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A back-propagation neural network to predict the carcinogenicity of aromatic nitrogen compounds was
developed. The inputs were molecular descriptors of different types: electrostatic, topological, quantum-
chemical, physicochemical, etc. For the output the index TD50 as introduced by Gold and colleagues was
used, giving a continuous numerical parameter expressing carcinogenicity. From the tens of descriptors
calculated, principal component analysis enabled us to restrict the number of parameters to be used for the
artificial neural network (ANN). We used 104 molecules for the study. AnRcv

2 ) 0.69 was obtained. After
removal of 12 outliers, a new ANN gave anRcv

2 of 0.82.

1. INTRODUCTION

Man is exposed to many chemicals of natural and synthetic
origin. An urgent question concerns their potential negative
effects on human health. To identify chemicals inducing
toxicity and to limit the incidence of human cancers and other
diseases, rodent bioassays are the principal methods used
today. However, this approach is not altogether problem-
free, on several accounts: (1) the cost of the assay (>1
million U.S. dollars per chemical); (2) the time needed for
the tests (3-5 years); (3) ethical considerations and public
pressure to reduce or eliminate the use of animals in research
and testing;1 (4) difficulties in the extrapolation to man.

We were interested in the prediction of carcinogenicity,
but cancer is not a single disease. Several mechanisms are
involved in the various processes leading to the different
tumors. This makes the task of assessing the computational
prediction particularly challenging. Dedicated expert systems
have been employed for computerized prediction of carci-
nogenicity.2,3 However, these have limitations.1-3 These
expert systems work mainly on the assumption that toxicity
is linked to the presence of toxic residues, either defined by
human experts or found by the expert system. In some cases,
the expert systems also use some simple physicochemical
parameters. A very recent book describes the state-of-the-
art of the research in the prediction of toxicity.4

Another widespread approach for predicting toxicity relies
on molecular descriptors, which refer to global properties
or characteristics of the molecule. In recent years a huge
increase in the number of studies of theoretical molecular
descriptors has appeared in the literature, including their use
in toxicity prediction.5 In the case of expert systems chemical
data can be handled in several formats, but with artificial
neural network (ANN) molecular descriptors are more
suitable, and indeed they have been used in the prediction

of carcinogenicity with contrasting results.6-8 In this study
we consider the use of molecular descriptors as input to ANN
for the prediction of carcinogenicity of aromatic compounds
with nitrogen-containing substituents.

2. METHODS

2.1. Input and Output of the Model. In many cases the
carcinogenicity of a compound is classified by activity. A
numerical, continuous approach was introduced by Gold and
colleagues.9 Gold’s database contains standardized results
for carcinogenicity for more than 1200 chemicals; for each
substance it reports the carcinogenicity on rat and mouse,
expressed using the parameter TD50, which is the chronic
dose rate that would give half the animals tumors within
some standard experimental timesthe “standard lifespan”
for the species. The huge amount of information in the
database and the quantitative homogeneous evaluation are
two important advantages. This database was therefore
adopted as the basis for selecting the output parameter for
the neural network. In the present study, for each chemical
we chose the lowest (i.e. most potent) TD50. For the purpose
of homogeneity all data refer to the mouse.

We limited the chemical compounds to be evaluated to
those containing an aromatic ring and a nitrogen linked to
the aromatic ring, because our previous experience with a
commercial expert system showed that several of the
compounds classified incorrectly belonged to this category.10

The category includes several chemical classes, such as
nitrosamines, amides, amines, and nitro derivatives, etc. The
list of 104 selected compounds, with their toxic activity, is
given in Table 1.

For the output we transformed the TD50 as follows:
output ) log(MW × 1000/TD50) (MW ) molecular
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weight), in order to have a more continuous output space
and to refer to the moles of the chemical, not the weight.8

2.2. Molecular Descriptors. Chemical structures were
drawn with Hyperchem (Hypercube, Inc.) and optimized
using the PM3 Hamiltonian. We used the following programs
to calculate descriptors: VAMP version 6.1 (Oxford Mo-
lecular Ltd.) for the quantum-mechanical and thermodynamic
calculations, on a Silicon Graphics XS24 workstation;
HAZARD EXPERT version 3.0 (CompuDrug Chemistry
Ltd., Budapest, Hungary) for logD calculation; TSAR
version 3.0 (Oxford Molecular) for the other descriptors,
using a personal computer.

