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The need for general reliable models for predicting toxicity has led to the use of artificial intelligence. We
applied neural and fuzzy-neural networks with the QSAR approach. We underline how the networks have
to be tuned on the data sets generally involved in modeling toxicity. This study was conducted on 562
organic compounds in order to establish models for predictive the acute toxicity in fish.

1. INTRODUCTION

More than 23 million chemical compounds are registered
in the Chemical Abstract Service (CAS). In view of their
abundance and wide use in all spheres of production we need
a better understanding of their ecotoxicological impact on
plant life, wildlife, and the environment in general. Apart
from the ethical considerations associated with the use of
animals, experimental determination of ecotoxicity and
toxicity would require huge financial resources and much
time to be done methodically on all the compounds of
interest. Thus, new alternatives are needed.

The quantitative structure-activity relationship (QSAR)
approach is based on the assumption that the structure of a
molecule must contain the features responsible for its
physical, chemical, and biological properties and on the
possibility of representing a molecule by numerical descrip-
tors.

The difficulty of predicting toxicity is due to the lack of
knowledge of the toxic mechanisms for reactive chemicals
and the complexity and heterogeneity of the data available.
More powerful computational approaches have now opened
new avenues to QSAR studies and several research papers
have been published,1-9 discussing the role that artificial
intelligence (AI) could play in toxicity prediction and QSAR
modeling. Despite their power these approaches have been
criticized because of the number of parameters that need to
be carefully tuned on the problem.

The paper is organized as follows. Section 2 presents the
data preparation, the chemical descriptors, and describes the
structure based on Fuzzy Neural Networks and Multi-Layer
Perceptrons10 of the hybrid intelligent system NIKE.11 Section
3 shows the correlation between parameters and perfor-
mances for different models developed using the same data
set. A preliminary study was done on the optimum number
of hidden neurons for the proposed neural structures. After
fixing this parameter, we set out to interpret the influence
of the fuzzification of data. Conclusions are summarized in
the last section.

2. MATERIALS AND METHODS

2.1. Data Set.We mined a data set of 562 organic
compounds commonly used in industrial processes. The U.S.
Environmental Protection Agency12-15 built up this data set,
starting from a review of experimental data in the literature,
referring to acute toxicity 96-h LC50 (mg/L), for the fathead
minnow (Pimephales promelas). The compounds were
randomly partitioned 70-30% between 392 training cases,
used to develop the models, and 170 testing cases, used to
evaluate their ability in prediction. The toxicity was scaled
between 0 and 1 and processed using a Tangent Hyperbolic
- Logarithmic Scaling Modified procedure (THLSM).16

Some statistical information about the data set is summarized
in Table 1.

The distribution of compounds with respect on EU
classification for the original and THLSM data set is shown
in Figure 1a; the distribution for training and test set in the
THLSM data set is shown in Figure 1b.

2.2. Descriptors. A large number of descriptors was
calculated using different software: Hyperchem 5.0 (Hy-
percube Inc., Gainsville, Florida, U.S.A.), CODESSA 2.2.1
(SemiChem Inc., Shawnee, Kansas, U.S.A.), Pallas 2.1
(CompuDrug; Budapest, Hungary). The variables describing
the molecules best must be selected to obtain a good model.
There is the risk that some descriptors do not add informa-
tion, increase noise, and make it more complicated to analyze
the result. In addition a smaller number of variables reduces
the risk of overfitting. The descriptors (Table 2) were selected
by Principal Components Analysis (PCA), with the Principal
Components Eigenvalue (Scree) Plot method, and Genetic
Algorithms.

2.3. NIKE. NIKE (Neural explicit&Implicit Knowledge
interference systEm) is a hybrid intelligent system11 devel-
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Table 1. Statistical Indices of the Data Set, Scaled between 0 and 1

value (mg/L)

max 0.9756
min 0.0476
range 0.9280
SD 0.2560
variance 0.0655
geom mean 0.5131
average 0.5971
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oped in Matlab 6 (MathWorks Inc.) for prediction, based
on modular neural and neurofuzzy networks. The original
NIKE automates the tasks involved in this process, from data
representation for toxicity measurements to the prediction
of a given new input. NIKE contains two modules that can
be used individually and operate on the same inputs in order
to model and predict toxicity. We definedimplicit knowledge
as the knowledge represented by neural/neurofuzzy networks,
created and adapted by a learning algorithm. The representa-
tion of implicit knowledge is based on the numerical weights
of the connections between neurons.

