
TOWARDS AUTOMATIC ERROR RECOVERY IN ROBOT PROGRAMS

Maria Gini
Department of Computer Science

University of Minnesota
207 Church St. SE, Minneapolis, MN 55455

Giuseppina Gini
Dipartimento di Elettromca

Politecnico di Milano
piazza L. da Vinci 32, 20133 Milano. Italy

ABSTRACT
Unexpected events can cause the failure of

apparently "correct" robot programs. The interaction
with the real world and its unpredictability make the
problem of error recovery in robot programming spe
cially important. The goal of the paper is to present a
general framework in which the activity of error
recovery can be automated. This is accomplished by
introducing a monitor program which identifies the
appearance of any error and attempt to correct that
error. The correction is done using a knowledge base
where the knowledge that the user has about error
identification and correction is expressed in symbolic
form. An inference mechanism allows extension of this
knowledge base for use in complex and unanticipated
situations.

I INTRODUCTION

Robots are being used in a wide variety of applica
tions. To operate successfully they should be able to han
dle unexpected events. A more intelligent perception of
the robot environment is needed The capability of mak
ing decisions in answer to external conditions should be
improved. This should also result in greater safety for
the operating personnel and the equipment installed in
the vicinity of the robot

With current robot programming languages (Bonner,
1962), one can recover from failures caused by arm
errors only by using ad hoc error recovery procedures.
In writing and debugging manipulation programs, users
must depend on their experience, intuition, and common
sense to decide what errors to watch for.

Errors in robot programs are difficult to identify
because of their unpredictability. The same program can
work well hundred of times and then stop because of a
minimal variation in size of one part or because of a lit
tle spot of oil on it. Moreover since the programming is
done on-line (Gini, 1982) the robot must be used for
large amounts of time to check new programs before
they can be reasonably used in production.

The problem of recovering after an error has not yet
been fully addressed. To do this the system needs to
have a knowledge of how the world in which the robot is
operating is structured (Gini, 1981).

The problem of dealing with errors has been
approached in various ways and with different objectives
in plan generation research. Systems such as NOAH
(Sacerdoti, 1977), and HACKER (Sussman, 1975). tried to
Partial support for this work is gratefully acknowledged to the Mi
croelectronic and Information Sciences Center at the University of Min
nesota and to the Italian National Council of Research.

solve errors arising during the planning. The TROPIC sys
tem (Latombc, 1979) has a similar mechanism for failure
correction. These approaches have not been applied to
real robot tasks.

The system more close to our solution is presented
in (Srinivas, 1976). He has designed a practical system
for analysing failures and their causes, and for replan-
ning the recovery activity. Its main limitation derives
from the extensive use of plan formation as the basis for
constructing robot programs and on the choice of check
ing only the preconditions of the actions. In this way an
error may be discovered later than when it appeared.

The problem of error recovery plays an important
role in industrial robotics The possibility of using robots
unattended, such as during the night, requires at least a
reasonable solution of the problem. Strategies to fulfill
safety requirements in the case of failures of the robot
are important too.

// A METHOD FOR AUTOMATIC ERROR RECOVERY

This paper presents a general framework for
automating the error recovery activity This is accom-
plished by an intelligent monitoring system running
concurrently with the robot program Every time an
error arises the appropriate recovery procedure is
detected using information extracted from a knowledge
base (Stefik, 1982), The knowledge base contains rules
about correction activities and about interpretation of
sensor data.

To detect what happened and to identify the
recovery action the system .should know the effect on the
world of each of the instructions of the program. Some
form of dynamic model of the robot environment and the
ability of interpreting information gathered by sensors
are also needed (Rosen, 1977)

The general scheme is

WHAT HAPPENED ?
(sensor

er ror i n te rp re ta t i on
detected ru les)

>
program execution

<-
recovery WHAT TO DO ?
act ions (recovery

ru les)

822 M. Gini and G. Gini

We examine in more detail the recovery method. We
start by defining the dynamic model of the world, and
the semantics of the robot programming language. Then
we present the organization of the knowledge base.

A. Dynamic model

An initial model of the world is constructed from the
declarations present in the program, and data from sen
sors.

For each instruction let InitialModel be the model
valid before the execution of the instruction.

ExpectedModel is the model expected to be valid
after the execution of the same instruction It is
obtained from the InitialModel and the postconditions of
the instruction.

ExpectedModel can contain conditional expressions
since postconditions can be expressed with conditional
parts. For instance the instruction that, closes the hand
can be used either to grab an object or to close the
hand. The sensors in the finger can identify the situation
at run time

Let CurrentModel be the currently valid model.
It should be obvious that if there are no errors

before executing an instruction CurrentModel is the
same as InitialModel If there are no errors after execut
ing the instruction CurrentModel is the same as Expec
tedModel.

1. Example
At the beginning of the program the InitialModel can

be:

Arm = ParkPosition
HandOpening = X
i f TouchSensorTriggered

then ObjectHeld,
ObjectSize = HandOpening,
ObjectPickedUpAt = Arm

else ClearHand.

B. Semantics

We describe the semantics of the language in a
STRIPS-like form (Fikes, 1971).

Each instruction has associated a list of precondi
tions and postconditions. The preconditions express what
should be true before executing the instruction, the
postconditions express how to modify the current model
after the execution of the action. They are expressed in
term of additions (ADD), deletions (DEL) , and updating
(UPD) to the model.

