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Abstract: For six random splits, one-variable models of rat toxicity (minus decimal logarithm of the 50% lethal

dose [pLD50], oral exposure) have been calculated with CORAL software (http://www.insilico.eu/coral/). The total

number of considered compounds is 689. New additional global attributes of the simplified molecular input line

entry system (SMILES) have been examined for improvement of the optimal SMILES-based descriptors. These

global SMILES attributes are representing the presence of some chemical elements and different kinds of chemical

bonds (double, triple, and stereochemical). The ‘‘classic’’ scheme of building up quantitative structure–property/ac-

tivity relationships and the balance of correlations (BC) with the ideal slopes were compared. For all six random

splits, best prediction takes place if the aforementioned BC along with the global SMILES attributes are included in

the modeling process. The average statistical characteristics for the external test set are the following: n 5
119 6 6.4, R2 5 0.7371 6 0.013, and root mean square error 5 0.360 6 0.037.

q 2011 Wiley Periodicals, Inc. J Comput Chem 32: 2727–2733, 2011
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Introduction

Quantitative structure–property/activity relationships (QSPR/

QSAR) are tools for prediction of an endpoint for substances

that have not been examined experimentally.1–11

It is a typical concept that satisfactory QSPR/QSAR

model should be adequate for both the training and the

external test sets. However, there are cases when a modest

(or even poor) model for the training set is accompanied by

a satisfactory model for the external test set. It is important

that, however, this result should be reproduced in several

probes involved in the building up of the model, and the

result should be reproduced for a group of splits into the

training and test sets.12,13

The QSPR/QSAR approaches are criticized in the litera-

ture14–16 due to the frequent absence of the external test17 and

also because depending on the split of data into training and test

sets the outcome could be satisfactory or unacceptable. Basak

et al.18 have suggested the definition "inflated" in case of QSAR

models which are unreliable for making predictions for chemi-

cals similar to those used to calibrate the model. Indeed, the suc-

cess of the result can be dependent on the split of the com-

pounds between training, calibration and test sets.

The possible way to avoid the inflated correlations 18 is first,

the consideration of a group of splits, and second, the reliability

of the QSPR/QSAR models should be considered as more

important quality than their precision.12,13

Additional Supporting Information may be found in the online version of

this article.

Correspondence to: A. A. Toropov; e-mail: andrey.toropov@marionegri.it

q 2011 Wiley Periodicals, Inc.



The aim of this study is the building up and the estimation

of QSAR models for the oral rat toxicity of organic compounds,

according to aforementioned principles. The list of organic com-

pounds for this study was selected as a collection of substances

that are usually considered in the literature related to QSPR/

QSAR for various endpoints, such as toxicology,19–24 carcino-

genic potency,25 hepatocarcinogenic toxicity,26 toxicity of pesti-

cides,27 and aquatic toxicity.28

Method
Data

Rat toxicity data (LD50, in mg/kg, oral exposure) were taken

from the U.S. Library of Medicine.29 The log10[1/LD50] 5

pLD50 has been used as endpoint. Total number of compounds

is 689. Six random splits into the subtraining, calibration, and

test sets were examined.

Figure 1. The correlation coefficients between the pLD50 experimental and the pLD50 which are

calculated with eq. (1) for the external test set as the mathematical function [eq. (3)] for six random

splits. The places of maximums of R2
test are shown by pointers.
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Table 1. Definitions of the BOND, NOSP, and HALO Attributes.

5 # @ Comments

Calculation of the BOND index

0 0 0 There are no double, triple, or stereochemical bonds.

0 0 1 The molecule contains only stereochemical bonds.

0 1 0 The molecule contains only triple bonds.

0 1 1 The molecule contains triple and stereochemical bonds.

1 0 0 The molecule contains only double bonds.

1 0 1 The molecule contains double bonds and stereochemical bonds.

1 1 0 The molecule contains double and triple bonds.

1 1 1 The molecule contains double, triple, and stereochemical bonds.

N O S P Comments

Calculation of the NOSP index

0 0 0 0 Nitrogen, oxygen, sulfur, and phosphorus are absent.

0 0 0 1 The molecule contains only phosphorus.

0 0 1 0 The molecule contains only sulfur.

0 0 1 1 The molecule contains sulfur and phosphorus.

0 1 0 0 The molecule contains only oxygen.

0 1 0 1 The molecule contains oxygen and phosphorus.

0 1 1 0 The molecule contains oxygen and sulfr.

0 1 1 1 The molecule contains oxygen, sulfur, and phosphorus.

1 0 0 0 The molecule contains only nitrogen.

1 0 0 1 The molecule contains nitrogen and phosphorus.

1 0 1 0 The molecule contains nitrogen and sulfur.

1 0 1 1 The molecule contains nitrogen, sulfur, and phosphorus.