The first module, called IKM-CNN (Implicit Knowledge
Module-based on Crisp Neural Networks), models the data
set as a multilayer perceptron (MLP10). The second module,
called IKM-FNN (Implicit Knowledge Module-based on
Fuzzy Neural Networks), is implemented as a multilayered
neural structure with an input layer, establishing the input
for the membership degrees of the current values, a fully
connected three-layered FNN2,17 and a defuzzification layer11

(Figure 2). The weights of the connections between layer 1
and layer 2 are set at one. The linguistic variableXi is
described bymi fuzzy sets,Aij, having the degrees of
membership performed by functionsµij (xi), j ) 1,2,...,mi, i
) 1,2,...,p (in our case, on the descriptors and the toxicity
values). Since layers 1 and 5 are used in the fuzzification
process in the training and prediction steps, layers 2-4 are
organized as a feed-forward network to represent the implicit
rules through FNN training.17,18

3. RESULTS AND DISCUSSION

The back-propagation algorithm with a learning rate of
0.7 and a momentum term of 0.9 was used for training.10

The networks were trained up to 5000 epochs. The param-
eters themselves are variables of the network analyzed, but
these values, especially the very large number of training
epochs, ensure a stable convergence, though the computing
time is lengthy.

3.1. Number of Hidden Neurons.A first analysis was
done to establish the best number of hidden neurons. For an
artificial neural network (ANN) to be able to generate closed
decision regions the minimum number of hidden units must
be greater than the number of input units.19 To obtain the
maximum number of hidden units in the network, we used
results based on Kolmogorov’s theorem. Hecht-Neilson20,21

established that the maximum number of hidden neurons
needed to represent any function ofn variables is less than
twice the number of inputs 2× n_input+ 1.

We developed numerous models with different numbers
of hidden neurons in order to find the optimum. The networks
analyzed are CNN and FNN with different membership
functions. Table 3

Figure 3 shows howR2 behaves in relation to the number
of hidden neurons for each network. The maximum perfor-
mances are clear, using 13 neurons for the FNN and 11 for
CNN.

3.2. Membership Functions.A membership function is
a curve that defines how each point in the input space is
mapped to a membership value (or degree of membership)
between 0 and 1. There are too many possible membership
function shapes to systematically analyze every combination.

Figure 1. Distribution for the original and THLSM data set with respect on EU classification (adapted from Mazzatorta et al.16) (a).
Distribution for the training and test sets in the THLSM data set with respect on EU classification (b).

Table 2. Descriptors Involved in the Models

descriptor code
total energy (kcal/mol) QM1
LUMO (eV) QM6
molecular weight (amu) C35
Kier & Hall index (order 0) T6
molecular volume G10
molecular surface area G12
TMSA total molecular surface area [Zefirov’s PC] E13
FPSA-3 fractional PPSA (PPSA-3/TMSA) [Zefirov’s PC] E31
LogP LogP

Figure 2. Implicit Knowledge Module implemented as FNN.
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Here we followed a reasoning based on the complexity of
the data set mined and on the results obtained in the course
of the work.

The input and the output are fuzzified using the member-
ship functions shown in Figure 4. The use of a linear
membership function (Figure 4a) is equivalent to use a

continuous value, which brings consistent and precise
information. For the inputs this choice comes from the idea
that they are descriptors computed by well-defined algorithms
and so not afflicted with experimental errors.22 In the case
of the output, it does not suffer any fuzzy transformation, in
other word we used for the output the original value and
not linguistic values.

In Figure 4f,g four trapezoidal membership functions were
chosen for the output in order to follow the EC classification
for acute toxicity for fish.23 The particular shape of the
functions in Figure 4g lies in a conservative approach to the
problem. Because the more toxic classes are the lower ones
these shapes ensure a degree of memberships to the lower
class, taking into account a possible experimental undervalue
of the toxicity.

Other memberships functions were analyzed in order to
understand the effect that the fuzzyfication of the data has
on the performance of the model.

The results of the models developed using the above-
described membership functions are summarized in Table
5.

Figure 5 illustrates some examples of the defuzzification
method for the output involved in this study. The centroid
calculation, used in this study, is the most popular defuzzi-
fication method and it returns the center of area under the
curve.