1. Examples
We consider a small subset of AI. instructions (Bin-

ford, 1979).

MOVE ARM TO frame
prec :
post: UPD: arm=frame,

OPEN HAND TO d
prec :
post: i f ObjectHeld

then ADD: ClearHand
DEL: ObjectHeld,

ObjectSize = X.
ObjectPickedUpAt = Y

UPD: Opening = d

CLOSE HAND TO d
prec: ClearHand
post: UPD: HandOpening = d

If TouchSensorTriggered
then ADD: ObjectHeld.

ObjectSize = d,
ObjectPickedUpAt = Arm

DEL: ClearHand

Note that we consider rigid objects so that after
OPEN and before CLOSE the hand does not hold anything.

Using postconditions the ExpectedModel and the
CurrentModel can be determined For instance, after a
MOVE instruction the ExpectedModel is computed by
updating the arm position in the InitialModel, while the
CurrentModel is computed by reading the actual arm
position.

C. Knowledge base

We use a knowledge base containing two types of
rules, sensor rules (used to interpret, the sensor data),
and recovery rules (used to produce the recovery)

Sensor rules have the form
if D, . then C

where the D's express what we want to know from sen
sors and C is their "logical" interpretation This organi
zation allows a certain independence between the raw
data from sensors and their interpretation

The recovery rules have the form
to obtain G, .. when S, . do R, ..

where the G's express what we want to achieve, the S's
express what we know is true, and the R's are recovery
actions.

1. Examples
SensorRules:

i f FingerTouchSensorTriggered
then ObjectHeld

if not FingerTouchSensorTriggered
then ClearHand

RecoveryRules:

If the object is lost during the movement we can recover
with

to obta in ObjectHeld
when ClearHand
do Compute NextPickUp;

GrabObject(NextPickUp,ObjectSize)

knowing that

if ObjectPickedUpAt = X
then NextPickUp = X + d

If the arm is not in the right place we can use the rules

M. Gini and G. Gini 823

to obtain Arm=Frame2
when Arm=Framel, Di st (Arm, Frame2)< 5
do MOVE ARM TO frame2 DIRECTLY

to obta in Arrn=Frame2
when Arm=Framel, Di st (Arm, Frame2)> . 5
do MOVE ARM TO frame2

If the hand is too closed

to obtain HandOpening = ObjectSize
when HandOpening < ObjectSize
do OPEN HAND TO ObjectSize

2 Recovery procedure
The recovery procedure is activated by the

identification of an error. As we said before, an error is
identified every time CurrentModel at the end of the exe
cution of any instruction is different from ExpectedMo-
del Knowing the situation in which we are and where we
want to be the appropriate error recovery rules can be
fired.

We control both the preconditions before executing
any instruction and the postconditions at the end. The
first check should not be needed since we assume that
the program does not have logic errors We consider it
useful as a protective measure

After the recovery we resume the execution of the
original program at the point where it was suspended,
The problem of deciding whether to restart it at a
different point has not yet been approached

2. Bonner, S., and Shin, K, "A comparative study of
robot languages." Computer Magaz 15:12 (1882) 82-
96.

3. Fikes, R.E., and Nilsson, N.J.. "STRIPS: a new
approach to the application of theorem proving to
problem solving ." Artificial Intelligence 2 (1971)
189-208.

4. Gini, G., Gini, M., Somalvico, M., "Deterministic and
non deterministic robot programming ,: (Cybernetics
and Systems 12 (1981) 345-362.

5. Gini, G., and Gini, M., "Interactive development of
object handling programs." Computer Languages 7:1
(1982) 1-10.

6. Latombe, J.C., "Failure processing in a system for
designing complex assemblies " In l\oc. 6th IJCAI.
Tokyo, Japan, August 1979, pp 508-513.

7. Rosen, C.A., and Nitzan, 1)., "Use of sensors in pro
grammable automation." Computer Magaz. 10:12
(1977) 12-23,

8. Sacerdoti, E. "A structure for plans and behavior."
American Elsevier Publ. Company, 1977.

9. Srinivas, S., "Error recovery in a robot system." PhD
Thesis, CIT. 1976.

10. Stefik, M., et al , "The organization of expert systems:
a tutorial." Artificial. Intelligence IB (1982) 135-173

11. Sussman, G. J., "A computer model of skill acquisi-
tion." American Elsevier Publ Company, 1975

111 CONCLUDING REMAKKS

Although the examples shown are limited ve think
to have supported our claim that we have presented a
general framework for error recovery in robot programs
Research is under way to write more rules, to introduce
strategies in recovery, and to extend our work to com
plete programming languages. A preliminary mplemen-
tation is under development

In our opinion the strong points of our method are:
* It is based on the use of a real robot programming

language, not a planning system intended for purposes
other than manipulator control;

* The reasoning process used in error recovery is based
on information provided by sensors. Any sensor can be
incorporated, provided that interpretation rules are
available;

* The knowledge base can be easily extended lo cover
more errors and more recovery procedures;

* The language used to program the robot could be
changed, provided that its semantics is supplied in the
same form;

* It can be used to recover errors not only for robots but
also for more complex automation systems,

REFERENCES

Binford, T., "The AL language for intelligent robot." in
Languages et Methodes de programmation das robots
industriels.]R1A Press, Paris, France: IRIA Press,
1979.