1 1 0 0 The molecule contains nitrogen and oxygen.

1 1 0 1 The molecule contains nitrogen, oxygen. and phosphorus.

1 1 1 0 The molecule contains nitrogen, oxygen, and sulfur.

1 1 1 1 The molecule contains nitrogen, oxygen, sulfur, and phosphorus

F Cl Br Comments

Calculation of the HALO index

0 0 0 Fluorine, chlorine, and bromine are absent.

0 0 1 The molecule contains only bromine.

0 1 0 The molecule contains only chlorine.

0 1 1 The molecule contains chlorine and bromine.

1 0 0 The molecule contains only fluorine.

1 0 1 The molecule contains fluorine and bromine.

1 1 0 The molecule contains fluorine and chlorine.

1 1 1 The molecule contains fluorine, chlorine, and bromine.

Table 2. Definition of the ATOMPAIRs, that is, Situations which are Defined by Presence (Absence) of

Seven Chemical Elements.

Cl Br N O S P

F 1111F222Cl¼¼¼¼ 1111F222Br¼¼¼¼ 1111F222N¼¼¼¼¼¼ 1111F222O¼¼¼¼¼¼ 1111F222S¼¼¼¼¼¼ 1111F222P¼¼¼¼¼¼
Cl 1111Cl22Br¼¼¼¼ 1111Cl22N¼¼¼¼¼¼ 1111Cl22O¼¼¼¼¼¼ 1111Cl22S¼¼¼¼¼¼ 1111Cl22P¼¼¼¼¼¼
Br 1111Br22N¼¼¼¼¼¼ 1111Br22O¼¼¼¼¼¼ 1111Br22S¼¼¼¼¼¼ 1111Br22P¼¼¼¼¼¼
N 1111N222O¼¼¼¼¼¼ 1111N222S¼¼¼¼¼¼ 1111N222P¼¼¼¼¼¼
O 1111O222S¼¼¼¼¼¼ 1111O222P¼¼¼¼¼¼
S 1111S222P¼¼¼¼¼¼

For example, 1111Cl222Br¼¼¼¼ indicates that both chlorine and bromine are present in the molecular structure

(without taking into account the numbers of these in molecule).
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Descriptors

Optimal simplified molecular input line entry system

(SMILES)-based descriptors were calculated by the Monte

Carlo method using the CORAL software.30 The same options

for the calculation of the optimal SMILES-based descriptors

were used for the six splits (Fig. 1). This approach generates

the following models

pLD50 ¼ C0 þ C1 DCWðThresholdÞ (1)

where DCW(Threshold) is the optimal SMILES-based optimal

descriptor calculated as

DCWðThresholdÞ ¼ a�
X

CWðSkÞ þ b�
X

CWðSSkÞ
þ c�

X
CWðSSSkÞ þ x�CWðBONDÞ þ y�CWðNOSPÞ

þ z�CWðHALOÞ þ w�CWðATOMPAIRÞ ð2Þ

The coefficients a, b, c, x, y, z, and w can be either 1 or 0. One

indicates that the SMILES attribute is involved in the calculation

of the DCW(Threshold) and zero indicates that the SMILES

attribute is not involved. Sk is the SMILES atoms, that is, one sym-

bol or two symbols which should be examined as a concatence, for

example, ‘Cl’, ‘Br’, ‘As’, and ‘Na’. The SSk and SSSk are the

SMILES attributes or combinations of two or three SMILES

atoms, respectively. The Sk, SSk, and SSSk are local SMILES

attributes. In fact, these are substrings of the total SMILES string.

If a SMILES is the sequence of SMILES atoms ABCDE, then one

can show the Sk, SSk, and SSSk as the following:

� ‘A’, ‘B’, ‘C,’ ‘D,’ and ‘E’ are examples of the Sk;

� ‘AB’, ‘BC’, ‘CD’, and ‘DE’ are examples of the SSk;

� ‘ABC’, ‘BCD’, and ‘CDE’ are examples of the SSSk.

However, having two SMILES atoms AB, one can obtain

two versions of the SMILES attribute AB or BA. To avoid this

uncertainty, one can use ASCII code for definition of only one

Table 3. Statistical Quality of the Models.

