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While mining a data set of 554 chemicals in order to extract information on their toxicity value, we faced
the problem of scaling all the data. There are numerous different approaches to this procedure, and in most
cases the choice greatly influences the results. The aim of this paper is 2-fold. First, we propose a universal
scaling procedure for acute toxicity in fish according to the Directive 92/32/EEC. Second, we look at how
expert preprocessing of the data effects the performance of qualitative structure-activity relationship (QSAR)
approach to toxicity prediction.

INTRODUCTION

Preprocessing is the first step in predictive data mining
(i.e., data mining with the goal of constructing a predictive
model). It includes several operations on the data set before
a statistical model is developed. Preprocessing can be based
on a priori knowledge about the data, on assumptions
underlying the statistical model, or on practical experience.
Such manipulations can take many forms reflecting different
modeling objectives and levels of knowledge about the
properties of the data.9,14,24

In modeling, a proper selection of the transformation of a
response variable implies a number of benefits. Notably, it
may (i) simplify the response function by linearizing a
nonlinear response-factor relationship; (ii) stabilize the
variance; and (iii) make the distribution more normal.

Many quantitative structure-activity relationship (QSAR)
methods require scaling of the original data to extract
significant and useful information and remove unimportant,
not interesting features. We used a QSAR approach based
on artificial neural networks (ANN), to predict acute toxicity,
i.e., the lethal concentration for 50% of the test animals
(LC50), for the fathead minnow (Pimephales promelas).

This approach employs a powerful pattern recognition
paradigm, able to analyze various types of data,1,6,15 but all
the data must be scaled between zero and one. Scaling the
descriptors is a very delicate procedure because we do not
know the underlying relationship between the descriptor and
the toxicity for most of them,3,4 and therefore cannot foresee
the influence of these manipulations. We therefore main-
tained the original distribution, using a range scaling in order
to conserve it.

For the LC50, we based ourselves on the EU Directive 92/
32/EEC annex VI point 5.1,10 which classifies the chemicals
as shown in Table 1:

The classification is clearly based on a logarithmic scale.
This directive gives useful guideline for scaling acute
toxicity. Furthermore, to have a useful general instrument,
the scaling procedure must go beyond the limits of the data
set mined. Because there is a natural lower limit, 0 mg/L,
but not a upper one, the only solution was to have a function
between 0 and 1 with an asymptote to 1. Thus every possible
real value for the LC50 is represented. The inevitable loss of
knowledge about the highest values is acceptable because
they are in the less toxic class and because, according to the
EU directive, less precision is required on high values.

This paper presents a scaling procedure for LC50 that takes
account of the EU regulation, and the need for a universal
approach, useful for aquatic toxicity, is presented in this
paper.

MATERIALS AND METHODS

Data Set.We mined a data set of 554 organic compounds,
commonly used in industrial processes. The U.S. Environ-
mental Protection Agency11-13,28 helped build up this data
set, starting from a review of experimental data in the
literature, referring to acute toxicity 96-h LC50, for the fathead
minnow (Pimephales promelas). Close analysis of a large
amount of experimental information led to the association
of a mechanism of action (MOA) for each compound. This
toxicological data in this set is one of the biggest available
and very reliable,28 and therefore the information extracted
from it has a general validity.
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Table 1. EC Classification for Fish (Directive 92/32EEC Annex VI
Point 5.1)

class LC50 dangerous for the environment

I <1 mg/L very toxic to aquatic organisms
II 1-10 mg/L toxic to aquatic organisms
III 10-100 mg/L harmful to aquatic organisms
IV >100 mg/L may cause long-term adverse effects

in the aquatic environment
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The data set was randomly partitioned 70-30% between
388 training cases, used to develop the models and 166
testing cases, and used to evaluate the prediction ability of
the models. Statistical information about the data set mined
is summarized in Table 2.

Descriptors. The descriptors were calculated using dif-
ferent software: Hyperchem 5.0 (Hypercube Inc., Gaines-
ville, FL, U.S.A.), CODESSA 2.2.1 (SemiChem Inc.,
Shawnee, KS, U.S.A.), and Pallas 2.1 (CompuDrug; Buda-
pest, Hungary). Out of the hundreds of descriptors proposed
by these software just 153 gave a nonconstant or nonmissing
value for all the objects. The set of descriptors resulting can
be split into six categories according to the classification
present in the software CODESSA:20 constitutional (34),
geometrical (14), topological (38), electrostatic (57), quantum-
chemical (6), and physicochemical descriptors (4).