4. DISCUSSION AND CONCLUSIONS

One of the problems arising during neural network training
is called overfitting. The error on the training set is driven
to a very small value, but when new data are presented to
the network the error is large. The network has memorized
the training examples but has not learned to generalize to
new situations. One method for improving this generalization
is to use a network that is just large enough to provide an
adequate fit. The larger the network you use, the more
complex the functions it can create. A small enough network
will not have enough power to overfit the data. Unfortunately,
it is difficult to know beforehand how large a network should
be for a specific application. The study on the number of
hidden neurons showed that in this situation small networks
are preferable to large ones (Table 3 and Figure 3).

The use of fuzzy logic for this application helped improve
the performances (Table 3 and Figure 3). The reason lies in
the peculiarity of this approach. Fuzzy logic is tolerant of
imprecise data, because fuzzy sets describe vague concepts
(e.g. low, medium, high toxicity, etc.) and admits the
possibility of partial membership in these categories. The
degree to which an object belongs to a fuzzy set is indicated
by a membership value between 0 and 1 (see Figure 5). The
performances (Table 5) of FNN13H-D, FNN13H-II, and
FNN13H-VI or FNN13H-III and FNN13H-IV, which
have the same membership functions for the output and differ
for the fuzzification of the inputs, are very close. This is
because the input, i.e., the descriptors computed, are rela-
tively precise and homogeneous compared to the output.22

In fact even if the inputs are not fuzzified, i.e., using a linear
membership function (FNN13H-II and FNN13H-IV), the
performances are comparable.

The opposite reasoning holds for the output. FNN13H-I,
FNN13H-II, FNN13H-IV, or FNN13H-D, FNN13H-III,

Table 3. Performances of the Networks

mean SD max min R2

CNN8H 0.1111 0.0926 0.4996 3.42E-04 0.6697
CNN9H 0.1116 0.0930 0.5072 6.14E-05 0.6670
CNN10H 0.1092 0.0945 0.5279 2.80E-04 0.6710
CNN11H 0.1125 0.0924 0.5135 2.28E-04 0.6654
CNN12H 0.1167 0.0900 0.4793 1.78E-04 0.6569
CNN13H 0.1129 0.0920 0.4889 2.18E-04 0.6650
CNN14H 0.1101 0.0938 0.5313 9.90E-05 0.6700
CNN15H 0.1132 0.0924 0.5417 2.61E-04 0.6630
CNN20H 0.1136 0.0922 0.5281 1.54E-03 0.6619
CNN25H 0.1181 0.0912 0.5171 1.27E-04 0.6484
CNN30H 0.1148 0.0918 0.5457 1.24E-04 0.6588
CNN35H 0.1117 0.0940 0.5878 9.15E-04 0.6634
CNN40H 0.1145 0.0927 0.4969 8.53E-05 0.6571
FNN11H 0.1117 0.0920 0.5176 1.70E-04 0.6695
FNN12H 0.1098 0.0905 0.4495 1.91E-04 0.6804
FNN13H 0.1078 0.0890 0.5015 4.73E-04 0.6917
FNN14H 0.1107 0.0865 0.4904 1.62E-03 0.6884
FNN15H 0.1091 0.0906 0.4664 2.34E-04 0.6827
FNN20H 0.1099 0.0914 0.4865 2.23E-04 0.6775
FNN25H 0.1138 0.0926 0.5166 9.19E-04 0.6601
FNN30H 0.1145 0.0906 0.5015 1.39E-04 0.6636
FNN35H 0.1108 0.0871 0.5114 3.94E-04 0.6867
FNN40H 0.1181 0.0928 0.5461 2.98E-04 0.6439
FNN11H-I 0.1202 0.0897 0.4965 5.10E-04 0.6449
FNN12H-I 0.1181 0.0903 0.5159 1.27E-03 0.6509
FNN13H-I 0.1189 0.0905 0.4934 5.28E-04 0.6472
FNN14H-I 0.1209 0.0889 0.5044 1.06E-04 0.6444
FNN15H-I 0.1200 0.0906 0.5019 6.67E-04 0.6431
FNN20H-I 0.1191 0.0904 0.5276 4.44E-04 0.6468
FNN25H-I 0.1265 0.0868 0.4594 5.00E-03 0.6283
FNN30H-I 0.1235 0.0898 0.4839 1.38E-04 0.6319
FNN11H-II 0.1180 0.0891 0.4735 7.57E-04 0.6549
FNN12H-II 0.1146 0.0914 0.5116 1.81E-04 0.6606
FNN13H-II 0.1131 0.0925 0.4883 7.09E-04 0.6632
FNN14H-II 0.1166 0.0903 0.4797 9.13E-04 0.6565
FNN15H-II 0.1158 0.0901 0.4971 4.67E-04 0.6600
FNN20H-II 0.1157 0.0902 0.4763 1.61E-03 0.6600
FNN25H-II 0.1151 0.0901 0.4787 4.87E-04 0.6626
FNN30H-II 0.1164 0.0900 0.4748 1.93E-03 0.6584