We calculated the 34 descriptors listed in Table 2. logD
was calculated at pH 2, 7.4, and 10 as representative of the
pH of the stomach, blood, and gut, where different processes

may occur with the chemicals. The complete set of values
is available from the authors on request.

2.3. Reducing the Number of Descriptors by Principal
Component Analysis.We used principal component analysis

Table 1. Chemical Names, CAS Number, and Experimental and Calculated Toxic Values of 104 Compounds

name CAS no. expt pred name CAS no. expt pred

(N-6)-(methylnitroso)adenine 0.6665 0.4923 5-nitroacenaphthene 602-87-9 0.6194 0.6508
(N-6)-methyladenine 443-72-1 0.0000 0.4462 acetaminophen 103-90-2 0.0000 0.3215
1,5-naphthalenediamine 2243-62-1 0.5838 0.5713 AF-2 3688-53-7 0.5922 0.5664
1-(1-naphthyl)-2-thiourea 86-88-4 0.8274 0.6979 aniline‚HCl 142-04-1 0.2679 0.2523
1-amino-2-methylanthraquinone 82-28-0 0.5516 0.6981 anthranilic acid 118-92-3 0.1737 0.1693
1-[(5-nitrofurfurylidene)amino]hydantoin 67-20-9 0.4588 0.4831 atrazine 1912-24-9 0.6881 0.6902
2,2′,5,5′-tetrachlorobenzidine 15721-02-5 0.5963 0.6738 azobenzene 103-33-3 0.7571 0.7360
2,2,2-trifluoro-N-[4-(5-nitro-2-furyl)- 42011-48-3 0.7321 0.6992 benzidine‚2HCl 531-85-1 0.7086 0.6738

