
start to flex. 

Hereafter, from different concatenations of these basic 
movements the high level controller has to produce complex 
motion patterns. The whole process is described in Figure 5 
for the wrist; it uses only the two wrist commands as state 
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transitions, and for the hand, that uses the other five 
commands.  

 

Fig. 5:  Wrist state diagram 

6. CONCLUSIONS 

In this work we establish the basis for the design of a brand 
new prosthesis, since the whole prosthetic control relies on 
the EMG signal analysis. 

The performances (98.6%) that the system is able to achieve 
are really promising, considering that it is able to recognize 
seven motion patterns with the use of just three channels. 
These seven basic patterns are then fed into a high level 
controller which is able to produce six different complex 
movements, like key, power, precision, tripod grips, plus 
platform grasp and index point. In this way the dexterity and 
the reliability of the hand are improved with respect to 
previous works on the subject. Moreover we were able to 
understand that factors like electrode displacement, fatigue, 
body structure, concentration, motivation and the training of 
the patient can influence the whole system. 

Of course, for the patient’s sake the reliability and the 
recognition rate of such a product should be of 100%. This 
goal is reachable just if the patient is well trained, motivated 
and concentrated. This means that he needs a trainer who 
helps him to overcome both the psychological and technical 
issues related to the acquisition phase and to the training 
phase. 

As a practical result, we have developed a complete 
hardware/software system to classify EMG signals into seven 
movements, with an accuracy of the classifier which is 
comparable to the best results obtained in other studies.  

Our results suggest that the control of prostheses with more 
movements that the open/close is not only worth 
investigation but definitively promising. 
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