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Abstract. Humanoid robotics requires new programming tools. Programming 
by demonstration is good for simple movements, but so far the adaptation for 
fine movements in grasping is too difficult for it. Grasping of natural objects 
with a natural hand is known as one of the most difficult problems in robotics. 
Mathematical models have been developed only for simple hands or for simple 
objects. In our research we try to use data directly obtained from a human 
teacher as in imitation learning. To get data from users we built a data glove, we 
collected data from different experiments, and generalized them through neural 
networks. Here we discuss the nature of the data collected and their analysis. 

1   Introduction 

Haptic sense is very important for human beings, especially during activities like 
manipulation. Sometimes it is possible to do a task without visual feedback using only 
tactile and force sensations. This is the reason why future Virtual Reality (VR) sys-
tems should be improved by devices capable to acquire somatic-sensory data (like 
articulation positions and velocities) and able to evoke touch and force feelings.  

On the other side, the control of a robotic hand can be much easier if the complex 
data about positions and force are learned from a human teacher and not developed 
from geometric and dynamic equations. An expert performs the grasp, and phalanx 
positions and fingertip forces are acquired only when the object is firmly gripped. 
Then data are used by a Neural Network to learn how to generate position and force 
to grasp objects with some generalization. This is useful for example to control an 
artificial hand without computing the inverse kinematic and dynamic problem. 

The challenge of our investigation is the possibility to teach grasping to a human-
oid hand after learning from human grasping. To obtain data from the human teacher 
we designed a special glove, as we will illustrate in the following.  

Grasping in humans is a complex activity and takes place in two steps: planning, 
which requires encephalon activity, and executing, which requires activity of the 
neuro-motor system. During execution the cerebellum plays an important role in 
comparing the reference from the encephalon and the sensorial data from the motor 
system. 

Different postures are available for human grasping. They differ in the number of 
degrees of freedom and in the force exerted. The chosen posture depends on the prop-
erties of the object and on the task. Many authors have proposed interpretations about 
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the generation of forces and positions. In [1, 2, 3] three basic directions (or primitives) 
are defined, as illustrated in Figure 1. 

1. Pad opposition moves the fingers in a direction parallel to the palm. It identifies 
the direction x. 

2. Palm opposition moves along a direction perpendicular to the palm, and identifies 
the z axis. 

3. Side opposition is along a direction along the palm and identifies the y axis. 

 

Fig. 1. A. Pad opposition; B. Palm opposition; C. Side opposition 

In Pad Opposition, the hand can exerts small movements and applies small forces. 
It is typical of precision movements. In Palm Opposition the hand can use large 
forces. In Side Opposition the result is intermediate: medium precision and medium 
forces. 

Cutkosky et al [4, 5] proposed a classification that integrates the relevance of the 
task considered with the precision and the power of grasping. Some classes have been 
modelled with the aim to automatically produce actuation commands for a given hand 
grasping a given object. 

Considering the difficulties of mathematical models for the hand and the object, we 
see here how to learn from data acquired from a human teacher.  

In Section 2 we illustrate the use of Neural Networks to learn grasping from differ-
ent trials.  

In Section 3 we describe our data glove used as a tool to get data, and in Section 4 
we use data to infer grasping positions and force on new objects. We adopted in prac-
tice the pad opposition and the side opposition schemas to grasp simple objects and to 
analyse position and force data applied by a human to get a model for an artificial 
hand with similar kinematics.  

In Section 5 we show the kinematics of the humanoid hand that will execute the 
motions. After we discuss the results and conclude. 

2   Neural Networks for Grasping 

The learning capability of neural networks has been applied to many fields in robotics 
as well as in many data analysis problem. Some NN architectures have been reported 
in literature about grasping. 
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Some authors proposed to learn the hand position for grasping. Kuperstein and 
Rubinstein [6] used a gripper with 5 degrees of freedom. Taha et al. [7] studied how 
to move a hand with 7 d.o.f. to grasp objects of different shapes. They applied those 
ideas to the control of prosthesis. They defined two postures of the hand: at time 0, 
when it is open, at time 1 when the object is grasped, for a given type of objects and 
sizes. The NN was able to compute the intermediate positions to obtain the grasp.  