2-thiazolyl]acetamide c.i. disperse yellow 3 2832-40-8 0.4769 0.4644
2,4,5-trimethylaniline 137-17-7 0.7129 0.6384 chloramben 133-90-4 0.3477 0.2602
2,4,6-trimethylaniline‚HCl 6334-11-8 0.6498 0.6310 chlorambucil 305-03-3 1.0000 0.9094
2,4-diaminoanisole sulfate 39156-41-7 0.4965 0.4567 cinnamyl anthranilate 87-29-6 0.4017 0.4539
2,4-diaminotoluene‚2HCl 636-23-7 0.5643 0.5146d & c red no. 9 5160-02-1 0.4336 0.4384
2,4-dimethoxyaniline‚HCl 54150-69-5 0.4257 0.4197 dacarbazine 4342-03-4 0.8653 0.5674
2,4-dinitrophenol 51-28-5 0.0000-0.0145 dapsone 80-08-0 0.0000 0.4293
2,4-dinitrotoluene 121-14-2 0.0000 0.3873 fd & c red no. 4 4548-53-2 0.2512 0.2209
2,4-xylidine‚HCl 21436-96-4 0.6608 0.5765 fd & c yellow no. 6 2783-94-0 0.2717 0.2126
2,5-xylidine‚HCl 51786-53-9 0.4458 0.5227 fluometuron 2164-17-2 0.5344 0.4913
2,6-dichloro-p-phenylenediamine 609-20-1 0.4405 0.4430 formic acid 2-[4-(5-nitro-2-furyl)- 3570-75-0 0.7277 0.6196
2-(acetylamino)fluorene 53-96-3 0.7563 0.7638 2-thiazolyl]hydrazide
2-amino-4-(5-nitro-2-furyl)thiazole 38514-71-5 0.7243 0.6966 furosemide 54-31-9 0.4876 0.5560
2-amino-4-(p-nitrophenyl)thiazole 2104-09-8 0.7133 0.6690 hydrochlorothiazide 58-93-5 0.4514 0.5654
2-amino-4-nitrophenol 99-57-0 0.4384 0.4929m-cresidine 102-50-1 0.5100 0.5057
2-amino-5-nitrophenol 121-88-0 0.3238 0.3026m-phenylenediamine‚2HCl 541-69-5 0.4844 0.4144
2-amino-5-nitrothiazole 121-66-4 0.0000-0.0862 m-toluidine‚HCl 638-03-9 0.3831 0.3642
2-aminoanthraquinone 117-79-3 0.4630 0.6501 melamine 108-78-1 0.3532 0.4286
2-aminodiphenylene oxide 3693-22-9 0.7344 0.7324 melphalan 148-82-3 0.9803 1.0032
2-biphenylamine‚HCl 2185-92-4 0.4241 0.3075 methotrexate 59-05-2 0.6443 0.4927
2-chloro-p-phenylenediamine sulfate 61702-44-1 0.4001 0.4022 metronidazole 443-48-1 0.4927 0.4924
2-hydrazino-4-(5-nitro-2-furyl)thiazole 26049-68-3 0.6857 0.6391 mexacarbate 315-18-4 0.8264 0.8305
2-hydrazino-4-(p-aminophenyl)thiazole 26049-71-8 0.7018 0.6003N-(l-naphthyl)ethylenediamine‚2HCl 1465-25-4 0.0000 0.2226
2-hydrazino-4-(p-nitrophenyl)thiazole 26049-70-7 0.7134 0.6021N-nitrosodiphenylamine 86-30-6 0.4952 0.4837
2-methyl-1-nitroanthraquinone 129-15-7 0.8404 0.7969N-phenyl-p-phenylenediamine‚HCl 2198-59-6 0.0000 0.4836
2-naphthylamine 91-59-8 0.6557 0.6456N-[4-(5-nitro-2-furyl)-2-thiazolyl]- 24554-26-5 0.7325 0.7051
2-nitro-p-phenylenediamine 5307-14-2 0.4532 0.2208 formamide
2-sec-butyl-4,6-dinitrophenol 88-85-7 0.8360 0.8256N-[5-(5-nitro-2-furyl)-1,3,4- 2578-75-8 0.7440 0.5990
3,3′-dimethoxybenzidine-4,4′-diisocyanate 91-93-0 0.2791 0.4109 thiadiazol-2-yl]acetamide
3-(3,4-dichlorophenyl)-1,1-dimethylurea 330-54-1 0.4788 0.6364 nithiazide 139-94-6 0.4609 0.4735
3-chloro-p-toluidine 95-74-9 0.3807 0.3849 nitrofen 1836-75-5 0.6198 0.5780
3-nitro-p-acetophenetide 1777-84-0 0.3995 0.4186o-aminoazotoluene 97-56-3 0.5936 0.5913
4′-fluoro-4-aminodiphenyl 324-93-6 0.8306 0.5675o-anisidine‚HCl 134-29-2 0.4162 0.4160
4,4′-methylenebis(2-chloroaniline)‚2HCl 64049-29-2 0.6141 0.6300o-phenylenediamine‚2HCl 615-28-1 0.4333 0.4379
4,4′-methylenebis(N,N-dimethyl)benzenamine 101-61-1 0.5456 0.5662o-toluidine‚HCl 636-21-5 0.4296 0.4531
4,4′-methylenedianiline‚2HCl 13552-44-8 0.6760 0.6068p-anisidine‚HCl 20265-97-8 0.0000 0.3522
4,4′-oxydianiline 101-80-4 0.6680 0.5299p-chloroaniline 106-47-8 0.3917 0.3951
4-amino-2-nitrophenol 119-34-6 0.0000 0.2578p-cresidine 120-71-8 0.5986 0.5234
4-aminodiphenyl 92-67-1 0.8312 0.6604p-isopropoxydiphenylamine 101-73-5 0.4703 0.4558
4-chloro-m-phenylenediamine 5131-60-2 0.4088 0.3924p-nitrosodiphenylamine 156-10-5 0.5024 0.6000
4-chloro-o-phenylenediamine 95-83-0 0.4233 0.4286p-phenylenediamine‚2HCl 624-18-0 0.3813 0.3249
4-chloro-o-toluidine‚HCl 3165-93-3 0.6942 0.6084 pentachloronitrobenzene 82-68-8 0.6161 0.6816
4-nitro-o-phenylenediamine 99-56-9 0.0000 0.3094 phenacetin 62-44-2 0.2859 0.3255
4-nitroanthranilic acid 619-17-0 0.2882 0.3812 phenylhydrazine 100-63-0 0.0000 0.0428
5-nitro-2-furaldehyde semicarbazone 59-87-0 0.6600 0.4923 proflavine‚HCl hemihydrate 952-23-8 0.6535 0.6667
5-nitro-o-anisidine 99-59-2 0.4276 0.4530 pyrimethamine 58-14-0 0.5199 0.6243

Table 2. The 34 Used Descriptors

molecular weight three principal axes of inertia
log D at pH 2, 7.4, 10 Balaban Index
HOMO Wiener Index
LUMO Randic Index
heat of formation five Kier & Hall connectivity
dipole moment indices
polarizability six Kier shape indices
total energy flexibility index
molecular volume ellipsoidal volume
three principal moments of inertia electrotopological sum
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(PCA) to select a smaller set of descriptors so the network
could converge faster.

