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Abstract—The problem of describing the bio-chemical action of 

different classes of chemical compounds through relations 
dependent on their structures is known as the quantitative 
structure-activity relation (QSAR) problem. Development of 
toxicity models of phenols using neural and neuro-fuzzy models is 
here proposed. A dataset about the inhibition of growth 
determined by phenolic  compounds to the protozoan ciliate 
Tetrahymena pyriformis was used to produce QSAR and 
connectionist models. The results are promising, and suitable for 
further research. 
 

Index Terms—Neural Networks, Neuro-Fuzzy Networks, 
Fuzzy Inference, QSAR. 

I. INTRODUCTION 

In recent years, the neuro-fuzzy systems have drawn 
increasing research interest. This approach has been 
successfully used in various areas [3][16][18], such as 
speech/natural language understanding [25], industrial and 
medical diagnosis, and financial applications [11][20]. The 
reason for studying and applying artificial neural networks 
(ANN) approaches is a way to develop subsymbolic 
knowledge representation systems, as the ones based on the 
neuro-fuzzy networks paradigm [24]. 

The hydroxy-substituted aromatic compounds (phenols) 
form a large and structurally diverse group. These are 
interesting from a toxicological point of view, since the 
phenols are widely used organic compounds. They elicit a 
number of toxicities to different species [10][22]. Thus, there 
has been much interest in quantitative structure-activity 
relationships (QSARs) for phenols, due to their ubiquitous 
nature and the various toxicities they may have [23]. However, 
for acute toxicity, the elucidation of mechanism of action 
(MOA) is required. In many cases, in the toxicity problem, 
successful QSAR analysis depends on the identification of 
MOA of the compounds [8]. 
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Until now, several research papers have been published, 
discussing the role that artificial intelligence (AI) tools could 
play in the problem of toxicity prediction and QSAR 
modeling. Adamczak and Duch [1] applied neural networks to 
analyze two QSAR series and to compare the results with other 
three AI-related approaches. A hybrid expert system approach 
was done by Gini [11], and applied to predict phytotoxicity. A 
study on the usage of fuzzy logic for descriptors modeling has 
been presented by Exner and Brickmann [7]. In all cases, the 
neural network approach of the toxicity prediction is restricted 
to crisp modeling of data. 

This paper is a contribution to the area of modeling the 
toxicity of phenols and of analysing the correlations between 
chemical descriptors and related MOA. Results obtained using 
neuro-fuzzy techniques for descriptors analysis, toxicity 
modeling, and prediction are encouraging and show that the 
method is worthy of further research as an application of 
ANNs to real problems. 

The aim of the proposed investigation was to perform a 
neural and neuro-fuzzy analysis of 225 phenolic toxicity data 
(described in section 2) to Tetrahymena pyriformis. The two 
most successful architectures of the developed neural and 
neuro-fuzzy models (proposed in section 4) were applied for 
MOA classes of phenols, in order to obtain specific models 
and to compare with the traditional QSAR approach (reviewed 
in section 3). Further, the analysis was performed in an attempt 
to give more light on the mechanisms of toxic action (sections 
5). The developed models were validated by using a test set of 
compounds and compared for descriptors interpretation and 
significance (section 6). Additionally, the results were 
compared with some QSAR approaches (section 7). 

II. DATA DESCRIPTION 

A. Biological data 

The 2D ciliate (Tetrahymena pyriformis) population growth 
impairment (IGC50) data were processed from TETRATOX 
database [6][22], described by Schultz, Sinks, and Cronin [23]. 
All chemicals and their updated toxicity values are available as 
IMAGETOX data sets [2][5]. Toxicity was quantified as the 
log of the inverse of potency. Potency values (reported as 
millimoles, mM) were normalized to their extremes of the set. 

B. Molecular Descriptors 

A total of 158 2D and 3D descriptors were calculated for 
each compound. Hydrophobicity with and without correction 
for ionization (logP, logD), acidity constant (pKa) and energy 
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of the lowest unoccupied molecular orbital (ELUMO) are the 
most cited entry variables for the problem of toxicity 
prediction in our case. Some of them were rejected, due to the 
zero values for most of the chemicals. Finally, 43 descriptors 
were used as inputs in ANNs, and the output was toxicity as 
log(1/IGC50). From these, a number of 7 descriptors built the 
second set of entries, to study their significance in a final 
reduced size model of toxicity and correlation with MOA. 

