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Abstract

This work is focalized on the study of a bio-inspired neural controller employed to govern a mobile robot. The control architecture
is composed of different subnetworks that emulate the functions of some elementary circuits located in the nervous system of
simple animals, like arthropods or invertebrates. The neuronal model mimics the behavior of the natural cells present in the
animal, and elaborates the continuous signals coming from the robot’s sensors. The output generated by the controller, after
scaling, commands the wheel rotation and therefore the robot’s linear and angular velocity. The mobile robot, thanks to the
controller, presents different behaviors, like reaching a sonorous source, avoiding obstacles and finding the recharge stations. In
the network architecture different modules, charged of different functionality, are regulated and coordinated using an inhibition
mechanism. In order to test the control strategy and the neural architecture, we simulated the system in Matlab and finally in
hardware using a mobile platform equipped with microphones and proximity sensors. Results show that the neural controller
can govern the robot efficiently with performances comparable with those described about the animal.
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1. Introduction

A crucial problem in mobile robotics is the trajec-
tory planning, usually it is required to represent the en-
vironment where the robot is supposed to move and to
model properly the obstacles that should be avoided by
the system.

When a map is available it is possible to plan a trajec-
tory that allows the robot to reach the target in the more
efficacious and efficient way. Up to now many algo-
rithms were proposed in literature to solve this problem
and it was demonstrated that they work very well espe-
cially in an environments where everything is known.
Unfortunately the situation is quite different in real
world, the environment is continuously changing, and
frequently noise (terrain irregularities, wheels slipping,
sensory drift) increases error in the trajectory that the
robot performs. Many times this is sufficient to bring
the system to fail the task.

If we look at nature, we can see that in very ”sim-

ple” animal, insects or invertebrates, the deambulation
behavior is always accomplished (1),(2).

Biorobotics, in this context, tries to give an answer to
these issues mimicking (3), in the machine, the behav-
iors and the structure of living creatures. Studying the
anatomy and the physiology of the animal it is possible
to understand how nature has attempted to solve crucial
functional issues. Many scientists are focusing their at-
tention on the part of the animal’s nervous system that
is involved in the sensorimotor coordination. This part,
considering the phylogenetic evolution of the living or-
ganism, is the simplest and oldest one (4). From the
functional point of view, it covers a primary role because
it permits the animal to perceive, explore and change
the environment where it lives. Because it is relatively
simple and accessible, we have a deeper understanding
on how it works in comparison with the higher nervous
centers.
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2. The neural Controller Architecture

Many researchers have considered a bio-inspired
control system in order to control a robot (5), (6), (7),
(8). Sometimes the animal not only inspires the control
strategy for the robot, but also its kinematics and func-
tionalities. In our point of view there are two possible
goals for bio-robotics: the first is to use the robotic
system to test and validate the models we have for the
animals, the second is to use the proposed models to
design new kinds of robots. Reaching both these goals
at the same time is very difficult and at times dangerous
because a compromise is required. In this work we are
more focused on the second goal, with the main idea to
use the knowledge we have from the biological studies
of the animal to synthesize a ”better” robotic system.
Better, from the functionalities point of view, than a
similar system not based on biological knowledge.

The neural controller we implemented is based on
the early studies conducted by Braitenberg (9) twenty
years ago on very simple automata vehicles, and on the
more recently studies that Barbara Webb et al. (10),(8)
carried out on a robot cricket, whose principal behavior
is to follow sonorous sources.

Inspired by these studies we tried to implement new
paradigms that do not have any evidence in the biolog-
ical studies of the animal. Sometimes it is near impos-
sible to perform a complete comparison between our
model and the biological model, since we are more in-
terested in the robotic functionalities than in mimicking
the animal. Nevertheless we are convinced that study-
ing the living organism gives us a big opportunity to
synthesize new kinds of ”intelligent” machines.
In the neural architecture we propose (Figure1) it is pos-
sible to individuate two neuron layers: a sensory layer
and a motor layer. The sensory layer is composed by 7
neurons connected with different sensors: contact sen-
sors, sound sensors, energy stations sensors, and an en-
ergy level sensor. The motor layer is composed by two
neurons whose outputs, opportunely scaled, control the
velocity of the two robot’s wheels. The synapses of each
neuron can be excitatory or inhibitory, so to regulate the
activation level and therefore the neuron output.
In the network we can also distinguish four principal
parts that are assigned to four different behaviors: col-
lision avoidance, reaching the sound emitter, reaching
the recharge platforms, energy level monitoring. In the
next four paragraphs we will enter in detail in each of
these single parts.