The main change in the set of 104 molecules (accounting
for 63% of the total variability) was explained by the
descriptor total energy and by a pool of descriptors including
topological, geometric, and electrostatic values inversely
correlated with the first principal component (PC). The
second PC, accounting for another 8% of the variability, was
mainly related to the dipole moment, the topological index
of Balaban, and the quantum-chemical HOMO and LUMO
descriptors and to logD at pH 7.4 and pH 10. The logD at
pH 2 correlated with the third PC, thus explaining another
smaller but different source of variability.

Descriptors with the highest scores on the first four
components of PCA (accounting for 85% of the total
variability) were chosen and reduced, eliminating those most
closely correlated. A final criterion was to keep a pool of
descriptors representing the different aspects of the molecule
considered (physicochemical, electronic, and topological,
etc). From the 34 descriptors calculated, 13 were selected:
molecular weight, HOMO, LUMO, dipole moment, polar-
izability, Balaban, ChiV3 and flexibility indices, logD at
pH 2 and pH 10, third principal axis of inertia, ellipsoidal
volume, and electrotopological sum.

2.4. Artificial Neural Networks. In all the simulations,
performed with MBP v 1.1,11 the working parameters were
set as follows: the weight initialized with the SCAWI
technique; net gainη(0) ) 0.75; initial momentR(0) ) 0.9;
acceleration factor YPROP,Ka ) 0.7, Kd ) 0.07. The
algorithm stopped itself when it encountered one of the
following conditions: gradient lower than 10-6; mean square
error in validation (MSE) equal to 0; maximum calculated
difference between calculated and desired output equal to
0; maximum number of iterations reached. Each network was
trained starting from 100 random points in space, in order
to minimize the probability of converging toward local
minima. Input data were scaled between 0 and 1 in order to
have a homogeneous range of variation of descriptors. The
output was scaled accordingly.

For the validation step the leave-two-out approach was
adopted, i.e. a cross-validation procedure using two examples
in validation and the others for training. Five ANN models
were generated, using data sets composed of 84 molecules
randomly chosen in the training set and 20 in the test set.

The software is available on request, for noncommercial
use.

3. RESULTS AND DISCUSSION

Most QSAR studies consider a limited number of param-
eters, taking account of previous knowledge in the field and
using multivariate linear analysis. In our case there was no
previous knowledge on the importance of specific molecular
descriptors. We therefore considered a wide range of different
classes, as detailed above, to extract information without a
priori elimination of any possibilities.

We tried using regression analysis, but without success.
ANN can be used to model complex phenomena where noise
and nonlinear processes may be present, such as in our case.
A disadvantage is the time needed, because many iterations
are needed. This is a weakness of this neural network if we
want to keep all the descriptors as inputs. Reducing the inputs

shortens the training time. If this involves eliminating
redundancy, the net has more chance of finding relevant
parameters. For these reasons (reduction of computation time
and elimination of redundancy) we chose PCA to select the
ANN inputs, as it has been used for this purpose in other
cases.12,13 A risk related to the use of PCA is the possibility
of eliminating inputs which behave nonlinearly. To verify
that we had not eliminated any useful information, we built
a new ANN using the first 12 PCs as inputs. These contain
about 99% of the information of the original set of variables.
The results with these PCs were comparable to those with
the selected descriptors, shown below, indicating that we had
not lost information through our selection.

Table 1 gives results of the back-propagation neural
network (BPNN). Figure 1 shows the predicted and experi-
mental carcinogenicity with the BPNN four-neuron model.

The averageR2 cross-validated (Rcv
2) after 10 000 iterations

and using different numbers of internal neurons is shown in
Table 3.

To overcome possible representation bias in our data set,
we built up five random data sets composed of 84 molecules
in the training set and 20 in the test set. Then five
independent ANN models were generated. This approach has
been used recently.14 Rcv

2 for these models was 0.70 using
four or six neurons in the inner layer, in agreement with the
leave-two-out method (see Table 3).

For the BPNN, the presence of outliers in the set was
assumed and investigated in order to see whether the
network’s capacity for generalization improved after remov-
ing them and to assess the chemical nature of the activity of
the compounds.