Moussa and Kamel studied how to learn generic grasping positions as a mapping 
between the reference frame of the object and the hand using the contact information 
from the tip of 5 fingers. A module makes the configuration of the hand position, 
another module defines the fingers positions. Fingers positions are determined by a 
network making the inverse kinematics. Taha et al. Have H. Huang et al. developed 
CANFM (Cascade Architecture of Neural Network with Feature Map) to classify 8 
kinds of grasping using as input the EMG signals collected from 3 places on the pa-
tient arm. The final task is to classify them according to the 8 kinds of grasps. The 
first layer is a Kohonen network, which receives 3 input from sensors. The output 
from the SOM selects the coordinates x-y in a 2D topologic net, used to provide 6 
input to a BPNN. 

The last research to mention here is from Matsuoka [8], developed for the Cog ro-
bot with a hand of four fingers. Every finger has 4 dof, actuated by a motor through a 
cable (tendon), each with position sensor. Force sensor are distributed over the hand. 
The grasp activity of Cog imitates the human grasping reflex of babies. The hand 
controller has two parts: the first is a reflex control, the second is a NN. Data are col-
lected from experiments on the real robot: time of closure and forcs, for different 
objects, are the input to the network (see Figure 2). 

 

Fig. 2. The Cog controller 

We chose neural networks for their easy implementation and integration in the 
Matlab/Simulink environment, and for their real-time behaviour after training. 

3   Data Acquisition with Our Data Glove 

The glove we designed is equipped with 16 sensors: 14 positions sensors and 2 force 
sensors. Position sensors measure the flexion of each phalanx for every finger, except 
the little finger. There are also two special sensors that measure the adduction for the 
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thumb and the index. Indeed these two fingers have a first phalanx with an improved 
mobility, especially for the adduction and abduction movement.  

Sensor signals are acquired using an electronic board, that is connected with an 
analog/digital card (Pcl 812) mounted on a Pc, and using the XpcTarget tool of Mat-
lab. Data are sampled and converted into digital format with a frequency of 2KHz. 
We see in Figure 3 the glove. 

 
Fig. 3. The data glove 

Our data glove acquires 16 signals: 

• 12 positions for the phalanxes of first 4 fingers  
• 2 abduction for thumb and index 
• 2 forces for thumb and middle 

The samples of grasps have been designed to learn different sizes and different ma-
terials. 

The grasp objects are made of: 

• Polystyrene (density=
3029297.0

cm
g ) 

• Wood (density=
370898.0

cm
g ) 

• PVC (density=
34219.1

cm
g ) 

Objects of 7 different dimensions for each material are provided, as illustrated in 
Figure 4. 

For each object size and material, ten grasps are monitored, and the positions of 
phalanxes, the abductions, the forces, are stored in an array of 16 columns. The rows 
are related to different times during grasping; with a sampling time of 0.0005 sec, 500 
rows for each grasp are usual.  

Three steps are needed before learning: 
1. validation 
2. deriving the force on the index 
3. normalization  
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The grasp is different for different dimensions of the object. For the small cubes, of 
2 or 3 cm size, the grasp involves only thumb and index, applying two forces of equal 
module and in the opposite directions. 

 

 
Fig. 5. Grasping a 3cm cube, with the directions of forces 

For bigger cubes also the middle finger is used on the same surface of the index. 
The force of the thumb equals the sum of forces of index and medium. 

The forces of the index are computed as  

1. for small 2 or 3 cm cubes: 0≈== middlethumbindex FFF  

2. cubes of 4 to 8 cm: middlethumbindex FFF −=  

Input data to the network are two: cube dimension and density of the material, 
normalized in [0,1].  

Densities are normalized using the maximum densities as before reported, while 
the dimensions are normalized to the maximum size of 10 cm 

10
llnorm =  (1) 

 
Fig. 4. The cubes used in the experiments 
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Fig. 6. Grasping a 6 cm cube 

The output are position and forces for grasping, normalized in [-1,1] according to 
the formula: 
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with minX  minimum value in the distribution, maxX  maximum value in the distribu-

tion. 
Examples of input and output are in Table 1. In all the tables numbers are with the 

comma notation for decimal part, as in out Matlab settings. 

4   Training the Network 

A feedforward network with 2 inputs, 17 outputs and 2 hidden layers with 20 neurons 
each, and a tangent sigmoid transfer function is the chosen architecture. The Matlab 
algorithm �traingdx�, a fast backpropagation with heuristic techniques is used. The 
performance of the algorithm depends on the learning rate, which is adaptively ad-
justed.  

