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Abstract – The European Training Networks are 
financed to help the cooperation and the exchange of 
young researchers through a network working on a 
research topic. Intelligent Modelling Algorithms for 
the General Evaluation of TOXicities (IMAGETOX) is 
a Research Training Networks, established in 2000 by 
EU under the Fifth Framework Programme. The 
training network exploits e-work and e-learning at 
researchers level. The organization and first 
experience of one of such network are illustrated. In 
particular we address here some issues about the 
concept and implementation of a Virtual Laboratory 
for Toxicology, a new concept deriving from the old 
tradition of Computer Chemistry. 
 

I. INTRODUCTION 
 

The EU training network is an organization in which 
several centers collaborate and provide inputs to the 
training process in an integrated way. The advantages of 
this approach are particularly relevant when several 
domains are connected, because the best experiences on 
the individual domain are directly available from the 
relative center, in a way which is critically adapted, and so 
better usable, to be processed within the other domains. In 
this case, cross-fertilisation reaches higher results. 

The concept of virtual and distance learning is extended 
to several reference centers. Typically distance learning 
refers to a single center, which provides the expertise to 
trainees. It is also possible to imagine a trainee which uses 
more than one distance learning center, but this does not 
mean that these centers are interconnected. The 
fundamental difference in the training network is that the 
member centers are strictly linked, and the activities are 
organised, offering a unique, advanced, integrated 
learning platform. 

The concept of virtual laboratory is well established in 
chemistry, which is perhaps the science most used to 
reason on computer models, but is quite new in 

toxicology. In our case the virtual laboratory integrates 
inputs from different domains, within a single software 
product. Ecotoxicology provides the knowledge on 
mechanisms, rules, data, characterised by quality levels. 
Chemistry offers knowledge on chemical descriptors and 
physico-chemical properties. Computer science integrates 
these items. Additionally, it extracts new knowledge from 
the provided databases. The process at this point is not at 
all finished, because the centers with experience in 
toxicology and chemistry receive inputs from the 
proposed models, and elaborate the new results in an 
iterative way. 

The paper is so organized: in section II we illustrate the 
scientific area for training, in Section III we give more 
details about the centers, in Section IV we explain the 
training needs in this area. In Section V we illustrate the 
web site developed, while in Section VI we describe our 
“virtual laboratory” based on NIKE, a neuro-fuzzy hybrid 
system. 
 

II. THE RESEARCH THEME: QSAR AND 
ECOTOXICOLOGY 

 
We are becoming increasingly aware of the need to 

understand and predict the consequences of chemicals to 
human health and the environment. The EU Council 
adopted Regulation (EEC) 793/93 on existing chemical 
substances. This Regulation consists of three main parts: 
data collection, priority setting and risk assessment. Given 
the large number of data gaps, it is the intention of the 
European Commission to use predictive methods for 
priority setting and, to a lesser extent, for risk assessment, 
within the framework of Council Regulation (EEC) 793/93. 

The motivation of our project is to develop innovative 
predictive models, using advanced software tools, in order 
to obtain improved applicability of these systems. To this 
end, we develop the following objectives: 
• To collect and organise information on different 

toxicological data bases, molecular descriptors, 
computational chemistry software, and statistical 
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algorithms 
• To propose some credible toxicity data sets to be used 

by the scientific community working on modelling 
and classification.  

• To define the potential and limits of individual 
computational approaches 

• To define the usefulness of different chemical 
descriptors. 

• To verify the robustness of reported and new 
predictive models using independent sets of 
compounds not considered in the training set.  

• To evaluate models that classify chemicals (i.e. toxic 
or non-toxic) as alternatives to methods that predict 
continuous values. This may be useful in light of the 
guidelines for (eco)toxicity in the European Union, 
which define toxicity classification, for the regulatory 
assessment of pesticides and drugs, and for the 
labeling of chemicals according to safety regulation. 

In toxicity prediction there are many variables: the 
toxicological endpoint, the number of molecules in the 
data set, the homogeneity of the data set, the methods to 
describe the physico-chemical properties, the 
computational algorithm to produce the relationship, and 
the validation method are the principal ones.  