Figure 1. The Neural Controller Architecture

2.1. Collisions Avoidance

This behavior involves the action of neurons SN1,
SN6, MN1, and MN2 (Figure 1 ). In particular SN1
and SN2 have only an excitatory input that receives the
signal directly from the sensors. The output of SN1 ex-
cites the motoneuron MN1 and inhibits the motoneu-
ron MN2, making the robot to turn left when the right
contact sensor (Contact R) is activated by the collision
with an obstacle. The output of SN6 excites the mo-
toneuron MN1, and permits the robot to turn right when
an object is revealed by the left contact sensor. As in the
schema, there is an asymmetry in the cross inhibition;
this is necessary in order to force a left turning when
an object is encountered exactly in front of the robot.
Depending on the synapses value, the robot turn with
less or more strength when it encounters the obstacle.

2.2. Reaching the Sound Emitter

The principal goal of our robot is to reach a sound
source, mimicking the behavior of the cricket female
in tracking the male position. This behavior is possible
thanks to the neurons SN3, SN4, MN1, MN2. As we see
from the schema (Figure1), SN3 realizes an inhibitory
synapse with MN1 and an excitatory synapse with MN2,
so the robot turns right if it receives n the right ear (EAR
R) a signal stronger than the one received by the left ear
(EAR L). The other two connections (SN4-MN1 and
SN4-MN2) of this sub-network are completely symmet-
ric, and permit the robot to turn left if the sound signal
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perceived by the left ear is stronger than that of the right
ear.
In this network the symmetry in the direct inhibitions
works because we want to reach the source, not to avoid
it.
In reality it is possible to use this kind of architecture
to develop other kinds of behaviors if we use also other
kinds of sensors.

2.3. Recharge Platforms Reaching

The Recharge Platforms Reaching behavior, with the
Energy Level Monitoring, is critical for the robot ”life”,
to guarantee energy for some activity. The correspond-
ing behavior in the animal behaviors is searching for
food, that the animal can perceive using olfactory or
chemical receptors.
The sub-network involved in this task is that one con-
stituted by neurons: SN2, SN5, MN1, MN2. The archi-
tecture is similar to that one which permits the Sound
Emitter Reaching behavior, but now only the energy-
stations sensors are involved.

2.4. Energy Level Monitoring

This sub-network, located in the bottom part of fig-
ure 1, has a key role in the control system. It permits to
regulate the priority of the concurrent behaviors: Sound
Emitter Reaching and Recharge Platforms Reaching.
They are concurrent because it is not possible to follow
two different targets at the same time .
The neural circuit contains two different parts: one con-
stituted by neurons SN7, MN1 and MN2, and the other
by IN1 and IN2. Both these circuits receive as input the
signal coming from the sensor that measures the avail-
able energy. When the energy level goes below a fixed
threshold, a signal reaches both the excitatory synapse
of neuron IN1 and the inhibitory synapse of the neuron
IN2. Because of this, the neuron IN1 increases its mem-
brane activity and IN2 decreases it. Their outputs go di-
rectly to influence the synapses values of neurons SN2,
SN3, SN4 and SN5. When IN1 is activated, and there-
fore IN2 results deactivated, the Sound Emitter Reach-
ing behavior is suppressed and the Recharge Platforms
Reaching behavior takes control of the motoneurons.
Note that this mechanism doesn’t control the Obstacles
Avoiding behavior, because it needs to be active also
during the energy stations tracking.
When the robot needs energy it is attracted by the en-
ergy stations, the more the energy level is low the more
the Recharge Platforms Reaching behavior takes con-

trol of the robot. When the robot reaches a recharge
station, the changing level of energy is perceived by the
neuron SN7 that becomes active and rises its output.
This causes the motoneurons inhibition and therefore
the robot remains motionless until the recharge is com-
plete.