To ensure a good model it is useful to select the variables
that describe the molecules best. Some of these descriptors
add no information and just increase the noise, making it
more difficult to analyze the results. Furthermore, with a
limited number of variables the risk of overfitting is
reduced.17,29 The descriptor selection was done through
principal components analysis (PCA) with the principal
components eigenvalue (Scree) plot method. Descriptors with
the highest scores on the first four components of PCA were
chosen and reduced, eliminating those most closely cor-
related. A final criterion was to keep a pool of descriptors
representing the different aspects of the molecule considered
(physicochemical, electronic, and topological, etc.). The
selected descriptors are listed in Table 3.

NIKE. ANN are powerful tools, used to develop a wide
range of real-world applications, especially when traditional
solving methods fail.2,5,25They offer advantages such as ideal
learning ability from data, classification capabilities and

generalization, computational speed once trained, with paral-
lel processing, and noise tolerance. The major shortcoming
of neural networks is their low transparency.

In developing ANN models we used the hybrid intelligent
system shell NIKE,22,23 in order to automate the processes
involved, from data representation for toxicity measurements,
to the prediction of toxicity for a given new input. We used
the first NIKE module, called IKM-CNN (implicit knowl-
edge module-based on crisp neural networks), which takes
charge of models the data set as a multilayer perceptron
(MLP).27 For a chosen IKM-CNN, the descriptors are
considered the inputs for the neural nets. IKM-CNN are
described as MISO (multi-input single output) structures,
having as output the normalized value of toxicity (LC50).
The neural nets are trained on the specific data and adjusted
using the number of the hidden layer neurons and momentum
term.

Scaling.We scaled all descriptors between zero and one,
using a range scaling. However toxicity was scaled with the
following six scaling procedures:

• Range Scaling (RS):

where yi ) scaled value,xi ) original value,min(x) )
minimum of the collection ofx objects, andmax(x) )
maximum of the collection ofx objects.

This is the most common approach because it is simple
and keeps the linear distribution of the data.

• Range-Logarithmic Scaling (RLS):

Logarithmic transformation is generally used when the
coefficient of variance is constant.

• Range-Logarithmic Scaling Modified (RLSM):

This is a modification of the previous transformation, it
uses log10(xi + 1) to overcome to limit of log10(xi) whenxi

) 0.
• Tangent Hyperbolic Scaling (THS):

This transformation is introduced to extrapolate the model
beyond the data set limits, because it tends asymptotically
to 1.

Tangent Hyperbolic-Logarithmic Scaling (THLS):

This is intended to combine the efficiency of stabilizing
the variance and generalizing the data set, given by the
previous transformations.

Tangent Hyperbolic- Logarithmic Scaling Modified
(THLSM):

Table 2. Statistical Information about the Toxicity Values in the
Data Set

value (mg/L)

maximum 75200.00
minimum 0.00019
range 7.5200e+004
standard deviation 5.7249e+003
variance 3.2774e+007
geometric mean 24.1313
arithmetic average 1.0600e+003

Table 3. Descriptors Selected for the Models

descriptor code

total energy (kcal/mol) QM1
heat of formation (kcal/mol) QM3
LUMO (eV) QM6
relative number of N atoms C9
relative number of single bonds C24
molecular weight (amu) C35
Kier&Hall index (order 0) T6
average information content (order 1) T22
moment of inertia B G2
molecular volume G10
molecular surface area G12
TMSA total molecular surface area [Zefirov’s PC] E13
FPSA-2 fractional PPSA (PPSA-2/TMSA) [Zefirov’s PC] E24
PPSA-3 atomic charge weighted PPSA [Zefirov’s PC] E28
FPSA-3 fractional PPSA (PPSA-3/TMSA) [Zefirov’s PC] E31
LogD pH9 pH9
LogP LogP

yi )
xi - min(x)

max(x) - min(x)
(1)

yi )
log10(xi) - min(log10(x))

max(log10(x)) - min(log10(x))
(2)

yi )
log10(xi + 1) - min(log10(x + 1))

max(log10(x + 1)) - min(log10(x + 1))
(3)

yi ) tanh(xi) (4)

yi ) tanh(log10(xi + 1)) (5)

yi ) tanh(0.4903log10(xi + 1) + 0.0562)- 0.0095 (6)
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This is a modification of the previous algorithm in order
to achieve the best application to the EC classification.4

RESULTS AND DISCUSSION

We used a fully connected three-layered crisp neural
network with 25 hidden neurons, according to the general
rules on the maximum and minimum number of hidden
neurons.16,18,21The back-propagation algorithm with a mo-
mentum term of 0.9 was used for training (a high momentum
term prevents too many oscillations of the error function,27

and small variations around 0.9 did not suggest in our case

high differences). The networks were trained up to 5000
epochs.

Figure 1 shows the predictive ability of models developed
with the six different scaling procedures. The preprocessing
operations have very strong influence. Besides the real
performance of the model, uncritical scaling makes it
extremely difficult to extract information from the data set.