Split Thershold Nepoch Nact

Training set Calibration set Test set

n R2 RMSE F n R2 RMSE n R2 RMSE R2
m

Version 1. Classic scheme without the global attributes

1 4 19 470 563 0.7506 0.461 1689 126 0.4952 0.431 0.4031

2 2 30 684 582 0.7976 0.411 2285 107 0.5801 0.418 0.4453

3 4 15 469 564 0.7233 0.477 1469 125 0.5766 0.472 0.5306

4 4 19 462 567 0.7465 0.453 1664 122 0.5285 0.562 0.3715

5 5 21 417 571 0.7302 0.469 1540 118 0.6087 0.465 0.5504

6 4 28 464 572 0.7596 0.445 1801 117 0.4977 0.530 0.3435

Subtraining set Calibration set Test set

Version 2. Balance of correlations without the global attributes

1 2 18 566 344 0.7094 0.521 835 219 0.8290 0.362 126 0.5815 0.391 0.4889

2 2 30 582 369 0.7180 0.500 934 213 0.8855 0.332 107 0.5590 0.413 0.4777

3 3 14 447 347 0.6623 0.550 677 217 0.7969 0.392 125 0.5851 0.462 0.5771

4 2 26 558 351 0.7428 0.479 1008 216 0.8273 0.362 122 0.6019 0.508 0.4541

5 3 17 448 357 0.6857 0.526 774 214 0.8091 0.403 118 0.5822 0.490 0.5086

6 2 22 564 362 0.7266 0.490 957 210 0.8565 0.347 117 0.5177 0.497 0.4062

Training set Calibration set Test set

Version 3. Classic scheme with the global attributes

1 721 721 721 563 0.8113 0.401 2413 126 0.6347 0.371 0.5295

2 567 567 567 582 0.8228 0.384 2694 107 0.6780 0.367 0.5476

3 572 572 572 564 0.8170 0.388 2509 125 0.6720 0.430 0.5549

4 567 567 567 567 0.8142 0.388 2476 122 0.6535 0.479 0.4917

5 456 456 456 571 0.7586 0.443 1788 118 0.7245 0.386 0.6997

6 709 709 709 572 0.8176 0.387 2556 117 0.7094 0.380 0.6052

Subtraining set Calibration set Test set

Version 4. Balance of correlations with the global attributes

1 2 19 610 344 0.7662 0.468 1120 219 0.8759 0.304 126 0.7237 0.315 0.6388

2 2 26 625 369 0.7725 0.449 1246 213 0.9073 0.277 107 0.7327 0.315 0.6736

3 2 21 634 347 0.7688 0.455 1147 217 0.8922 0.284 125 0.7412 0.382 0.6265

4 2 24 601 351 0.7816 0.442 1249 216 0.8863 0.300 122 0.7399 0.420 0.5688

5 2 17 621 357 0.7723 0.448 1204 214 0.8738 0.313 118 0.7610 0.363 0.7276

6 2 22 607 362 0.7726 0.447 1223 210 0.8907 0.317 117 0.7239 0.366 0.6560

The Nact is the number of SMILES attributes classified as not rare; RMSE is the root mean square error; F is the Fi-

scher F-ratio; R2
m is the measure of the predictability according to Roy and Roy38: a model is satisfactory if R2

m [ 0.5.
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possibility (e.g., AB without BA). The same solution is used for

selection of only one of two combination of three atoms (e.g.,

ABC without CBA).

In addition to local attributes, CORAL can involve global

SMILES attributes, which are a characteristic of SMILES

string in whole. Table 1 contains definitions of the global

SMILES attributes BOND, NOSP, and HALO.31 Table 2

shows scheme for calculation of the global SMILES attribute

ATOMPAIR.

The correlation coefficient between pLD50 and DCW(Thres-

hold) is a mathematical function of the correlation weights of

the SMILES attributes. By the Monte Carlo method, one can

calculate the correlation weights that produce the maximum of

the correlation coefficient for the training set, assuming that this

correlation will also take place for the external test set.

There are two basic approaches of the CORAL modeling.

The first is the ‘‘classic’’ scheme based on the split of all sub-

stances into the training and test sets. In this case, the maximum

of the correlation coefficient for the training set is the target of

the Monte Carlo optimization.30 The second is the balance of

correlations (BC) which is based on split into three sets: sub-

training, calibration, and test sets.32–36 In the case of the BC, the

calibration plays role of ‘‘a preliminary’’ test set. In this case,

the maximum of BC 5 [R 1 R0 – abs(R–R0)]dR is the target of

Figure 2. Graphical representation of the best QSAR models of pLD50 which are calculated with the

balance of correlations with ideal slopes for six random splits. In eq. (2) the following options have

been used: a 5 1, b 5 1, c 5 1, x 5 1, y 5 1, z 5 1, and w 5 1.
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the Monte Carlo optimization: the R and R0 are correlation coef-

ficients for the subtraining and calibration sets, respectively; dR
is an empirical parameter.

The improved version of the BC is the BC with the ideal

slopes (IS).37 The BC with IS was used in this study. The basic

idea of the BC with IS is taking into account the difference

between C0 and C1 [see eq. (1)] of the training set and C0
0 and

C0
1 of the calibration set. The additional component of the target

function is IS 5 [(C0 1 C0
0) 1 (C1 1 C0

1)]dC. The maximum of

the BC together with the minimum of the IS are components of

the target function, in the case of the BC with IS. dC is an em-

pirical parameter.