Appropriate training has to be done keeping in mind the 
specific training in a given scientific field, but also the 
related fields. Modern research is more and more 
projected into complex fields, in which it is possible to 
gain major advantages by techniques developed for other 
aims. Such a cross-fertilization process will become a 
necessary tool to introduce innovative features. Young 
researchers have been trained in this direction. 

In most Quantitative Structure Activity Relationships 
(QSARs) the uncertainty of the biological data has not 
been considered. However, it is well known that 
toxicological data have a given variability, due mainly to 
animal variability and to the use of different protocols. In 
some cases, also in authoritative data bases, toxicity data 
for a single compound, assessed with the same test, have 
been found to differ by up to three orders of magnitude. 
This project will consider this uncertainty, ensuring the 
reliability of the data, in order to avoid variability due to 
experimental protocols, but taking into account animal, 
and experimental, variability. This is a major difference 
between our approach and most of the previous models. 

Most of the studies in the literature have used a single 
data set, a single approach to describe the chemical 
information (a limited number of molecular descriptors in 
most cases) and a single statistical algorithm. Indeed, 
there are so many and varied possibilities that an 
individual research group could not cope with all of them. 
Within this Research Training Network we are comparing 
different molecular descriptors and software used to 
calculate them (this can be performed more easily within 
a network).  

It should be recognised that our aim is not to establish 
the best method for (eco)toxicity prediction. Such an 
outcome is unlikely. We believe that many methods can 

provide good predictive performance. The important 
objective is to assess the potential offered by each 
method. Successive steps will explore the feasibility of 
the integration of the different approaches. This is another 
innovative characteristic of our project. In this sense it is 
interesting to have not only the quantitative results of the 
predictions for comparison, but also the detailed 
background information. For instance, in terms of 
chemicals which are not predicted correctly, assessment 
can be made as to whether they are incorrectly predicted 
by all methods and as to whether the different models can 
be integrated in a more general system to take advantage 
of the potential of the different approaches.  

Furthermore, we are evaluating methods to classify 
compounds according to (eco)toxicological properties in 
order to improve the applicability to real problems, such 
as ecotoxicological assessment. 

The major concern over predictive models for toxicity 
is their applicability. It is well known that these models 
work well in many cases within the set of compounds and 
activities originally used, but their predictive ability is 
poor outside of the training set. In addition to the more 
common internal methods of validation, such as leave-
one-out, bootstrapping, etc., we are constructing new data 
sets of compounds, to be used for external validation. 
 

III. THE COLLECTIVE EXPERTISE 
 

Below there is a description of each group of the 
network. 
1: Istituto "Mario Negri", Milan, Italy , a scientific non-
profit organisation for research and education. The 
institution, since it discovered the dioxin (2,3,7,8-
TCDD) in Seveso soil in 1976, devotes a great deal of 
effort to environmental and toxicity studies.  
2: School of Pharmacy and Chemistry, Liverpool John 
Moores University, UK, specialized in the prediction of 
toxicological activity from physico-chemical structure.  
3: RITOX: Research Institute of Toxicology, Utrecht 
University, Faculty of Veterinary Sciences, working to 
understand the exposure and effects of individual 
chemicals and mixtures in the environment, and to 
develop predictive models, using a variety of modelling 
approaches and techniques . 
4: Dipartimento di Elettronica e Informazione, 
Politecnico di Milano, Italy, active in Artificial 
Intelligence, in particular knowledge representation, 
planning, knowledge-based systems, constraint 
satisfaction systems; the application of the above.  
5. NIC, National Institute of Chemistry, Ljubljana, 
Slovenia, with experience in chemometrics and 
computational chemistry. 
6: UFZ-Umweltrforschungszentrum Leipzig-Halle 
GmbH, the only HGF centre where the work is devoted 
entirely to environmental sciences, also using QSAR.  
7: Department of Chemistry, University of Tartu, active 
in quantum chemistry, the development and encoding of 
methods for the efficient use of statistical methods in 
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chemistry, and the development and introduction of 
molecular descriptors in structure – activity studies.  