We adopted a conservative approach to remove outliers,
taking only the molecules presenting an error in validation
higher than 0.2 in the two best models (those with four and

Figure 1. Predicted versus experimental carcinogenicity values
with the BPNN four-neuron model.

Table 3. Results with BPNN of Increasing Numbers of Hidden
Neurons (MSE) Mean Square Error)a

neurons MSE Rcv
2 neurons MSE Rcv

2

3 0.0157 0.675 6 0.0153 0.676
4 0.0146 0.691 7 0.0146 0.691
5 0.0154 0.676

a Best results are in italics.
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seven internal neurons). Twelve molecules were identified
as outliers and removed. The results are presented in Table
4.

The results show thatRcv
2 has been clearly improved. Most

of the outliers (9 out of 12) are molecules for which the
experimental results for carcinogenicity were not statistically
significant and an arbitrary value of 1031 was given in the
Gold database (see Figure 1; they lie on they axis, because
of the transformation formula described in section 2.1 and
scaling). The main experimental evidence for these molecules
suggests noncarcinogenicity. Other considerations on the
outliers regard their homogeneity from a chemical point of
view. As we said, the compounds used for this ANN belong
to several chemical classes and the outliers appear to be
distributed over various chemical classes. Some are chemicals
that have no structures in common with other members of
the set, and this may explain their behavior. However, the
ANN correctly predicted the toxicity of other chemicals
which appear badly represented.

Special consideration must be given to two molecules,o-
andp-anisidine. These isomers have identical or very similar
chemical descriptors. However, their toxicity is very different,
due to different metabolism in the animals. The ANN based
on molecular descriptors was not able to distinguish them.
This is a case of interesting behavior, shared with other
compounds, which may undergo a metabolic process able
to detoxify the chemical. In another study we solved the case
of o- andp-anisidine by an expert system which distinguishes
the toxic substructure.15

The present study illustrates the possibilities and limitations
of the approach based on molecular descriptors. From the
chemical point of viewo- andp-anisidine may appear very
similar, but for a living organism they are not. There are,
however, chemicals which appear different within various
chemical classessas in the case of the compounds we have
usedsthat the organism considers similar, because they are
converted to aromatic amines. Knowledge of the body’s
bioprocesses is therefore an important source of information.
Knowledge of the structural features of the molecule that
characterize its specific mechanism of action cannot be
ignored in some cases, in order to solve problems occurring
in the prediction.

Another general point is the reliability of the database.
We used an authoritative database, resulting from critical
assessment of data from two sources: reports in the literature
using different experimental protocols and results obtained
according to a uniform protocol within the U.S. National
Toxicology Program. Differences in the sources may affect
the homogeneity of the data.l6 Furthermore, this database,
like many others, changes constantly as new studies appear,
adding knowledge.

A final comment on the database is that in most cases it
still contains a limited number of compounds (despite the

huge amount of work needed to build them up), so for some
compounds we did not have enough examples to train the
ANN properly.

4. CONCLUSIONS

Many models for toxicity prediction use linear relation-
ships, which apply well within congeneric chemical classes.
ANN has been used in limited cases. Villemin et al. used
ANN to model polycyclic aromatic compounds in carcino-
genic classes, obtaining good results.6 Vracko obtained anr
of 0.83, after removing the outliers, for a set of aromatic
compounds belonging to different chemical classes.8 Benigni
and Richard, in a study using 280 compounds of various
kinds, concluded that BPNN models fitted the training sets
but had no general applicability.7 The main feature of their
study is the large differences between the structures of the
molecules, much wider than in the other ANN used to predict
carcinogenicity, including our present study.

The present study shows the feasibility of an ANN for
predicting carcinogenicity of chemicals of various types.
Several chemical classes are in fact present.

Our study attempts to illustrate how knowledge can be
improved using ANN, probably because it is modeling
nonlinearity. With chemical descriptors as input ANN is
useful for cases where multilinear regression fails. We are
aware of the limitations of this approach, which are common
to other methods, as discussed. However, we believe that
no single approach can cope with the vast problem of
predictive toxicology, as already noted by other authors.17

The next task is the extension to a wider set of chemicals.
How to extract rules from the ANN is a major topic, and
how to integrate ANN results with those from independent
sources. We have already evaluated this last point in some
cases, coupling expert systems and ANN within hybrid
systems able to incorporate the best elements from each of
the approaches.15,18
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