
 1

Abstract—Teleoperation allows a human operator to use a
visual display and a joystick to manually control a remote
robot. The wide spread of internet is pushing now toward the
use of internet instead of a dedicated connection, so more
emphasis is now given to the topics of programming in
internet and of using virtual reality. We investigate here the
concept of teleprogramming and illustrate a system for a 6dof
robot arm. In particular teleprogramming solves the delay
problem of using a remote robot by giving more autonomy to
the robot and sending it only high level commands.

I. INTRODUCTION

well-established and growing need exists for the capability to
perform work remotely using teleoperation and telerobotic
systems. Teleoperation allows a human operator to use a

visual display and a "master" manipulator (e.g. a joystick, or a
mouse) to manually control a remote "slave" device such as a
robot. Presenting realistic visual information and contact
forces to the operator improves task performance and increases
the sense of telepresence [1].

Telerobotics combines the concepts of teleoperation with
robotics and automation, enabling the human operator to
supervise the execution of a remote task rather than exercising
continuous manual control.

Under supervisory control [1] [2], a slave with autonomous
capabilities can be given discrete, high-level instructions rather
than continuous commands, thus relegating the human
operator to the role of supervisor. Such instructions must first
be programmed or taught to the slave, and the operator must
continually monitor and update instructions during execution.
This method is therefore only useful when the automation is
trustworthy, the task execution time is larger than the delay
time, and the unpredictable aspects of the remote environment
are changing very slowly.

The technique developed here is to predict the real-time

This work was supported in part by the contract ENEA-MURST, project
SIRO.

behaviour based on modelling the slave manipulator and
environment in virtual reality, and to provide this as a feedback
to the user. This approach is embodied in a control method
called teleprogramming and used also to give a feedback to the
real robot; here we develop the robot program generation,
where high-level instructions are generated automatically
based upon the operator's actions, and the slave manipulator
autonomously executes these commands.

Through ViMa (Virtual Manipulation), we built a
teleprogramming system for a CRS 6dof robot, including
pointing interface, collision avoidance, and multiuser access.
The system is implemented in C, Java, and VRML.
Teleprogramming simulates direct teleoperation by allowing
the user to interact with a graphical simulation of the remote
environment and manipulator. High-level instructions are
generated automatically based upon the operator's actions,
translated into robot instructions, and executed.

Moreover ViMa is an example of the virtual laboratory, a
concept important in education and supported by international
agencies. The virtual robot laboratory is a copy of a real
laboratory. In this manner it is suitable to deliver the know-
how for the presentation of virtual robot scenes, for virtual
robot programming as well as real applications, and for
processes where robots are involved. The real robot laboratory
is able to be controlled with the telematic methods and thus the
laboratory may be used as well as global and as also local
laboratory.

For the off line robot programming we need an excellent
virtualisation of the robot working place and of the whole
behaviour of the robot. It is necessary that the scene can be
viewed from different points and from changing directions. An
excellent virtualisation is absolutely necessary when we
program the robots off line, in some cases without seeing the
real robot.

The use of the virtualisation techniques for robot scenes is
very useful both for the robot programmers, and for the robot
program beginners and for university students.

For example, knowledge in kinematics, coordinate systems
and transformations, is better assessed using examples and

Robotics education, teleprogramming, telecontrol through the
internet

Giuseppina G. Gini, Politecnico di Milano, DEI, Milan, Italy

A

 2

understanding them. We do not need a real robot for that, but
interactively moving robots on a screen may accelerate the
learning process.

In the following we will illustrate the design criteria and the
results of our system. Section 2 gives a general overview of
the architecture. The following sections are dedicated to the
server, which is responsible for most of the modelling and
control strategies: section 3 is about the kinematics problems
of our system, section 4 illustrates the main algorithms to
compute moves in the geometric world before sending them to
the robot.

II. OVERVIEW OF VIMA – VIRTUAL MANIPULATOR SYSTEM

Our system implements teleprogramming through a client-
server architecture and the TCP-IP protocol. As said before,
the model of the world is used by the programmer to obtain
both visualization of the scene and the programming interface
to the robot. The complete architecture of the system is
illustrated in Fig. 1.

Int
ern
et

Robot CRS A - 460

Controller C - 500
Vima Server

camera
Image Server

Remote user

Remote user

Fig 1. The structure of the ViMa system, with the main components on the
server side, and the connections through internet.

A. ViMa Client

The client is a Java applet, usable in any browser; the virtual
world is represented in VRML (virtual reality modelling
language) [3] and managed through the EAI (external
Authoring Interface) [4].

The functions of the client, illustrated in Fig. 2, are:
• Managing the virtual world (creation, insertion and

deletion of objects, saving and loading);
• Moving the robot.