Collaboration is fundamental for the program. As stated 
above, the area of toxicity prediction involves expertise 
from toxicology, computational chemistry, organic 
chemistry, and computer sciences. No single group can 
cope with the many fields involved. Furthermore, we 
believe that no single model can solve the highly complex 
problem of toxicity prediction. Several approaches are 
possible, providing useful models to explain, at least, part 
of the problem. It is possible that the information obtained 
with the different models is not similar (i.e. different 
physico-chemical properties are not found to be important 
by different methods). This will be assessed in the project. 
The important point which stems from the above 
consideration is that it is very useful to evaluate the 
methods to combine the information originating from the 
different approaches. To achieve this collaboration is 
essential. There will be exchange of data sets and 
descriptors and software, between the different groups. 
 

IV. TRAINING NEEDS 
 

There are many reasons for Europe to support training 
in this area. 
1. In the twenty-first century more work will have to be 

performed to appreciate, understand and predict the 
(eco)toxic effects of chemicals. The approach of 
predictive toxicology using advanced software is 
very novel and most of the universities in Europe 
have no adequate training in this field. The 
methodology is developing rapidly. 

2. The characterisation of (eco)toxic properties is 
required by industry, who, by law, have to assess the 
toxicological hazards of their products and know the 
likely properties of future products, before starting 
synthesis and experimental studies 

3. There is a requirement for this research from 
regulatory bodies and environmental agencies, who 
have to answer to questions from society about the 
safety of chemicals, and have to decide priority 
activities to prevent pollution. 

4. This multi- and inter-disciplinary research will 
provide solutions to problems in the related fields of 
(eco)toxicology, computer science and 
computational chemistry. Young researchers will 
learn innovative approaches which will be highly 
valued in the workplace.  

There is also a wider and more fundamental need for 
the EU to invest in training projects, such as this, which 
will provide the opportunity to increase the added value of 
a product, in this case a chemical. The Nobel Prize 
Winner Arno A. Penzias foresees that in the near future 
man will build molecules with desired properties. Europe 
has to invest in human potential in order to add new 
capabilities to products, to avoid scientists of European 
origin, such as Penzias, going abroad to prove the value of 
their ideas. 

The training period is from 6 months to 3 years. The 
training programme is based upon environmental 
sciences, statistics, computer science, and computational 
chemistry. Further value in the programme arises from the 
combination of all these elements. Of course, the training 
will be focused on specific areas according to exact 
speciality of individual laboratories, but in all cases a 
common core knowledge will be provided to all young 
researchers.  

In particular for the core training we have, periodically, 
short courses on the specific areas.2. Trainees actively 
participate to these meetings, and present their work. This 
allows them improving their communication skills as well 
as to share the knowledge obtained during the year. 
Young researchers are encouraged to attend and 
participate in conferences and congresses, on wider 
scientific areas, such as toxicology, computer sciences or 
environmental chemistry, to increase the generalisation of 
the specific work done during the project. 

After 2 years the academic results are encouraging, 
with a high number of publications and presentations 
obtained, as illustrated in Fig. 1. 

Fig 1. Number of presentations after 2 years 
 

V. WEB BASED TECHNOLOGIES FOR 
KNOWLEDGE SHARING 

 
Web-based promotion of the RTN IMAGETOX and 

dissemination of the RTN results is one of the targets 
proposed. 

The web site has been developed by the third author as 
a collection of static pages representing the information at 
the first level of depth, ASCII flat databases, and 
hypermedia links to process Perl-implemented modules. 
The solution cgi (Common Gateway Interface) + Perl + 
ASCII flat databases was proposed in order to assure the 
simplest   management  and  maintenance,   without   web 
administrator as well as web server solution dependences. 

                                                 
2 21/07/2001, a meeting within the V Girona Seminar, Spain. The 

meeting was attended by 11 participants from all the 7 groups. 
24/01/2002-25/01/2002, IMAGETOX SCHOOL,. at National Institute of 
Chemistry, Ljubliana, Slovenia with 15 participants from all the 7 
groups in the project and other scientific groups.  
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The idea could be extended to create, in the future, 
eventual mirror sites, if necessary. The Perl modules 
assure transparency in order to be checked as secure code 
by the web administrative staff. From the point of view of 
graphics design, the used files are small gif/jpg files, in 
order to assure small digital information to be 
downloaded. The web site3 is best viewed with modern 
browsers (Netscape 4.0, MS Internet Explorer 5.0 and 
upper), on a resolution on minimum 800x600 pixels. 