The BC, in general, and the BC with IS, in particular, can

improve the predictability of a model in comparison with the

classic scheme.

If the total number of SMILES attributes is redundant, one

can obtain the inflated correlation,18 which is high for the train-

ing set (the case of classic scheme) or for the subtraining and

calibration sets (the case of the BC) but it will be modest or

even poor correlation for the external test set. In the literature,

this situation is named the ‘‘overtraining.’’16

In the case of the CORAL, there are two ways to try to

avoid the overtraining. The first way is to select an adequate

threshold for classification of SMILES attributes into two cate-

gories: rare and not rare. The correlation weights for the rare

(in the subtraining set) SMILES attributes should be fixed as

zero, and consequently, the rare attributes will not influence

the building up of the model. The reduction of the number of

SMILES attributes can lead to improvement in the predictabil-

ity of the model. The second way is to select an adequate

number of epochs of the Monte Carlo optimization: if the

number of epochs is too large, one can obtain ‘‘excellent’’ sta-

tistics for training but poor statistics for the external test set. If

the optimization is stopped with a correlation (for the training

set) which is not inflated, it can be a reasonable correlation for

the test set.

Results and Discussion

The building up of the QSAR model for pLD50 was carried out

in two phases. The first phase is the definition of the best thresh-

old and the number of epochs (Nepoch) of the Monte Carlo opti-

mization. The best models were calculated with the best combi-

nation of the threshold (from one to five) and the Nepoch (from 1

to 30) for the correlation coefficient of the external test set,

which is a mathematical function of these two parameters:

R2
test ¼ FðThreshold;NepochÞ (3)

These calculations were carried out in four versions:

� Version 1 was based on the classic scheme without global

SMILES attributes.

� Version 2 was based on the BC with IS without the global

attributes.

� Version 3 was based on the classic scheme with the global

attributes.

� Version 4 was based on the BC with IS with the global

attributes.

Table 3 contains the statistical characteristics of the best

models obtained in the versions 1–4. Figure 1 gives the graphi-

cal representation of the functions (i.e., R2
test) calculated with eq.

(3) for six splits. Figure 2 shows the best models for these six

splits graphically.

The developed QSAR models were further validated using

the randomization technique (Y-scrambling)39 to examine their

robustness. This validation is the following. There are two col-

umns pEC50calc and pEC50expr. One probe of the randomiza-

tion is the random shuffling of 100 pEC50calc without any

change in the column of pEC50expr. This check was carried

out for the subtraining set. A model can be considered as

robust if cR2
p [ 0.5.39 Table 4 contains the results of this

checking. One can see that all six models are robust according

to this criterion.39

Lists of the splits that are examined in this study together with

the CAS numbers, SMILES, and numerical data on the pLD50

are available (i.e., it can be downloaded) on the Internet30 as the

folder ‘‘Example 5.’’ Supporting Information section contains

screenshots of the calculations with CORAL software together

with the comparison of the classic scheme and the BC for six ran-

dom splits into the subtraining, calibration, and test sets.

Conclusions

All represented data are averages for a series of runs of the

CORAL software. There is the satisfactory reproducing of the

described results obtained by the Monte Carlo technique.

For all six random splits, using the global SMILES attributes

BOND, NOSP, HALO, and ATOMPAIR, the software above

leads to improvement in the predictability of the QSAR models

of the pLD50. For all six random splits, the BC gives the

improvement in the predictability of the QSAR models in com-

parison with the classic scheme.

Table 4. The Checking of the Models with Randomization.

Probe of

Y-scrambling

R2
r

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6

1 0.0594 0.1221 0.0881 0.1001 0.1669 0.1901

2 0.1983 0.0975 0.1343 0.1439 0.1514 0.0699

3 0.1233 0.1173 0.2038 0.1765 0.1865 0.1289

4 0.0827 0.1765 0.0630 0.0756 0.1328 0.1694

5 0.1152 0.2621 0.1369 0.1884 0.1364 0.1781

6 0.1335 0.1914 0.0530 0.1196 0.0611 0.2195

7 0.1898 0.1789 0.2419 0.1426 0.0853 0.2219

8 0.1785 0.0951 0.1222 0.0863 0.1416 0.0679

9 0.1086 0.1767 0.1721 0.1339 0.1092 0.1246

10 0.1085 0.1153 0.0733 0.1063 0.1872 0.1548

R2
r 0.1298 0.1336 0.1115 0.1306 0.1617 0.1162

cR2
p 0.7046 0.7025 0.7109 0.7134 0.6867 0.7121

The R2
r is average for 10 probes of the Y-scrambling.39 The cR2

p (calcu-

lated by cR2
p ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R

2

r

q
) should be larger than 0.5.
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