3. The Neurons Model

Each neuron in the neural controller is modelled using
equations 1, where P is the membrane potential and Y
the neuron’s output. The potential changes depend on
the excitatory inputs ��� and on the inhibitory inputs��� , weighted by ��� � and �	� � respectively. The term
�� performs a forgetting mechanism. This permits the
neuron to avoid the saturation, and therefore to adapt
to different stimulation patterns (11). The constant K
regulates the dynamics of the neuron, the more it is
hight and the more the neuron is faster in following the
input signals.

�� �������������� ����� ��� � � � 
! �� ��� �	� �"�#� 
$�&%' �)(+*,�-�&% (1)

In this neuron model the activation function is a piece-
wise linear function (Equation 2), that bounds the out-
put in the range 0 - 1, and at the same time keeps
the system linear. Usually, in many neural networks
architectures(12), a non linear activation function is in-
troduced to improve the performance of the network in
approximating non linear functions. But here what is
important is to avoid the neuron saturation and there-
fore the network instability.

(.*,�-�&%/�
�� ��#0 �21 0� 043 �51�667�28	6 (2)

In figure 2 we can see the potential and the output
of the neuron when stimulated with one excitatory and
two inhibitory signals.

3.1. Variable Synapse

Describing the network architecture, in paragraph
2.4, we indicated the capability of IN1 and IN2 to
change the input synapse value of the neurons SN2,
SN3, SN4 and SN5. This is possible modelling the
synapse with a first order differential equation (Eq.3 ).
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Figure 2. The neuron signals.� ���� � ��� 
 ���� � (.*�� ��� % (3)

where � � is the synapse internal state, � � is the tun-
ing signal coming from the neuron ��� � , 	 � a term that
allows the depolarizing mechanism, necessary to de-
crease the synapse value when the tuning signal is low,
and finally (.* is the function described in equation 2.
In figure 3 we see that, when the signal �
� decreases
to zero also the weight decreases, and therefore the ex-
citatory input of the neuron doesn’t have influence on
its potential.

Excitatory Input

Weight Control (Wc)

Weight (W)

Membrane Potential

Neuron Output

Time (s)

Figure 3. The weight tuning mechanism.

This inhibition mechanism is very important to reg-
ulate and coordinate the robot behaviors. What is inter-
esting here, is the possibility to modulate the behaviors
in a continuous way, this means that it is possible to
switch from a behavior to another with a smooth trend.

4. The Robot Model

In order to test our controller we developed a virtual
world where the robot can move and interact with ob-
jects.
The arena (10x10 meters, see figure 4) contains ob-
stacles represented by circles of different diameters, a

sound source (the target position for the robot) and two
recharge platforms.
The mobile robot (0.6x0.4 meters) has two wheels in
a differential drive configuration; controlling indepen-
dently the velocity of the left and right wheels the robot
can move forward, backward, turn left or turn right. The
robot direct kinematic can be solved using the system
of equations 4 :

������ ������
� ��� % � 6�� ����� ��� %������ ��� % %������ ��� ��� % % �!�
" ��� % � 6�� ����� ��� %��#��� ��� % %��%$'& ��� ��� % % �!�
� ��� % � 6�� ����� ��� %/
���� ��� % %(�)�

(4)

where � � ��� %+* " ��� % % is the robot position, � ��� % its orien-
tation and ��� , ��� the linear velocities of the left and right
wheel respectively, obtained directly from the wheel an-
gular velocities. All of these quantities are respective of
an inertial reference system. In this model we neglected
the dynamics of the robot, therefore we do not consid-
ered mass and inertia. This simplification is plausible,
especially if it is possible assume that the robot is very
light, nevertheless future models may also include this
aspect.
The robot is equipped with two sound sensors located
at the right and left side in front of the robot, two en-
ergy station sensors located in the same positions, and
two circular contact sensors (see figure 4).

Contact Sensor

Obstacle

Recharge Stations Sensor

Sound Sensor

Figure 4. The robot equipped with sensors inside the Arena.