The mode of action (MOA) of the phenols is coded in the 
following classes: MOA=1, (153 polar narcotics: 4-
hydroxyphenylaceticacid, 1,3,5-trihydroxybenzene, etc.), 
MOA=2 (18 respiratory uncouplers: 2,4,6-trinitrophenol, 2,4-
dichloro-6-nitrophenol, etc.), MOA=3 (27 pro-electrophiles: 
2,4-diaminophenol2HCl, 3-methylcatechol, etc.), MOA=4 (23 
soft electrophiles: 3-nitrophenol, 4-hydroxy-3-
nitrobenzaldehyde, etc.) MOA=5 (4 pro-redox cyclers: 
tetrabromocatechol or tetrafluorohydroquinone). 

Logarithms of the 1-octanol/water partition coefficient 
(logP) and pKa values were calculated using the ACD/Labs© 
software1. The distribution coefficient (logD) at pH=7.35 was 
calculated according to the following expression: 

)101log(loglog pKapHPD −×+−=  (1) 

Other descriptors were calculated with Chem-X ver.2000.1, 
TSAR ver.3.32 and QSARis© ver.1.1)3. 

2D structures of the chemicals, in SMILES notation [26], 
were converted automatically to three-dimensional (3D) 
structures through the use of Chem-X 2D-3D Builder. The 2D-
3D Builder uses a parameter file for building chains and a 
fragment database for building rings and functional groups. 
Converted structures were subsequently optimized by means of 
MOPAC version 6.49, implemented in Chem-X using the all-
valence electron semi-empirical Hamiltonian. By default, in 
QSARis© the structures were entered into the 2D Editor, which 
were converted to the 3D structures, and 2D as well as 3D 
descriptors were calculated. 

III. THE QSAR APPROACH 

A structure-activity relationship (SAR) relates features of 
physico-chemical structure to a property, effect, or biological 
activity associated with that chemical. In so doing, there can be 
both qualitative and quantitative considerations. A qualitative 
relationship is a general rule-type of relationship, which 
provides either yes/no, or at best, A<B<C information. Such 
relationships can be developed with noncontinuous, or 
categorical data. Quantitative structure-activity relationships 
(QSARs), however, can be developed only using continuous, 
or quantitative, data. 

The premise of structure-toxicity modeling is that, changes 
in the structure of a chemical may influence the type and 
potency of its toxic action. This principle is a continuation of 
the concept that all chemical-toxicological effects are the 
result of an interaction between the chemical and one or more 

 
1 ACD/Labs© (1995, Advanced Chemistry Develop.Inc.,Toronto, Canada). 
2 Chem-X ver.2000.1, TSAR ver.3.3 (Oxford Molecular Ltd, Oxford, UK). 
3 QSARis© version 1.1 (SciVision-Academic Press, San Diego, CA). 

components of the living system. Over the past fifteen years, 
schemes for structure-toxicity modeling have changed from the 
congeneric series approach through the chemical class-based 
approach, multiple regression or AI-based approaches. 
Recently, many attempts have been made for modeling the 
toxicity of phenolic compounds as the QSAR analysis on the 
described dataset [2][5][10][23]. Major available data are for 
the inhibition of growth to the protozoan ciliate Tetrahymena 
pyriformis. 

For example, a two-parameter QSAR, or response-surface, 
was developed by Cronin and Schultz [5] based on parameters 
for hydrophobicity and electrophilicity for the toxicity of a 
limited selection of these compounds (QSAR2): 
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where IGC50 is the concentration in millimoles causing 50% 
inhibition of growth, after 40 hours, to Tetrahymena 
pyrformis, P is the octanol-water partition coefficient, LUMO 
is the energy of the lowest unoccupied molecular orbital, n is 
the number of observations, R2 is the coefficient of 
determination, R2

CV is the leave-one-out cross-validated 
coefficient of determination, s is the standard error of the 
estimate, F is the Fisher statistic. Figure in parentheses are the 
standard errors on the coefficients. 
Garg, Kurup, and Hansch [10], obtained, on the same dataset, 
a similar relationship (QSAR3), replacing LUMO with 
Hammett constant (σ): 
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Cronin and Osman [5], working with a greater number of 
phenols to Tetrahymena pyriformis, demonstrated that the 
logD and LUMO are the most successful descriptors in 
modeling (QSAR4) of phenols toxicity (correlation coefficient 
between logD and LUMO is 0.396): 
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Recently, Aptula [2] obtained, for the classification of 221 
phenols, with respect to 4 pre-assigned MOA, based on 5 
structural and physico-chemicals descriptors, a correct 
classification of 89.1% of the compounds (absolute error 0.3). 