The other use of electronic tools is in the development 
of experiments. Data are processed in different partners 
sites, and exchanged, moreover the software tools 
developed at a site are freely transmitted. 

 
VI. TOWARD A VIRTUAL LABORATORY FOR 

TOXICOLOGY PREDICTION 
 

Until now, several papers have been published on the 
role that artificial intelligence (AI) could play in the 
problem of toxicity prediction and QSAR modelling [3]. 
In many cases learning from data is obtained using Neural 
Networks. In recent years, the neuro-fuzzy systems [2, 5] 
have drawn increasing research interest].  

In this section we present neuro-fuzzy knowledge 
representation applied to toxicity prediction. The problem 
is modelled with NIKE (Neural explicit&Implicit 
Knowledge inference system), an hybrid intelligent 
system developed at Politecnico di Milano, and based on 
[7, 8]. The present implementation constitutes a virtual 
laboratory, based on a set of tools connected to the neuro-
fuzzy architecture. Different modules can manage 
statistical models, QSARs, or trained networks. Moreover 
the system allows to extract symbolic knowledge from the 
trained neural networks, and to map many kinds of rules 
in neuro-fuzzy structures. These possibilities are the basis 
of a virtual laboratory for toxicology, where different 
predictive methods are usable, integrated, compared. 
Moreover the hybrid architecture allows combining the 
different models obtained to take the advantage of hybrid 
system to improve prediction [1]. 

The EU training network offers immediate possibility 
to partners to use and exploit the tool developed in one 
centre. The other centres cooperatively collaborated to 
develop their experiments. Below is an example of such a 
common experiment based on NIKE. 
 
THE ‘VIRTUAL’ LABORATORY FIRST EXPERIMENT 

The US Environmental Protection Agency [9] built a 
data set, starting from a revision of experimental data 
from literature, referred to acute toxicity 96 hours (LC50), 
for fathead minnow (Pimephales promelas). The data set 
contains 568 organic compounds, commonly used in 
industrial processes. 

A large number of descriptors was calculated by Istituto 
"Mario Negri". Molecular descriptors are a common way 
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to represent knowledge about a chemical. The obtained 
descriptors were: constitutional (34); geometrical (14); 
topological (38); electrostatic (57); quantum–chemicals 
(6), and hydrophobic (7).Some of these descriptors do not 
add information, but increase the noise making more 
complex the result analysis. So descriptors selection was 
done with Principal Components Analysis (PCA) and 
Correlation Analysis techniques [6]. 

Three original QSAR equations were developed at 
Istituto “Mario Negri”, from a different number of 
descriptors, using PLS (Partial Least Squares). The 
variables were normalized using auto scaling procedure: 
data were centred and standard deviation made equal to 
unit. Two models were obtained with five parameters 
(QSAR1, 2), a third model with two descriptors (QSAR3): 

 
log(1/LC50) = 0.7919 + 0.09772*QM6 – 0.2045*C35 + 
0.1276*G2 – 0.3509*pH9 – 0.3879*logP 
 
log(1/LC50) = 0.8779 + 0.1385*QM6 – 0.06703*C35 – 
0.02937*T6 – 0.06165*G12 – 0.6854*logP 
 
log(1/LC50) = 0.8237 + 0.1711*QM6 – 0.7974*logP 

(1) 
 
 
(2) 
 
 
(3) 

 
Figure 2. Observed versus predicted values (QSAR2). 

Figure 2 reports the observed versus predicted values 
for LC50 relating to QSAR2. All models identified a 
restricted number of 5 outliers that do not satisfy the 
normal distribution required for residuals. Discharging 
these compounds, the performance increased reaching 
70% o accuracy values (for an absolute error level of 0.1). 

 
a. LEARNING FROM DATA WITH NIKE 

Input and output values were fuzzified with respect to 
the 568 compounds descriptors values. The input 
contained 17 descriptors, the output toxicity expressed as 
log(1/LC50). For fuzzy processing, the membership 
functions were trapezoidal. The linguistic variables 
considered are characterized by the term sets: 

{ } 17..1,,, == iHighMedLowDi  

{ }VeryHighHighMediumLowVeryLowLC ,,,,)50/1log( =  

(4) 
(5) 
 

Five levels of toxicity were defined for the normalized 
log(1/LC50): VeryLow (0-0.2), Low (0.2-0.4), Medium 
(0.4-0.6), High (0.6-0.8), and VeryHigh (0.8-1). 