Vima Client

In
te

rn
et

 (
T

C
P/

IP
)

C
om

m
un

ic
at

or
&

 P
ar

se
r

R
ic

ev
en

te
&

Pa
rs

er

Mover

Input

World

Mover

Input

World

V
R

M
L

Invio
comandi

Notifiche
di modifica

Fig 2. The structure of the ViMa client.

B. ViMa Server

The ViMa server is a C++ application for Windows The
user interface on the server, illustrated in Fig. 3., shows in a
text area all the operations asked by the client and sent to the
robot controller

Fig. 3. The user interface on the server.

More clients, so more users, can concurrently access the
server. To maintain the compatibility of the worlds seen by any
user, the server upgrades the virtual world according to the
robot actions taken, and propagates the modifications to all the
clients, so all the users can continue to work on the real
situation.

The server is responsible of executing many functions, the
main being:
• Computing the direct and inverse kinematics;
• Communicating with the robot controller;
• Receiving data from the clients (also commands for the

 3

robot);
• Sending data to the clients (world modifications);
• Trajectory computation;
• Collision detection.

C. The robot CRS A-460

The robot used in our system is a CRS A-460 [5], an
articulated arm with 6 dof., illustrated in Fig.4.

Fig. 4. The real CRS robot.

The controller of the robot is the C500 controller [6],

hosted on an Intel 8086 processor. In the BIOS of the
controller there is a simple multitask operating system, and the
programming language is RAPL-II [7], a Basic-like language.
The controller is connected through Rs-232 at 19200 baud to
a computer where the programs are written. In our application,
the trajectories are computed by the server and translated into
RAPL code, sent to the controller. A class is devoted to the
robot communication.

The VRML model of the robot arm has been developed and
calibrated. The temporal specifications needed to execute
programs with given trajectories are managed through timers.

D. Using ViMa Client

1) Initialisation
The initialisation requires to physically connect the robot

and the controller, the controller with the server PC server
(through the RS-232 door of the controller and the serial of
the PC). After putting On the controller of the arm, we can
start the ViMa Server (select the serial door and set 19200 bps,
start the TCP-IP Server). To start a client, we suggest the
Cortona VRML Client or the Cosmo Player 2.x. The starting
window is in Fig. 5.

Fig. 5. Starting the client: the virtual CRS robot.

2) Client operations

Different categories as guest, user, superuser, are defined.
Any category can move the robot. The ViMa client can send
commands in 4 ways::
• Inserting the 6 joint values.
• Inserting the 6 Cartesian values;
• Using the task commands (“grasp”or “release”;
• Interacting with the objects in the VRML world, and the

action is performed by the robot.
The Java applet makes:

• Connection to ViMa server;
• Insertion or deletion of objects in the virtual world.
• Pick & place.
• Direct and inverse kinematics (computed on the server).
• Filing options..

III. KINEMATICS STUDY: CALIBRATING THE MODEL

The conversion between Cartesian and joint coordinates has
been developed for our robot, considering that the CRS is a
closed system and no information are available about the
internal algorithms..

The robot model was built in the Denavit-Hartenberg
notation, and published in [8].

It is necessary to calibrate the robot arm in the real world
taking specific calibration positions, sending there the robot
and modifying the parameters to reduce the difference between
the real and robot coordinates. Since we use the model of a
plane working area, the possible errors are due to an offset, to
scale errors in the axes, to errors in the orientation of the plane
with respect to the robot reference system. The commanded
position [X, Y, Z] is a linear combination of the components of

 4

the position we want to reach [x, y, z]:









+++=

+++=
+++=

z

y

x

kziyhxgZ

kzfyexdY

kzcybxaX
 (1)

To obtain the value of the 12 parameters we need at least 4
trials. Two methods are used:

1) Exact method
If the 4 measures have no errors we can solve the system and

obtain the values. Let us consider the case of determining X.
We write a system of 4equations with 4 unknown, obtained
from 4 measures: Xi are the commanded values and xi, yi, zi are
the measured values:
As a matrix equation we get:



















⋅



















=



















xk

c

b

a

zyx

zyx

zyx

zyx

X

X

X

X

1

1

1

1

444

333

222

111

4

3

2

1

 (2)

vMx ⋅=
To obtain v, the parameters, we invert M

XMv 1−= (3)
This method however is too sensible to measures errors.