IV. THE CONNECTIONIST APPROACH 

We used connectionist models as powerful tools to process 
knowledge, to build models, for multidimensional data scaling, 
and because explicit rules are not available. 

NIKE (Neural explicit&Implicit Knowledge inference 
systEm) is a hybrid system [20], developed in Matlab©6 
(MathWorks Inc.) for prediction, based on modular neural and 
neuro-fuzzy networks. 
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Fig. 1. Implicit Knowledge Module implemented as FNN2. 

 
NIKE system automates the tasks involved in this process, 

from the data representation for toxicity measurements, to the 
establishment of a prediction of a given new input. It also 
suggests how the fuzzy inference produced the result, when 
required. At present, NIKE contains two modules that could be 
used individually, and operate on the same inputs in order to 
model and to predict the toxicity. We define the implicit 
knowledge as the knowledge represented by neural/ neuro-
fuzzy networks, created and adapted by a learning algorithm. 
The representation of implicit knowledge is based on the 
numerical weights of the connections between neurons. 

The first module, called IKM-CNN (Implicit Knowledge 
Module-based on Crisp Neural Networks), takes charge of 
modeling the data set as a multilayer perceptron (MLP [21]), 
for which a procedure of extracting an equivalent fuzzy rules 
system is added, based on the interactive fuzzy operators 
[4][19]. The MLP model is also used to compare the overall 
performance of the future neurosymbolic system with neuro-
fuzzy and QSAR approaches. 

The second module, called IKM-FNN (Implicit Knowledge 
Module-based on Fuzzy Neural Networks) is implemented as a 
multilayered neural structure with an input layer, establishing 
the inputs to perform the membership degrees of the current 
values, a fully connected three-layered FNN2 [9], and a 
defuzzification layer [20] (fig.1). The weights of the 
connections between layer 1 and layer 2 are set to one. The 
linguistic variable Xi is described by mi fuzzy sets, Aij, having 
the degrees of membership performed by the functions µij(xi), 
j=1,2,...,mi, i=1,2,..,p., (in our case, on the descriptors and 
toxicity values). Since the layers 1 and 5 are used in the 
fuzzification process in the training and prediction steps, the 
layers 2-4 are organized as a feedforward network to represent 
the implicit rules through FNN training [9][19]. 

The methodology proposed to build the connectionist 
approach, based on the two described neural and neuro-fuzzy 
architectures, consists on the following steps, for which the 
results will be discussed in the next sections: 
§ Step 1: the identification of input and output linguistic 

variables. The set of data was normalized relative to the values 
of the 225 compounds descriptors. The variables are 
represented by continuous values and fuzzy sets, and mapped 
in the NIKE input units through specific formatted files. 
§ Step 2: the IKM modules are represented as MLP and 

FNN networks (parameterized by the number of hidden 
neurons). We build and train each IKM described, in order to 
assure for each one a crisp specific output. The best CNN and 
FNN networks are chosen to be used in the next steps, as 
neural and neuro-fuzzy models. 
§ Step 3: the contribution of each descriptor, from a short 

list of the  ten most interesting to be studied for their influence 
in toxicity and MOA variations, was measured using the 
strategy outlined by Gori [12]. All the input values 
corresponding to the descriptor under evaluation were zeroed. 
Models for the reduced data sets are developed. 
§ Step 4: The initial data set was split in the MOA classes 

1 and 5 (already easy to model by well known QSARs) and 
classes 2-4, more difficult to analyze through classical 
approaches. The idea is to insert in the future development of 
the hybrid intelligent system NIKE, the explicit knowledge 
about classes 1 and 5 (specific QSARs), as equivalent fuzzy 
rules, and the trained ANN models for the rest. 

V. DATA ANALYSIS 

Both, the input data set values and the output ones, were 
normalized and fuzzified with respect of the 225 phenols 
descriptors values. The input data set consists of 43 
descriptors, while the output is toxicity: log(1/IGC50). 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 
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Fig. 2. Fuzzy shapes of a generic descriptor Di. 