A pattern is defined as a vector of values of the inputs 
(descriptors) and of the output, toxicity. The training set 



 

was used to train the neural and neuro-fuzzy networks 
with backpropagation. The whole set of patterns was 
randomly divided in two independent subsets, for training 
and testing, paying attention to conserve the distribution 
of the five fuzzy values of the output linguistic variable: 
401 training cases and 167 testing cases (table 1). 

Table 1. The distribution of testing + training sets. 

Toxicity VeryLow Low Medium High VeryHigh 
Testing 
cases 

15 66 72 12 2 

Training 
cases 

35 156 173 34 3 

568 
cases 

50 222 245 46 5 

 
b. NEURO-FUZZY STRUCTURES FOR TOXICITY 
REPRESENTATION 

Implicit knowledge is the knowledge represented by 
neural/ neuro-fuzzy networks, created and adapted by a 
learning algorithm.  

Explicit knowledge is the knowledge represented by 
neural networks, which are computationally identical to 
the I/O relations set, and are created by mapping the given 
fuzzy rules into hybrid neural networks. 

 
i. The implicit knowledge representation 

The module IKM-CNN (Implicit Knowledge Module- 
Crisp Neural Networks) models the data set as a 
multilayer perceptron (MLP) [2], and a procedure to 
extract an equivalent fuzzy-rules system is added, based 
on the interactive fuzzy operators [8]. The MLP model is 
also used to compare the performance of the 
neurosymbolic system with neuro-fuzzy and QSARs. 

The module IKM-FNN (Implicit Knowledge Module- 
Fuzzy Neural Networks) is a multilayered neural structure 
with an input layer (to perform the membership degrees of 
the current values), a fully connected three-layered FNN2 
[2], and a defuzzification layer. The weights of the 
connections between layer 1 and layer 2 are set to one. 
The linguistic variable Xi is described by mi fuzzy sets, Aij, 
having the degrees of membership performed by the 
functions µij(xi), j=1,2,...,mi, i=1,2,..,p., (on the descriptors 
and toxicity values). Since layers 1 and 5 are used in the 
fuzzification process, the layers 2-4 are organized as a 
feedforward network to represent the implicit rules 
through FNN training [2, 5]. 

Two steps were used to insert QSAR information in the 
implicit knowledge representation. This strategy follows 
an updated form of concept support techniques [7]. The 
pre-training phase is based on a data collection generated 
by a selected QSAR function. Then the model is trained 
with the original data set. The specific results are 
compared with the results coming from the normal 
training procedure, based on a random initialization of the 
weights of the neural networks. The neural and neuro-
fuzzy networks resulted through QSAR insertion in a pre-
training phase were retained for further combination of 
modules. The method is based on inserting the given 

QSAR2 predictions, and learning the training samples  
The accuracy of prediction is a little better than 

QSARs. For the prediction accuracy, the error was 
calculated as the absolute value of the difference between 
the predicted and the actual value, for all observations. A 
second measure to compare the models is determining 
how many of the 568 observations were accurately 
predicted (absolute errorless than 0.1), relative to the 
number of cases (table 2).  

Table 2. Comparison of the accuracy prediction for 
neural/ neuro-fuzzy structures: number of cases predicted 
with absolute error lower than 0.1 

Toxicity QSAR3 CNN CNN* FNN FNN* 
VeryLow 24 24 29 30 30 
Low 189 196 203 205 201 
Medium 210 200 198 212 219 
High 30 28 26 27 31 
VeryHigh 3 1 2 2 0 
CNN*, FNN*: pre-trained/retrained neural networks. 

 
ii. The explicit knowledge representation 

The extended version of Modus Ponens  
IF X1 is A1 ^ ... ^ Xj is Aj THEN Y is B 

(X  1 is A'  1) ^ ... ^ (X j is A' j) 
Y is B' 

(6) 
 
 

was used to infer results equivalent to the QSARs from 
the developed structures. This process is performed in 
four steps: 1) Matching (the compatibility between A' and 
A), 2) Aggregation (based on triangular norm), 3) 
Projection: the compatibility of (Y is B') with (Y is B) is 
obtained as an aggregation function; 4) Inverse-Matching 
and Defuzzification. Aggregation and projection are 
performed by generalized aggregative neurons, involving 
triangular norms or co-norms in Multi Purpose Neural 
Networks (MPNN) [2, 5].  