2) Mean squares estimate
A more robust method tries to minimize the error function.
Let å = X – (a x + b y + c z + kx) be the estimated error given

a, b, c, kx. We want to find the values of the parameters that
make minimum å. We can use the sum of the squares. For n

points, ∑
=

=
n

i
ixkcbaf

1

2),,,(ε is the function to minimize. We

compute the square and when the derivative is null:

)(2)(

)(
22

22

xiiiixiiii

xiiiii

kzcybxaXkzcybxaX

kzcybxaX

+++−++++

=+++−=ε

[] 02)(2
2

=−++=
∂

∂
∑∑

iiiiii
i Xxxzcybxa

a

ε (4)

For the other variables, in matrix form:



















⋅





















=





















∑∑∑
∑∑∑
∑∑∑
∑∑∑

∑
∑
∑
∑

xiii

iiiii

iiiii

iiiii

i

ii

ii

ii

k

c

b

a

Nzyx

Nzzyzx

Nzyyyx

Nzxyxx

X

zX

yX

xX

2

2

2

 (5)

We solve as before, after inversion, and we get a more
robust estimate.

IV. THE ROLE OF THE VIRTUAL MODEL

The user can modify the virtual world by adding new
objects, removing objects, grasping or releasing, move without

collisions. The algorithms are called using a pointing interface
which interprets the movements of the cursor. Since the real
world is 3D but the cursor is in 2D the algorithms compute the
third coordinate using heuristic. Trajectories are generated
using the via points heuristically generated and computing the
collision; if a collision is detected the trajectory is modified.

Most of the robot operations require grasping. In the
pointing interface grasping is obtained checking the presence
of a pre-defined grasping position for the object, computing
the approach point, and modifying the world model
accordingly. The release of an object is done after checking
that the release position is suitable for a stable pose. All the
algorithms use heuristics to get the precision needed by the
robot, which has a declared repeatability of 0.05 mm., so a
poorer accuracy.

1) Inserting and removing objects
A problem in moving objects is to check the stability

conditions of the structures. The conditions to check to have a
minimal stability of the object when released are about the
presence of a support (other object or plane) under to object
before releasing it. The simplest point to check is the centre of
mass of the object. The vertical position is found using a
dichotomise research and moving on the Zaxis direction. After
n steps the position is found with an approximation

12 +<
n
zl

ε , with ln dimension of the object. In case lz=50mm

and n=2*5, the positioning error in the model is 0.02mm
To delete an object, the program checks the existence, the

position to eliminate the risk of removing an object in the hand
or below another object; then it modifies the list of the objects.
See Fig. 6 for insertion.

 5

I N S E R T O B J E C T

I n s e r t o b j e c t i n
(X , Y , 0)

d Z = l z / 2
Z = 0

Z = Z + d Z

C o l l i s i o n ?

d Z = d Z / 2

Z = Z - d Z

c o l l i s i o n ?

c o l l i s i o n s ?

F i n e c i c l o ?

E r r o r

N o

y e s

y e s

N o

y e s

N o

N o

y e s

S t a r t

S t a b i l i t y ?

E r r o r

y e s
N o

U p g r a d e l i s t o f
O b j e c t s a n d

 N o t i f i f y c l i e n t s

E n d
Fig6. Insertion flowchart

2) Setting Cartesian and joint positions

The Cartesian procedure calls the inverse kinematics to
compute the joint positions. The joint assignment works
directly. Moreover, the joint assignment calls the direct
kinematics, updates the positions of the grasped objects, and
verifies collisions. The flowchart is in Figure 7.

3) Generate a trajectory without collisions
The trajectory is generated from start to goal checking for

collisions. See Fig. 8.
The obstacle avoiding with a 6 degrees of freedom robot is

quite complex, and in the literature important results show that
is almost intractable in C-Space.

The library SOLID (Solid Interference Detection Library) to
detect collisions in a virtual world [9, 10], is a C++ STL
library to measure the distance of convex polygons. It employs
the Qhull algorithm [11] to determine the convex hull and to
generate the adjacency graph. The algorithms extracted from
the SOLID library have been used in Borland C++Builder, and
modified in some termination conditions.

Compute
jointsjointsva i joints values

 Update CRS model

Update grasped
object position

Save the
state

Collisions?
Go back
to initial
conditions

Notify clients .
Execute on robot

Position

(joints)

yes

No

end

Error

Fig 7. Cartesian and joint position command

Set joints to start
position

Compute joint
increment

Update joints
value

Object in
hand?

Update position of
objects
ggetti

Collision?

Final
position?

restart

From collision data
compute

the via point

Save collision
data

Try to reach
via point *

Collision?

Try to reach the
raggiungere . final position

Collision?

Modify2°
joint position

Collision?

Modify 3°
joint

Collision?