For the FNN processing, the membership functions were 
considered to simplify the calculus and to reduce the number 
of involved input neurons. All the descriptors followed a 
fuzzification trapezoidal-triangular-trapezoidal (fig. 2). 
Consequently, the linguistic variables considered for 
descriptors inputs are characterized by the term sets: 

{ } 43..1,,, == iHighMedLowDi  (5) 

The fuzzy shapes of the normalized values of the toxicity 
considered as linguistic variable are presented in fig. 3, while 
the terms set is: 

{ }VeryHighHighMediumLowVeryLowIGC ,,,,)50/1log( =  (6) 

 
Fig. 3. Fuzzy shapes of the output linguistic variable Toxicity (log(1/IGC50)). 

Five levels of toxicity are defined for the normalized 
log(1/IGC50): VeryLow (0-0.2), Low (0.2-0.4), Medium (0.4-
0.6), High (0.6-0.8), and VeryHigh (0.8-1). The slopes of the 
shapes were considered in order to interpret the outputs as 
classification or as continuous values. The membership 
functions shapes could be chosen from the list of: Bell, 
Gaussian, Pi, S, Z, Triangular, Trapezoidal, and Sigmoidal. 

A. Data Base Preparing 

The whole set of available patterns was divided in two 
independent sets, each one of them having its own task in the 
model training and testing processes (table I). A pattern is 
defined as a vector of values of the input features (selected 
descriptors) and values of the output, toxicity of phenols. 

The training set was used for the adjustment of the 
connections of the neural and neuro-fuzzy networks with 
backpropagation (traingdx) algorithm; traingdx is a network 
training function that updates weight and bias values according 
to gradient descent momentum and an adaptive learning rate. 
The testing set was used for testing both, the trained neural and 
neuro-fuzzy networks. In order to determine the performance 
of the overall best model, the same testing set was used as a 
production set of data. 

TABLE I 

The data set (225 compounds) was divided paying attention 
to conserve the distribution of the 5 classes of MOA, as well as 
the five fuzzy values of the output linguistic variable (fig. 4). 
The algorithm was a 70-30 partitioning, as it is used in the 
majority of such kind of comparative tests between predictive 
algorithms: 159 training cases and 66 testing cases (table I). 

 

 
Fig. 4. The distribution of training/testing sets against the MOA classes. 

VI. THE IMPLICIT KNOWLEDGE MODELS 

The neuro-fuzzy network is a multi-layered structure with 
the 43x3 above described fuzzy inputs and 5 fuzzy output 
neurons, the toxicity linguistic variable log(1/IGC50). The 
number of hidden neurons parameterized the neural and neuro-
fuzzy networks: a medium number of hidden units is desirable. 

THE DISTRIBUTION OF TESTING AND TRAINING SETS. 

Tox. 
MOA 

VeryLow Low Medium High VeryHigh 

MOA=1: 
153 cases 

3+8 14+34 16+36 12+23 2+5 

MOA=2: 
18 cases 

0+0 0+1 1+4 2+5 1+4 

MOA=3: 
27 cases 

0+1 1+2 3+8 2+7 1+2 

MOA=4: 
23 cases 

0+0 0+0 4+9 2+7 0+1 

MOA=1: 
4 cases 

0+0 0+0 0+1 1+1 1+0 

Total: 3+9 15+37 24+58 19+43 5+12 

The values are: (number of testing values)+(number of training values). 
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Fig. 5. The number of outliners with an absolute error prediction greater than 
0.15, for the different IKM-CNN and IKM-FNN (step 2). 

For an ANN, to be able to generate closed decision regions, 
the minimum number of hidden units must be greater than the 
number of input units [12]. To derive the maximum number of 
hidden units in the network, results based on Kolmogorov's 
theorem were used. Hecht-Neilson [13][17] established that 
the maximum number of hidden neurons needed to represent 
any function of n variables is less than twice the number of 
inputs 2xn_input+1. 

The backpropagation algorithm was used for training [21]. 
A learning rate of 0.7 and a momentum term of 0.9 were used 
(a relatively high learning rate ensures rapid finding of the 
error function minimum, and a high momentum term prevents 
too many oscillations of the error function). The networks 
were trained up to 5000 epochs, giving an error about 0.005 
(step 2). The same context was applied for CNN training. The 
most relevant rules were extracted from the IKM structures 
[14][15], using Relative Rule Strength, or Causal Index 
Method for FNN implementation, respectively interactive 
fuzzy operators [19] for IKM-CNN implementation. Finally, 
the 90 hidden neurons IKM-CNN (CNN90H), and 20 hidden 
neurons IKM-FNN (FNN20H) were considered (fig.5). 