There are two different types of relations mapped in 
MPNNs: empirical fuzzy rules about the descriptors, and 
QSARs.  

The fuzzy rules are described as a discrete fuzzy rule-
based system (DFRBS) in order to be mapped in MPNNs. 
The numerical weights corresponding to the connections 
between neurons are computed using Combine Rules First 
Method or Fire Each Rule Method [3].  

To insert a single empirical fuzzy rule (Rule 1), we 
empirically developed a relation between toxicity and the 
important descriptors logP and QM6: 
IF (QM6 is Low) AND (logP is High) 

THEN log(1/LC50) is Low 
(7) 
 

The implementation of the rule (7) is equivalent to a 
neuro-fuzzy network using MAPI neurons [7]. 

For inserting QSARs, the approximators given by 
implicit knowledge modules is replaced by the explicit 
knowledge module implementing a first-order Sugeno 
fuzzy model [10]. The output of MPNN is a single MAPI 
neuron, acting as an arithmetical device. 

The integration of the developed structures follows the 
Fire-Each-Module Strategy (FEM), as proposed in general 
form in [4]. After off-line training of the implicit neuro-
fuzzy module, the general output of the system is 



 

composed as a T-conorm [8] of fuzzy outputs of each 
module: the four-layered IKM structure for global 
network and the EKM implemented using combine-rules-
first or fire-each-rule method). 

The system is equivalent to a set of fuzzy rules and the 
output is computed using firing rules first method [2]. 
Combination of the specific membership degrees provided 
by IKM and EKM is done here by the max fuzzy operator. 
In the hidden aggregative layer (AL), all the weights are 
set to one, and the neurons aggregate the computed 
membership degrees from the implicit and explicit 
modules.  

In our case, the average of all the outputs is processed 
by AL+MAPI defuzzifier. The final neuron is a MAPI 
device, which computes the crisp value of the output. The 
developed modules are CNN*, FNN* (implicit 
knowledge), QSAR2 and QSAR3 (explicit knowledge). 
The final output based on FEM is the averaged output of 
the modules, as depicted in table3 and Figure 3. 
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Figure 3. The accuracy of toxicity prediction, by classes 
(fuzzy values). 

Table 3. Best results for accuracy of prediction (absolute 
error <0.1).  

QSAR3 CNN* FNN FNN* FEM 
456 458 476 481 507 

80.28% 80.63% 83.80% 84.68% 89.26% 

 
VII. CONCLUSIONS 

 
The flexibility and modularity of our approach allows 

coping with the complexity of the issues related with 
toxicity prediction. Other data sets have been tested, with 
different chemical descriptors and QSAR algorithms. 
NIKE proved to be able to manage them, mimic the 
QSAR models, and offering extra capabilities. Thus 
different research centres interacted with Politecnico di 
Milano for the use of NIKE. The peculiar issues of the 
different chemical and toxicological aspects were 
integrated with the hybrid system. In a second phase 
NIKE has been distributed within the network and this 
allowed multiplying the experience with the hybrid 
system. This shows a success history of a training 
network, as a result of an efficient organization based on a 

deep exchange of experiences and distance learning. 
Moreover, Our study contributed to the understanding 

of the possibilities to represent knowledge about the 
toxicity of industrial organic compounds. The present 
approach represents an example of a hybrid system, 
combining artificial neural networks (ANN) and QSARs, 
on the basis of neuro-fuzzy modules implementation. The 
proposed neuro-fuzzy knowledge representation gives an 
encouraging alternative to the stochastic models; it proved 
to be able to learn from descriptors, and it is capable of 
representing knowledge acquired from human experts in 
order to improve the prediction results.  
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