The intensity of the sound signals received by the
sound sensors is modelled by equation 5:

��,.- � - �0/ - � � �2143(5 � � - 6	 � � 	76 �
� 	78 � 6 (5)

The intensity of the sound received ( �9,.- � - �0/ - � ) by the
sensors is directly proportional to the intensity of the
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sound source ( � 143(5 � � - ) and inversely proportional to a
quadratic polynomial of the source distance � . A similar
equation can be used also to represent the signal level
received by the recharge-station sensors.
The level of the signal generated by the contact sensor
can be model by equations 6.� � ,.- � - �0/ - � � 	 ������� � 	76 ����� 6

����� ��� �	��
 ������ � ����
 
���� 
 � ����� ��� ��
 � � � � �
(6)

Here ����� is the compression of the circular sensor
when it encounters the obstacle.

5. Results in Simulation

All the simulations were done using Matlab; for
the integration method of the differential equations we
used the Runge-Kutta algorithm with an integration
step of 0.001s.
The first simulation we performed, was done to test
the Sound Emitter Reaching and the Obstacles Avoid-
ing behaviors. As mentioned before this two behaviors
work together to govern the robot movements. The
robot moves from a Start(in the figure is the star sym-
bol) position to the position of the sound source.

Figure 5. Simulations of the Sound Emitter Reaching and the Ob-
stacles Avoiding behaviors with different values for the inhibitory
synapses.

In figure 5 we see the paths followed by the robot with
three different values for the cross inhibition synapses
(a 0.1, b 0.5, c 0.6), located in the sub-network that per-
forms the Sound Emitter Reaching behavior. Increasing
the values for these two synapses makes the robot to
narrow the curves. This is useful to more precisely reach
the target, however near the sound source a strong in-
hibition (quite similar in both the motoneurons) slows
down the robot velocity.

Another experiment was for testing all the behav-
iors. Now the robot has a limited amount of energy
that doesn’t permit it to directly reach the target (sound
source). In this experiment we located two recharge plat-
forms at the two side of the upper part of the arena. As

we see in figure 6 the robot, at the beginning, performs
a trajectory quite similar to that one obtained without
considering the Recharge Platforms Reaching behav-
ior; however, because now the robot has a finite energy
storage, it needs to refill.

Figure 6. Simulation with all the behavior active (prospect view).

When the energy level is under a certain value the
Recharge Platforms Reaching behavior takes the control
of the robot. Now the robot is more attracted by the
energy stations than by the sound source. In the graphs
of figure 7 we can see the progress of the energy level
and the distance travelled by the robot.

Time (s)

S (m)

Charge
Level (%)

Figure 7. The distance covered by the Robot and its energy level.

After 137 seconds the energy reaches the bottom
threshold and the robot changes the direction of move-
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ment. At the 158th second the recharge platform is at-
tained and the robot stays for 8 seconds in recharging;
after it moves around the platform for 7 seconds. This
action is quite strange, it seems that the controller en-
ters in a condition of instability. The phenomenon was
interpreted considering that the station can supply a fi-
nite level of energy. When the energy is terminated, the
robot is not anymore attracted by it and can go to the
final target.

6. Experimental Results

In this section we describe the experiments we have
done using a mobile platform builded in our laboratory.
The main goal was to demonstrate the capability of our
neural controller to govern the robot in reaching a real
sound source in presence of obstacles located inside the
environment.

Another goals is to study the effect of changing the
principal synapses of the network. In particular we con-
centrate our attention on the two inhibitory connection
located between the ear sensory-neurons and the two
motoneurons. These are crossed in the sense that the
inhibition for the right motoneuron came from the con-
tralateral sensory neurons. Experiments evidenced that
depending on the synapse values the robot assume dif-
ferent kind of behaviors.

6.1. Experiment setup

The experiment testbed consists in a mobile robot of
33cm of diameter and 15cm hight, a square arena with
side of five meters, four obstacles and a sound source
that emits a pure sound at 1KHz. The robot we em-
ployed has two actuated wheels equipped with incre-
mental encoder. On the top of the robot we installed two
vocal microphones (JEFE AVL 508) these devises are
hight directionally and permits the robot to localize the
direction of the sound source, indeed they are sensible
only for sounds that hit the sensors frontally. Micro-
phones are connected to amplifiers located onboard and
are prevented from vibration by two neoprene sheet. To
isolate the microphones from the robot is very impor-
tant because motors and wheels generate a noise that
will add to the sound emitted by the target, this nor-
mally will disorientate the robot. The mobile platform
is equipped also with a belt of 18 infrared proximity
sensors located in front of it. The frequency for the in-
frared emitters can assume a values between 32 KHz
and 38KHz, this permit us to distinguish between four
different values of distances (20cm 15 10 5), the more

the object is near to the sensor the bigger is the signal
that it generates. For this particular experiment we di-
vide these set in two subset that are suitable to located
an obstacle at the left or at the right of the robot, we
assumed that the sensor will work like a proportional
contact sensor that increase its output according with
the distance from the obstacle. This will comply the
configuration of the mobile robot we used to perform
the simulations.