After different learning, the best network in terms of number of neurons, training 
time, MSE is chosen. The MSE is illustrated in Figure 7. As we see, after 300 epochs, 
the error is stabilized. 

We compare the real data obtained from the average on all the materials for the 
same cube size and compute the error and the variance. We see in Table 2 the results 
for position errors, while in Table 3 the results for force errors. 

We applied early stopping to avoid overfitting of the network. This method re-
quires that data are divided in 3 sets: the training set (used to compute the gradient 
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and the weights), the validation set (used to monitor the error), and the test set. In 
Figure 8 we see in blue the MSE on the training set, in green on the validation set. 

Table 1. Input and output samples 

 

 
Fig. 7. MSE after training 
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Table 2. Results of position error analysis 

PVC  Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error 0,42869 -0,04124 0,29123 0,013478 
Variance 2,4075 3,135 0,75822 0,32512 

 

WOOD Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error 0,25967 0,78452 0,84806 0,42862 
Variance 2,0385 4,8306 4,7805 1,3845 

 

POLYSTYRENE  Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error 0,033329 0,45582 0,2648 0,3304 
Variance 0,48287 3,5469 1,8219 0,92951 

Table 3. Force error analysis 

PVC  Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error -0,005613 -0,000561 -0,002300 -0,015903 
Variance 0,000093 0,000017 0,000031 0,000704 

 

WOOD  Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error -0,014947 -0,003487 -0,000958 0,008940 
Variance 0,000340 0,000765 0,000196 0,000128 

 

POLYSTYRENE Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error -0,000378 -0,004563 -0,000323 -0,000960 
Variance 0,000051 0,000014 0,000004 0,000013 

 
Fig. 8. MSE training set, validation set 

The training stops after 117 epochs with MSE of 0.00654269 when the error on the 
validation set starts growing. 

After training, we separately analyse the errors on the training set and on the test 
set. Results on the training set are reported in Table 4. 
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The test set contains instead cubes made of the three materials and of 3, 5, 7 cm. 
Repeating the analysis on the test set , we observe that the error (in degrees) for posi-
tions has a very low average (less than 2 degrees) but a high variance. The error for 
force is around 0.01 kilograms, and the variance is low.  

Comparing results after controlling the overfitting, we observe a clear improve-
ment on the test set in comparison with results obtained before checking overfitting. 

Table 4. Errors on the prediction of the network on the training set 

PVC  Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error 0,49529 -0,26398 0,58482 -0,92526 
Variance 4,8442 8,6617 9,7215 7,8894 

 

WOOD  Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error 0,54215 0,41388 -1,0726 -0,32047 
Variance 11,556 8,6249 14,358 1,8077 

 

POLYSTYRENE  Cube 2 cm Cube 4 cm Cube 6 cm Cube 8 cm 
Mean error -0,34199 0,57926 0,15018 -0,49648 
Variance 4,6829 5,0929 4,2389 9,318 

 
Without overfitting checking, the position error ranges from ±0.5° to ±2.20°, but 

grows as far as ±8.05° for the test set only. Moreover the error is randomly distrib-
uted. 

We see in Table 5 and 6 the data from Net1, the basic net, and Net2 trained with 
early stopping. 

Table 5. Results from the net without and with early stopping on the training set 

Standard deviation 2 cm 4 cm 6 cm 8 cm 
PVC Net 1 1,5516 1,7706 0,87076 0,5702 
PVC Net 2 1,1134 1,4791 2,2453 1,3917 

Wood Net 1 1,4278 2,1979 2,1864 1,1766 
Wood Net 2 2,1143 2,4236 1,4239 1,0625 

Polystyrene Net 1 0,6949 1,8833 1,3498 0,96411 
Polystyrene Net 2 1,7062 2,2723 1,7304 2,3702 

Table 6. Results from the net without and with early stopping on the test set 

Standard deviation 3 cm 5 cm 7 cm 
PVC Net 1 5,0229 3,1659 3,2374 
PVC Net 2 7,0026 5,4505 5,4312 
Wood Net 1 6,4726 6,0083 4,4586 
Wood Net 2 7,848 5,6188 7,0634 
Polystyrene Net 1 8,0516 2,3718 4,8196 
Polystyrene Net 2 7,4079 1,8793 4,5296 