The list of the most trusty fuzzy rules extracted from the 20 
hidden neurons FNN20H is: 
IF TS_HOMO is:Low THEN log(1/IGC50) is:Low      
(100.00%) 
IF QS_Gmin is:High THEN log(1/IGC50) 
is:Medium (83.24%) 
IF QS_MaxNeg is:Med THEN log(1/IGC50) 
is:Low (82.27%) 
IF TS_Dip is:Med THEN log(1/IGC50) 
is:Medium (79.13%) 

The performances of the models were evaluated on the 
testing data set. The outputs of the explicit and implicit 
modules, viewed as an inference results, are computed for a 
given testing pattern. A typical model performance is shown in 
fig. 6a (predicted value: 0.74745, the real toxicity: 0.75902). 

Consequently, the connectionist approaches were used as 
descriptors correlation test tool (step 3). The descriptors for 
the reduced data set are: CX_EPM20, MO_Dmax, MO_Amax, 
TS_LUMO, TS_HOMO, QS_SHHBd, QS_SHBa. Good results 
were obtained for this step, with the major observation that all 
the connectionist networks were more difficult to train, and the 
number of outliners was bigger (fig. 7). 

 
(a) (b) 

 
Fig. 6. (a) The prediction of toxicity as a fuzzy inference on IKM-FNN. (b) 
The sensitivity of CNN (back) and FNN (front) on data missing, relative to 
the error of prediction. 

 
Fig. 7. The number of outliners with an absolute error prediction greater than 
0.15, for the IKM-CNN and IKM-FNN, the reduced data set case (step 3). 

The most spectacular and immediate result, is the 
consequence of the two developed models applied in the steps 
1-3, for the already trained FNN20HN and CNN90HN, for the 
descriptors significance study. One of the important tasks in 
phenols analysis is the examination of the relevance of the 
descriptors in the general context of toxicity prediction, in a 
closed correlation to MOA. This is a tedious task, more a data 
mining one, considering the big number of descriptors and 
compounds to be studied. With NIKE, modifying the test data 
set, according to [12], through zero columns on studied 
descriptor, we obtained two important results (fig. 8): 
§ The IKM-CNN models are more sensible to the noisy 

data (fig.6b), as described, which make them a very important 
indicator of the significance of the descriptors to toxicity and 
MOA correlation. As depicted in the fig. 8, CNN demonstrates 
two behaviors about missing descriptor, other than a normal 
small increasing of absolute error prediction: a translation of 
the predictions (fig. 8c), which announce a linear dependence 
with the absent descriptor, or a proportional magnify of the 
error, consequence of a nonlinear relation between some of the 
current inputs. 
§ The IKM-FNN models, as already known from other 

applications, are more robust to noisy data (fig. 8d,f): this 
recommends it as more suitable for toxicity prediction task. 
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(a) IKM-CNN90H (b) IKM-FNN20H 

  
(c) IKM-CNN90H (d) IKM-FNN20H 

  
(e) IKM-CNN90H (f) IKM-FNN20H 

Fig. 8. Performance validation (predicted data set versus real data values) for: 
(a,b) complete test data set; (c,d) significant (D3: ACD_LogD); (e,f) not 
significant (D11: MO_Amax) descriptor missing in test data set. 

VII. CONCLUSIONS AND FUTURE WORK 

Classification of the toxicity correlated to MOA for phenols 
requires a high degree of experience from computational 
chemistry experts. Several approaches were described to 
generate suitable computer-based classifiers for these patterns. 
The described classifiers range from a QSAR to a neuro-fuzzy 
system, through classical ANN architectures (table II). The 
main problem regarding the symbolic approach is the difficulty 
of improvement and correlation analysis, due to the existence 
of limitations in knowledge elicitation, as this is a complex 
domain. Several implicit knowledge models with different 
number of neurons on the hidden layer were trained and 
analyzed  for better results. 

Future work will be carried out following the outlined new 
possibilities of neural and neuro-fuzzy integration of implicit 
knowledge with explicit QSARs into the hybrid system NIKE. 
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TABLE II 
THE DISTRIBUTION OF TESTING AND TRAINING SETS. 

. QSAR2 QSAR3 QSAR4 CNN90H FNN20H 

Accuracy1 0.5622 0.5660 0.5471 0.9377 0.9377 
Accuracy2 0.7283 0.7433 0.7358 0.9822 0.9511 
Accuracy3 0.9471 0.9433 0.9433 0.9955 1.0000 
The values are: Accuracy1 is relative to absolute error>0.15, Accuracy2: 
to absolute error>0.2, Accuracy3: to absolute error>0.3. 