Update robot
and notify

clients

yes

No

yes

Yes

Yes

No

No

No
No

yes

End

No

Error

Error

Start

Fig. 8. – Compute a trajectory flowchart

4) Catch and release of objects
We have a grasp position stored with the object models. The

catch operation requires to individuate the object and its
position, to compute the approach and the path (to avoid
obstacles), to grasp the object, to go to the final position, to
updare the world, as illustrated in Figure 9. The release
operation is the reverse: determination of the release position,

 6

checking the stability of the position, then execution.

F i n d g r a s p i n g
p o s t i o n

C o m p u t e
a p p r o a c h

R e a c h
a p p r o a c h

R e a c h g r a s p
p o s i t i o n

O K ?

O K ?

G r a s p o b j e c t

U p d a t e
o b j e c t s

G o t o a p p r o a c h a n d u p d a t e

O K ?

A p p l y a n d s e n d
t o
c l i e n t s

R e s t a r t

E n d

E r r o r

S t a r t

N o

Y e s

Y e s

Y e s

Fig 9. Catching an object flowchart

V. CONCLUSION

The main point of ViMa is that it is straightforward to use it
by any user. It is possible simply to translate the commands
given by the pointing interface into movements of the robot.
Facilities as collision detection and avoidance are able to make
successful the obtained robot program.

The client is portable and small, so any user can use it on
simple computers. The geometric and kinematics computations
are made on the server, with a good precision.

We have verified the critical points, where numerical1.
problems are possible. All the cycles are controlled by a
Watch-dog2), so the server closes the connection and the thread
and works .on another client.

The algorithms running on the server, as the collision
detection and avoidance, are computationally heavy. On a PC-
INTEL 600MHz, the transportation of an object (requiring
many collision tests) with 50 objects in the scene requires 0.5-

1 Numerical problems: overflow, underflow, /0, null in.arcotangent.
2 A timer is reset after a control loop. In case of errors the timer

generates an interrupt and restarts.

1.5s. The algorithms running on the client employ coordinate
transformations and make extensive use of visualization. If a
video board is available, the performances are good. We have
1-5 frames per second on a basic PC (with render software),
and 5-20 fps for old video boards, to 40-50 fps for new video
boards (render OpenGL, DirectX).

The client can be slow in receiving the upgrading from the
server (communications delays). The need of a camera to show
in a window of the screen the real world is clear, and a Java
application for a camera mounted on a pan&tilt unit is ready.
This solution is not integrated into ViMa because the vision
algorithms are too heavy to be hosted on the same server as
ViMa.

Other systems are reported in the literature to support
teleoperation of a robot manipulator. In [12-14] we see other
solutions for manipulation and even access the most known
telerobotic sites. However our approach is the only one using a
task level language in the user interface.

REFERENCES

[1] T. Sheridan, “Human Supervisory Control of Robot System”,
Proc. IEEE Conference, International Conference of Robotics
and Automation, San Francisco, Apr 7-10, 1986

[2] T. Sheridan, “Telerobotics, Automation and Human
Supervisory Control”. MIT Press, Cambridge, Massachusetts,
1992.

[3] G. Bell, R. Carey, C. Marrin. “VRML97: The Virtual Reality
Model Language”, available in
http://www.vrml.org/Specifications/VRML97.

[4] C. Marrin, ”Proposal For a VRML 2.0 Informative Annex:
External Authoring Interface Reference”, Silicon Graphics

[5] A460 Series Small Industrial Robot System, Technical Manual,
CRS Plus Inc., Canada, 1992.

[6] C500 Series Small Industrial Robot System Controller. C500
Operation Manual, CRS Plus Inc., Canada, 1995.

[7] RAPL-II Programming Manual, CRS Plus Inc., Canada.
[8] G. Gini, D.Librandi, “Teleprogramming a robot arm through the

internet and virtual reality ”, Conferenza Robotica, Enea,
Frascati, Nov 2002, p 185-192..

[9] . http://www.cs.unc.edu/~geom/I_COLLIDE.html
[10] M. Lin, “Efficient Collision Detection for Animation and

Robotics”. PhD Thesis, Computer Science, University of
California, Berkley, 1993.

[11] Barber, Dobkin, Huhdanpaa “The Quickhull Algorithm for
Convex Hulls”. ACM Transactions on Mathematical Software,
Vol 22, N. 4, pag. 469-483, 1996.

[12] J. Lloyd, J. Beis, D. Pai, D. Lowe, “Programming Contact Task
Using a Reality-Based Virtual Environment Integrated with
Vision”, IEEE Trans R&A, June 1999 pp 423-434, 1999.

[13] http://www.robotic.dlr.de/VRML/Rotex/index.html
[14] . http://telerobot.mech.uwa.edu.au