 
On the second network, the error on the training set is in the range ±1.06° to 

±2.42°, and on the test set is ±1.9° to ±7.8°.  
With the obtained values we can actuate a real anthropomorphic hand which has 

the kinematics described, The force value will be used by our control system which is 
able to apply given forces on the finger tips. 
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5   The Kinematics of the Humanoid Hand 

We describe the humanoid hand we are using with our humanoid arm. More details 
are in [9, 10]. All the fingers but the thumb are equal, as illustrated in Figure 9. The 
hand mimics the human fingers in size and structure: it has a spherical joint with 2 
degrees of freedom from metacarpus to the first phalanx, and cylindrical joints be-
tween the phalanxes. The activation is obtained through tendons actuated by McKib-
ben pneumatic actuators.  

 

Fig. 9. Side view of the right index, with the joint reference systems 

To compute the direct kinematics we use the Denavit Hartemberg notation to build 
the transformation matrices from the reference systems defined in the joints. 

We assume that the coordinate system O1, X1, Y1, Z1 is moving with R,X,Y,Z. In 
this case the first matrix has α0 = θ0 = 0, and simplifies to: 

0 R

1 0 0 0
0 1 0 0

T
0 0 1 0
0 0 0 1

 
 
 =
 
 
 

!

 
(3) 

The second matrix is a simple translation as in equation 4: 

1 0

1 0 0 0
0 1 0 L1

T
0 0 1 0
0 0 0 1

 
 
 =
 
 
 

!

 
(4) 

The matrix from O2, X2, Y2, Z2 to O1, X1, Y1, Z1 contains the variables α1 and θ1: 

1 1 1 1 1 1 1

1 1 1 1 1 1 1
2 1

1 1

cos cos sin sin cos L2 cos sen
sin cos cos sin cos L2 cos cos

T
0 sin cos 0
0 0 0 1

θ α θ α θ α θ
θ α θ α θ α θ

α α

− ⋅ ⋅ − ⋅ ⋅  
  ⋅ − ⋅ ⋅ ⋅  =
  
  
  

!

 
(5) 

With post multiplication we obtain the matrix to transform a point given on the 
second phalanx system O2, X2, Y2, Z2 to the basic point R,X,Y,Z. 
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r 2

r 2
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r 2
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(6) 

We need to express a point P on the finger tip, so on the last phalanx, but the actua-
tion of the last phalanx is not independent from the actuation of the first phalanx, as in 
the human hand. The analysis, as in Figure 10, gives the answer. 

w 

w21 

w22 

O2 
O3 

Z2 

Y2 
Z3 

Y3 L2 
L3 

α3 

α2 

P  

Fig. 10. Resolving the last phalanx 

In fact we obtain the values to be used in the previous equation considering the 
contribution of the third joint. 

( )
( ) ( )
( ) ( )

2

2 2 2 3

3 2 2 3

P x 0

P y L2 cos L3 cos

P z L2 sin L3 sin

α α α

α α α

=

= ⋅ + ⋅ +

= ⋅ + ⋅ +

 
(7) 

Another important aspect is about the computation of the inverse kinematics of the 
hand to be able to find the values to actuate to reach a given position. In our case, we 
obtain directly angles values from the data glove, and we need only to transform the 
angles into actuators values, i.e. the length of the McKibben muscles to actuate to 
obtain the given joint angle. This transformation is easily computed from the actuator 
model. 

6   Discussion and Conclusion 

Future work will require to apply to the real robot hand the predicted values and 
check the resulting action. The way to improve the manipulation ability of our robot is 
still long. Other kinds of grasping will be studied, for instance considering the preci-
sion and pinch grasp. The idea is to generate different networks for the different 
grasping configurations of the hand, and to develop an arbitration network to get the 
good net according to the shape of the object. 

Considering the data acquisition phase, data obtained from the same glove from 
different executors could be compared to understand the variability for different peo-
ple making the same task and to find more standardized ranges of values. It is our 
opinion that some of the variance of the learned data is simply acceptable and differ-
ent position/force patterns can reach a stable grasping on the object. 
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With respect to mathematical modelling our approach has the advantage to have a 
very low computational complexity and to be usable without a complete geometric 
description of the object to be grasped. 
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