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Abstract—Teleoperation allows a human operator to use a 
visual display and a joystick to manually control a remote 
robot. The wide spread of internet is pushing now toward the 
use of internet instead of a dedicated connection, so more 
emphasis is now given to the topics of programming in 
internet and of using virtual reality. We investigate here the 
concept of teleprogramming and illustrate a system for a 6dof 
robot arm. In particular teleprogramming solves the delay 
problem of using a remote robot by giving more autonomy to 
the robot and sending it only high level commands.  
 

I. INTRODUCTION 

well-established and growing need exists for the capability to 
perform work remotely using teleoperation and telerobotic 
systems. Teleoperation allows a human operator to use a 

visual display and a "master" manipulator (e.g. a joystick, or a 
mouse) to manually control a remote "slave" device such as a 
robot. Presenting realistic visual information and contact 
forces to the operator improves task performance and increases 
the sense of telepresence [1].  

Telerobotics combines the concepts of teleoperation with 
robotics and automation, enabling the human operator to 
supervise the execution of a remote task rather than exercising 
continuous manual control.  

Under supervisory control [1] [2], a slave with autonomous 
capabilities can be given discrete, high-level instructions rather 
than continuous commands, thus relegating the human 
operator to the role of supervisor. Such instructions must first 
be programmed or taught to the slave, and the operator must 
continually monitor and update instructions during execution. 
This method is therefore only useful when the automation is 
trustworthy, the task execution time is larger than the delay 
time, and the unpredictable aspects of the remote environment 
are changing very slowly.  

The technique developed here is to predict the real-time 
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behaviour based on modelling the slave manipulator and 
environment in virtual reality, and to provide this as a feedback 
to the user. This approach is embodied in a control method 
called teleprogramming and used also to give a feedback to the 
real robot; here we develop the robot program generation, 
where high-level instructions are generated automatically 
based upon the operator's actions, and the slave manipulator 
autonomously executes these commands. 

Through ViMa (Virtual Manipulation), we built a 
teleprogramming system for a CRS 6dof robot, including 
pointing interface, collision avoidance, and multiuser access. 
The system is implemented in C, Java, and VRML. 
Teleprogramming simulates direct teleoperation by allowing 
the user to interact with a graphical simulation of the remote 
environment and manipulator. High-level instructions are 
generated automatically based upon the operator's actions, 
translated into robot instructions, and executed. 

Moreover ViMa is an example of the virtual laboratory, a 
concept important in education and supported by international 
agencies. The virtual robot laboratory is a copy of a real 
laboratory. In this manner it is suitable to deliver the know-
how for the presentation of virtual robot scenes, for virtual 
robot programming as well as real applications, and for 
processes where robots are involved. The real robot laboratory 
is able to be controlled with the telematic methods and thus the 
laboratory may be used as well as global and as also local 
laboratory.  

For the off line robot programming we need an excellent 
virtualisation of the robot working place and of the whole 
behaviour of the robot. It is necessary that the scene can be 
viewed from different points and from changing directions. An 
excellent virtualisation is absolutely necessary when we 
program the robots off line, in some cases without seeing the 
real robot.  

The use of the virtualisation techniques for robot scenes is 
very useful both for the robot programmers, and for the robot 
program beginners and for university students. 

For example, knowledge in kinematics, coordinate systems 
and transformations, is better assessed using examples and 
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understanding them. We do not need a real robot for that, but 
interactively moving robots on a screen may accelerate the 
learning process. 

In the following we will illustrate the design criteria and the 
results of our system. Section 2 gives a general overview of 
the architecture. The following sections are dedicated to the 
server, which is responsible for most of the modelling and 
control strategies: section 3 is about the kinematics problems 
of our system, section 4 illustrates the main algorithms to 
compute moves in the geometric world before sending them to 
the robot. 

II. OVERVIEW OF VIMA – VIRTUAL MANIPULATOR  SYSTEM 

Our system implements teleprogramming through a client-
server architecture and the TCP-IP protocol. As said before, 
the model of the world is used by the programmer to obtain 
both visualization of the scene and the programming interface 
to the robot. The complete architecture of the system is 
illustrated in Fig. 1. 
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Fig 1. The structure of the ViMa system, with the main components on the 
server side, and the connections through internet. 

A. ViMa Client 

The client is a Java applet, usable in any browser; the virtual 
world is represented in VRML (virtual reality modelling 
language) [3] and managed through the EAI (external 
Authoring Interface) [4].  

The functions of the client, illustrated in Fig. 2, are: 
• Managing the virtual world (creation, insertion and 

deletion of objects, saving and loading); 
• Moving the robot. 
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Fig 2.  The structure of the ViMa client. 
 