Sensors and actuators are managed by a micro-
controller (Microchip 18F452) which take care also for
the communication (RS232) with the host computer.
The robot is connected with the host computer by a
cable that brings the RS232, the power and the sound
signals. To acquire the sound signals we used the
sound board inside the host computer and elaborated
the signals by Simulink.

As said before the robot arena consists in a square
surface of 5X5 meters, were we placed four obstacles
with a diameters of 0.5m, obstacles are yellow in order
to increase the sensibility of the proximity sensors. The
sound source is represented by a pure sinusoid of 1 Khz,
sound is reproduced by an mp3 player connected with
two amplified speakers.

The neural controller runs on the host computer in
real time, to implement the neurons and the sound filter
we used Simulink (Matlab). We chose a fixed integration
step of 0.5ms and employed Euler algorithm. Thanks to
the tool ”Windows Real time workshop” it is possible to
compile the Simulink code and execute it in real time,
this means that every 0.5ms the control system acquires
the input signal from the robot calculates all the signals
that flow in the network and resend the output to the
robot.

The sound signals are acquired using the sound board
that equip the host computer with a frequency of 3.2
Khz, this in order to accomplish the Shannon theorem.
In order to filter noises that can be located inside the
environment, for example from people that are speaking
or from the wheels of the robot, we used a bandpass filter
implemented via software, it lets pass the frequencies
between 0.9 and 1.1 KHz, outside the signal magnitude
is reduced of -80dB. During each experiment the sound
intensity is maintained constant.

6.2. Methodology

In order to prove the efficacy of the neural controller
in governing the robot and to better understand the in-
hibition mechanism that acts in the middle level of the
network, we performed a set of repeatable experiments.
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Synapse MN1 MN2

SN1 0.1 -0.7

SN3 -w 1

SN4 1 -w

SN6 -0.8 0.1

Table 1
The synapses values,SN1 and SN6 are the contact right and left
sensory-neurons and SN3 SN4 the right and left ear sensory-neurons

In each test we started with a well defined initial condi-
tion: each time we positioned the robot in a fixed initial
position and orientation, we regulated the sound source
at a fixed level of intensity and located the obstacles in
the same position. To simplify the experiment we also
excluded the part of the network which is devoted to
monitor the energy level of the robot and to switch from
the Sound Emitter Reaching behavior to the Recharge
Platform Reaching behavior.

Because we wanted to analyze the effect of the in-
hibitory synapses that connect the Ear sensory-neurons
to the contralateral motoneurons, for these set of experi-
ments we keep fixed all the other synapses that interests
the net. In table 1 we reported the values for the con-
nections between the sensory-neurons and the motoneu-
rons, negative values indicate that the synapse inhibits
the neuron, we keep the same nomenclature used in fig-
ure 1. We indicated with a variable w the synapses that
we changed during the experiment. The other synapses
that interest the sensory-neurons inputs are all settled to
the maximum value 1.

As is possible to note we chose different value for the
inhibitory synapses SN1-MN2 and SN6-MN1 in order
to force the robot to turn right if both the contact sensors
are activated at the same value

We want to change the inhibitory synapses that are
located between the sensory neurons and the motoneu-
rons. We will change their values between 0.5 to 0.7
to 1 and to from 0.5 to 0.3 to 0.1, so in total we will
perform five experiments.

Increase these synapses will make the robot turn more
for the same sound intensity and source position, when
the robot is oriented in front of the source these synapses
will decrease the speeds proportionably to the inverse
of the distance between the source and the robot. The
more the inhibitory synapses are hight the more time
the robot will requires to reach the sound source.

In the case the robot is not oriented toward the sound
source, for example because is avoiding an obstacle, a
big cross inhibition will cause a more robot reaction
depending on the difference between the right and left
signals.