Figure 3. Performances of the networks developed.
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FNN13H-V, and FNN13H-VII have the same membership
functions for the inputs but differ for the fuzzification of
the output. The worsening of the model is clear with a linear
membership function for the output, but generally speaking
the models get worse as the output gets more vague. The
best results are with five very crisp membership functions
(FNN13H-D and FNN13H-VI), and the models get worse
and worse as the membership functions overlap more and

more. This suggests that the starting data set, even though it
is one of the most reliable used, is affected by unavoidable
experimental errors. As shown in FNN13H-VIII, FNN13H-
IX, FNN13H-X, and FNN13H-D fuzzy logic can deal with
imprecise data and too few membership function are not
enough to describe correctly the data set. In this case it helps
us establish crisp linguistic classes for the toxicity. Many
studies have set out to predict toxicity as a continuous value

Figure 4. Representation of the membership functions used in this study for the fuzzification of the input and the output.

Figure 5. Defuzzification of the fuzzy output: (a) good fuzzy inference prediction forp-phenoxybenzaldehyde (FNN13H-D prediction:
0.39605; experimental: 0.38999); (b) bad fuzzy inference prediction for 1,1-dimethylhydrazine (FNN13H-D prediction: 0.88874;
experimental: 0.46858); (c) good fuzzy inference prediction forp-chlorophenyl-o-nitrophenyl ether (FNN13H-I prediction: 0.26025;
experimental: 0.26745); and (d) bad fuzzy inference prediction for 2-methyl-1,4-naphthoquinone (FNN13H-I prediction: 0.56213;
experimental: 0.068761).
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or in classes.24-28 Advantages of toxicity classes are that they
are less sensitive to variability of the experimental value and
that they can be related to regulatory toxicity classes.
However, even a small difference in the algorithm can cause
a change in the predicted class, resulting in a change in the
output which is bigger than in the case of continuous values.
As a result, it must be carefully studied how to shape the
classes, and NIKE proves particularly useful, flexible, and
speedy to cope with this problem.

This paper illustrates the difficulties of modeling the
toxicity of chemicals. The data set mined is fundamental and,
of course, strongly effects the resulting models. In this study
the width and reliability of the Duluth data set make it a
strong starting point, but its heterogeneity makes it extremely
complex to model (see Table 1). Networks trained on this
data set must therefore be as general as possible.
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Table 4. Membership Functions Involved in the Models Developed

membership functions
for the input

membership functions
for the output

FNN13H-D (d) (h)
FNN13H-I (a) (g)
FNN13H-II (a) (h)
FNN13H-III (d) (k)
FNN13H-IV (a) (k)
FNN13H-V (d) (a)
FNN13H-VI (e) (h)
FNN13H-VII (d) (j)
FNN13H-VIII (d) (b)
FNN13H-IX (d) (c)
FNN13H-X (d) (f)

Table 5. Performances of the Networks

mean SD max min
R2

training
R2

test

FNN13H-D 0.1302 0.1099 0.5886 0.0005 0.6917 0.3475
FNN13H-I 0.1312 0.1012 0.5560 0.0005 0.6472 0.4979
FNN13H-II 0.1254 0.1044 0.5612 0.0004 0.6632 0.5019
FNN13H-III 0.1492 0.1040 0.5385 0.0021 0.6086 0.3314
FNN13H-IV 0.1455 0.1027 0.5642 0.0005 0.5960 0.4124
FNN13H-V 0.1890 0.1234 0.5355 0.0016 0.1953 0.0000
FNN13H-VI 0.1303 0.1086 0.5993 0.0008 0.6912 0.3593
FNN13H-VII 0.1367 0.1104 0.5790 0.0006 0.6441 0.3582
FNN13H-VIII 0.1462 0.1111 0.6067 0.0002 0.6046 0.3118
FNN13H-IX 0.1378 0.1075 0.5875 0.0004 0.6738 0.3160
FNN13H-X 0.1294 0.1134 0.5906 0.0001 0.6992 0.3088
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