B. ViMa Server 

The ViMa server is a C++ application for Windows  The 
user interface on the server, illustrated in Fig. 3., shows in a 
text area all the operations asked by the client and sent to the 
robot controller 

 
Fig. 3.  The user interface on the server. 
 

More clients, so more users, can concurrently access the 
server. To maintain the compatibility of the worlds seen by any  
user, the server upgrades the virtual world according to the 
robot actions taken, and propagates the modifications to all the 
clients, so all the users can continue to work on the real 
situation. 

The server is responsible of executing many functions, the 
main being: 
• Computing the direct and inverse kinematics; 
• Communicating with the robot controller; 
• Receiving data from the clients (also commands for the 
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robot); 
• Sending data to the clients (world modifications); 
• Trajectory computation; 
• Collision detection.  
 

C. The robot CRS A-460 

The robot used in our system is a CRS A-460 [5], an 
articulated arm with 6 dof., illustrated in Fig.4.  

 

 
Fig. 4.  The real CRS robot. 

 
The controller of the robot is the C500 controller [6], 

hosted on an Intel 8086 processor. In the BIOS of the 
controller there is a simple multitask operating system, and the 
programming language is RAPL-II [7], a Basic-like language. 
The controller is connected through Rs-232 at 19200 baud to 
a computer where the programs are written. In our application, 
the trajectories are computed by the server and translated into 
RAPL code, sent to the controller. A class is devoted to the 
robot communication. 

The VRML model of the robot arm has been developed and 
calibrated. The temporal specifications needed to execute 
programs with given trajectories are managed through timers. 

D. Using ViMa Client 

1)  Initialisation 
The initialisation requires to physically connect the robot 

and the controller, the controller with the server PC server 
(through the RS-232 door of the controller and the serial of 
the PC). After putting On the controller of the arm, we can 
start the ViMa Server (select the serial door and set 19200 bps, 
start the TCP-IP Server). To start a client, we suggest the 
Cortona VRML Client or the Cosmo Player 2.x. The starting 
window is in Fig. 5. 
 

 
 
Fig. 5.  Starting the client: the virtual CRS robot. 

 
2) Client operations 

Different categories as guest, user, superuser, are defined. 
Any category can move the robot. The ViMa client can send 
commands in 4 ways:: 
• Inserting the 6 joint values. 
• Inserting the 6 Cartesian values; 
•  Using the task commands (“grasp”or “release”; 
• Interacting with the objects in the VRML world, and the 

action is performed by the robot. 
The Java applet makes: 

• Connection to ViMa server; 
• Insertion or deletion of objects in the virtual world. 
• Pick & place.  
• Direct and inverse kinematics (computed on the server). 
• Filing options.. 

III. KINEMATICS STUDY: CALIBRATING THE MODEL 

The conversion between Cartesian and joint coordinates has 
been developed for our robot, considering that the CRS is a 
closed system and no information are available about the 
internal algorithms.. 

The robot model was built in the Denavit-Hartenberg 
notation, and published in [8]. 

It is necessary to calibrate the robot arm in the real world 
taking specific calibration positions, sending there the robot 
and modifying the parameters to reduce the difference between 
the real and robot coordinates. Since we use the model of a 
plane working area, the possible errors are due to an offset, to 
scale errors in the axes, to errors in the orientation of the plane 
with respect to the robot reference system. The commanded 
position [X, Y, Z] is a linear combination of the components of 
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the position we want to reach [x, y, z]: 
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To obtain the value of the 12 parameters we need at least 4 
trials. Two methods are used: 

1) Exact method 
If the 4 measures have no errors we can solve the system and 

obtain the values. Let us consider the case of determining X. 
We write a system of 4equations with 4 unknown, obtained 
from 4 measures: Xi are the commanded values and xi, yi, zi are 
the measured values: 
As a matrix equation we get: 
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vMx ⋅=  
To obtain v, the parameters, we invert M 

XMv 1−=  (3) 
This method however is too sensible to measures errors. 

2) Mean squares estimate 
A more robust method tries to minimize the error function. 
Let å = X – (a x + b y + c z  + kx) be the estimated error given 

a, b, c, kx. We want to find the values of the parameters that 
make minimum å. We can use the sum of the squares. For n 
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For the other variables, in matrix form: 
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We solve as before, after inversion, and we get a more 
robust estimate. 

IV. THE ROLE OF THE VIRTUAL MODEL 

The user can modify the virtual world by adding new 
objects, removing objects, grasping or releasing, move without 

collisions. The algorithms are called using a pointing interface 
which interprets the movements of the cursor. Since the real 
world is 3D but the cursor is in 2D the algorithms compute the 
third coordinate using heuristic. Trajectories are generated 
using the via points heuristically generated and computing the 
collision; if a collision is detected the trajectory is modified. 