Before to feed the neural controller each inputs sig-
nals is normalized between 0 and 1, after the elaboration
the motoneurons outputs are scaled in order to obtain a
proper velocity reference for the two motors that equip
the robot.

6.3. Results and discussion
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Figure 8. Trajectory followed, inhibitory weight 0.1
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7. Conclusion and Future Work

In this paper we presented a bio-inspired neural con-
troller for a mobile robot. The network architecture is
organized in two neurons layers: the sensory layer re-
ceives the output signals coming from the robot sensors
and feeds with excitatory and/or inhibitory connections
the motoneurons, the motor layer combine its input sig-
nals to govern the robot wheels. Inside the architecture
it is present also a sub-network, that using information
about the energy level, regulates the robot behaviors.
The regulation is based on an inhibition mechanism that
acts directly on the synapses of the sensory-motor layer.

From the first results obtained in a simulated envi-
ronment we have shown that the controller is able to
govern the robot in its primary task, that is following a
sound source. We changed the values for the inhibitory
synapses that connect the Ear sensory neuron to the mo-
toneuron and evaluated the robot performance.

Compared with other neural controllers (8) (10), we
introduced a more complex architecture able to perform
different kind of behaviors concurrently. This is possible
thanks to an inhibition mechanism that modulates the
synaptic strength of different sensory-neurons. Related
to the subsumption architecture (13), we developed a
control system that is more biomimetic, in the sense
that the control layers here are represented by different
dynamical neural networks that resemble parts of the
neural circuits of the insects.

Experiments suggest us to consider and develop a
mechanism to adjust the synapses in order to improve
the robot performances. The synapse optimization may
be done for example on the time needed by the robot
to reach the target and on the level of energy consumed
to perform this task. Or it is possible to think to use a
learning paradigm (14), (15).

After the hardware implementation of the controller
using a DSP processor, we can conclude that the time
needed to actuate the robot using the neural architecture
is absolutely acceptable.

A more realistic scenario to test the robot may be de-
veloped to contribute to the wide area of service robots.

References

[1] C. Ghez. Principles of Neural Science. Apple-
ton and Lange, Norwalk, Conneticut, third edition,
1991.

[2] Cesare Casella and Vanni Taglietti. Principi di
Fisiologia. La Guliardica, 1996.

[3] R.D. Beer, H.J. Chiel, R.D. Quinn, and R.E. Ritz-

mann. Biorobotic approaches to the study of mo-
tor systems. Current Opinion in Neurobiology,
8(6):777–782, 1998.

[4] Oswald Steward. Functional Neuroscience.
Springer, 2000.

[5] D. Floreano, J.C. Zufferey, and J.D. Nicoud. From
wheels to wings with evolutionary spiking neu-
rons. Artificial Life, 2004.

[6] S. Nolfi and D. Floreano. Neural synthesis of
artificial organisms through evolution. Trends in
Cognitive Science, 6, 31-37, 2002.

[7] B. Mathayomchan and R.D Beer. Center-
crossing recurrent neural networks for the evolu-
tion of rhythmic behavior. Neural Computation,
14:2043–2051, 2002.

[8] Barbara Webb and T. Scutt. A simple latency de-
pendent spiking neuron model of cricket phono-
taxis. Biological Cybernetics, 82(3):247–269,
2000.

[9] Valentino Braitemberg. Vehicles: Experiments in
Synthetic Psychology. MIT Press, 1984.

[10] Reeve R. and Barbara Webb. New neural circuits
for robot phonotaxis. Philosophical Transactions
of the Royal Society, 361:2245–2266, 2002.

[11] Michele Folgheraiter and Giuseppina Gini.
Human-like reflex control for an artificial hand.
BioSystem Journal, Elsevier Science, 76(1-3):65–
74, 2004.

[12] M. Scholles, B.J. Hosticka, M. Kesper, P. Richer,
and M. Schwarz. Biologically-inspired artificial
neurons modeling and applications. International
Joint Conference on Neural Networks, 1993.

[13] Rodney A. Brooks. Intelligence without represen-
tation. Artificial Intelligence Journal, (47):139–
159, 1991.

[14] S. Schaal. Learning from demonstration. MIT
Press, 1997.

[15] D.O. Hebb. The organization of behavior: A neu-
ropsychological theory. New York:Wiley, 1949.

8