Table 1 shows statistical indices of the models developed.
R2 is the explained variance by the model and represents
the ability of the model in correlating the descriptors and
the experimental answer. Mean squared error (MSE) gives

Figure 1. Performance validation of the 554 chemicals for: (a) range scaling; (b) range-logarithmic scaling; (c) range-logarithmic scaling
modified; (d) tangent hyperbolic scaling; (e) tangent hyperbolic-logarithmic scaling; and (f) tangent hyperbolic-logarithmic scaling modified.
On the x-axes there are the real values of the scaled LC50 and on the y-axes there are the predicted value.
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a general information of the performances of the model on
the data set mined.

RS (Figure 1a) is not able to manage the high variance of
the data. In view of the fact that very few data have high
values, it concentrates most of the other data in a small
interval and loses important information about them. Worse,
it loses information about the most toxic class of compounds,
which is, of course, the most important.

RLS (Figure 1b) is a good example of preprocessing. The
objects are well distributed in the whole interval and the
model takes advantage of this. The weakness of this
transformation lies in the presence of limits which restrict
its application on the data set considered. In fact, it needs a
min and max value to be computed so it is limited between
these values.

RLSM (Figure 1c) has a better distribution in the whole
interval, and it results in a better ability of the model in

describing the relationship between the inputs and the output
(R2) but has worst mean error (Table 4).

To overcome the problem of the limits of the data set we
used a new approach. THS (Figure 1d) responds to our
requirement for a generalizable manipulation but has a strong
negative effect on the data distribution, with obvious
consequences on the model performances; indeed, once again
most of the data are compressed in one area.

Using logarithmic transformation first, to keep to the EU
guidelines, and then using tangent hyperbolic scaling in order
to make it generalizable, we tried to overcome both these

Figure 2. Scaling algorithms in the whole range (a) and in the significant interval [0-150 mg/L] (b). The black dots in (b) are landmarks
for the ideal transformation. On the x-axes there are the original values and on the y-axes there are the scaled values.

Figure 3. Percentage distribution of total number of compounds (554) within the EC toxicological classes for the original data set (first
column) and in four classes of the same width after each scaling procedure.

Table 4. Statistical Indices of the Models Developed

RS RLS RLSM THS THLS THLSM

R2 0.3165 0.6807 0.6813 0.4962 0.6615 0.6875
MSE 0.003954 0.006884 0.014482 0.028526 0.028659 0.021617
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hurdles. There is a useful improvement, but it is not yet the
best distribution (Figure 1e).

The idea to modify the previous transformation comes
directly from the EU classification. We had a relatively good
solution (THLS) which only needed to fit on the ideal
distribution given by the directive. We used a nonlinear
curve-fitting solver in the least squares sense (lsqcurvefit).19

That is, given input dataxdataand the observed outputydata,
find coefficientsx that “best fit” the equationF(x, xdata).
Lsqcurvefit uses the large-scale algorithm, a subspace trust
region method based on the interior-reflective Newton
method described in refs 7 and 8. Each iteration involves
the approximate solution of a large linear system using the
method of preconditioned conjugate gradients (PCG)

wherexdata is the vector of the class limits given by the
EC, ydata is the vector of the best ideal distribution, and
F(x, xdata) is the vector valued function. In this case the
algorithm finds the coefficientsx that “best fit” the equation
THLSM:

CONCLUSIONS

The strong effect of scaling is easily understandable in
the following figure (Figure 2a,b), which shows the distribu-
tion of the data after each transformation in the whole interval
of the data set (Figure 2a) and just for the significant interval
[0-150 mg/L], where all the most toxic classes are concen-
trated (Figure 2b). Theideal transformation is the one that
succeeds in scaling the original toxic classes into classes of
the same width so that each transformed class has the same
accuracy and the same original variance.

Figure 2 shows that RS does not describe the data set
reliably. This transformation forces almost every object
(99%) into a very small interval (0-0.25), losing important
information. THS behaves much the same way, but this
scaling puts most of the data (87%) in the last interval [0.75-
1]. RLS assigns too few elements (less than 2%) to the first
class. RLSM and THLS are easily understood from Figure
2b, in the light of the previous reasoning. They have a better
distribution than the previous transformations but are far from
ideal. THLSM is the scaling that best fits the characteristics
of the ideal transformation.

Further considerations can be drawn from Figure 3. The
distribution of the objects into four classes of the same width
after every transformation is compared with the original
distribution of the data set according to the EU classi-
fication.

Once more THLSM gives the best approximation. Al-
though this is not the most important characteristics
RLS has quite a different distribution but still gives good
modelssthis is an indicator of the reliability of this scaling
technique.
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