Most of the robot operations require grasping. In the 
pointing interface grasping is obtained checking the presence 
of a pre-defined grasping position for the object, computing 
the approach point, and modifying the world model 
accordingly. The release of an object is done after checking 
that the release position is suitable for a stable pose. All the 
algorithms use heuristics to get the precision needed by the 
robot, which has a declared repeatability of 0.05 mm., so a 
poorer accuracy. 

1) Inserting and removing objects 
A problem in moving objects is to check the stability 

conditions of the structures. The conditions to check to have a 
minimal stability of the object when released are about the 
presence of a support (other object or plane) under to object 
before releasing it. The simplest point to check is the centre of 
mass of the object. The vertical position is found using a 
dichotomise research and moving on the Zaxis direction. After 
n steps  the position is found with an approximation 

12 +<
n
zl

ε , with  ln dimension of the object. In case lz=50mm 

and  n=2*5, the positioning error in the model is 0.02mm  
To delete an object, the program checks the existence, the 

position to eliminate the risk of removing an object in the hand 
or below another object; then it modifies the list of the objects. 
See Fig. 6 for insertion. 
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I N S E R T  O B J E C T  
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Fig6.  Insertion flowchart 

 
2) Setting Cartesian and joint positions 

The Cartesian procedure calls the inverse kinematics to 
compute the joint positions. The joint assignment works 
directly. Moreover, the joint assignment calls the direct 
kinematics, updates the positions of the grasped objects, and 
verifies collisions. The flowchart is in Figure 7. 

3) Generate a trajectory without collisions 
The trajectory is generated from start to goal checking for 

collisions. See Fig. 8. 
The obstacle avoiding with a 6 degrees of freedom robot is 

quite complex, and in the literature important results show that 
is almost intractable in C-Space. 

The library SOLID (Solid Interference Detection Library) to 
detect collisions in a virtual world [9, 10], is a C++  STL 
library to measure the distance of convex polygons. It employs 
the Qhull algorithm [11] to determine the convex hull and to 
generate the adjacency graph. The algorithms extracted from 
the SOLID library have been used in Borland C++Builder, and 
modified in some termination conditions. 
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Fig 7. Cartesian and joint position command 
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Fig. 8. – Compute a trajectory flowchart 

 

4) Catch and release of objects 
We have a grasp position stored with the object models. The 

catch operation requires to individuate the object and its 
position, to compute the approach and the path (to avoid 
obstacles), to grasp the object, to go to the final position, to 
updare the world, as illustrated in Figure 9. The release 
operation is the reverse: determination of the release position, 
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checking the stability of the position, then execution. 
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Fig 9. Catching an object flowchart 

V. CONCLUSION 

The main point of ViMa is that it is straightforward to use it 
by any user. It is possible simply to translate the commands 
given by the pointing interface into movements of the robot. 
Facilities as collision detection and avoidance are able to make 
successful the obtained robot program. 

The client is portable and small, so any user can use it on 
simple computers. The geometric and kinematics computations 
are made on the server, with a good precision. 

We have verified the critical points, where numerical1. 
problems are possible. All the cycles are controlled by a 
Watch-dog2), so the server closes the connection and the thread 
and works .on another client. 

The algorithms running on the server, as the collision 
detection and avoidance, are computationally heavy. On a PC-
INTEL 600MHz, the transportation of an object (requiring 
many collision tests) with 50 objects in the scene requires 0.5-

 
1 Numerical problems: overflow, underflow, /0, null in.arcotangent. 
2 A timer is reset after a control loop. In case of errors the timer 

generates an interrupt and restarts. 

1.5s. The algorithms running on the client employ coordinate 
transformations and make extensive use of visualization. If a 
video board is available, the performances are good. We have 
1-5 frames per second on a basic PC (with render software), 
and 5-20 fps for old video boards, to 40-50 fps for new video 
boards (render OpenGL, DirectX).  

The client can be slow in receiving the upgrading from the 
server (communications delays). The need of a camera to show 
in a window of the screen the real world is clear, and a Java 
application for a camera mounted on a pan&tilt unit is ready. 
This solution is not integrated into ViMa because the vision 
algorithms are too heavy to be hosted on the same server as 
ViMa.  

Other systems are reported in the literature to support 
teleoperation of a robot manipulator. In [12-14] we see other 
solutions for manipulation and even access the most known 
telerobotic sites. However our approach is the only one using a 
task level language in the user interface. 
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