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ABSTRACT

The goal of toxicity prediction is to describe the relationship between chemical properties, on the one hand, and
biological and toxicological processes, on the other. Knowledge about the causes of toxicity is incomplete. No single
property can satisfy the requirement to model the toxic activity. In the present study we consider different methods to
build up models useful for aquatic toxicity prediction. Our study is in the tradition of SAR and QSAR methods, -but
tries to predict a category. Due to the variability of the toxicity phenomenon, classification methods may present
advantages because they refer to intervals of the observed toxic effect. Furthermore classification of compounds
according to their toxicity has direct application for regulation of chemicals. In the paper we will report results
obtained from the preparation and study of a data set of different classes of chemicals; starting from recursive
partitioning algorithms we will test their results against clustering and classifiers.

1. Introduction

The study of the consequences of chemicals on the
health of human beings and wildlife is now done through
ad hoc experiments, which are very expensive, years
long, and involve animal studies. The huge number of
compounds to be studied makes this especially
challenging. This research requires new and efficient
computer-based approaches to analyse huge and
complex amounts of information and to automatically
discover and use new knowledge implicitly contained in
the data.

The goal of toxicity prediction is to describe the
relationship between chemical properties, on the one
hand, and biological and toxicological processes, on the
other. Knowledge about the causes of toxicity is
incomplete. No single property can satisfy the
requirement to model the toxic activity, with some
interesting successful cases, as logP to describe narcosis.
Thus, a large number of parameters are of potential
interest. The problem is how to deal with this high-
dimensional information {2, 3].

Since the sixties, the quantitative structure-activity
relationship (QSAR) method has been applied to many
drug and chemical design as well as to the prediction of
specific toxicological endpoints. Finding structure-
activity relationships is essentially a regression process
and, historically, linear regression methods have been
used to develop QSAR models.

Regression is an “ill-posed” problem in statistics, which
sometimes results in QSAR models exhibiting instability
when trained with noisy data. In addition, traditional
regression techniques often require subjective decisions
to be made as to the likely functional relationships
between structure and activity.

In the nineties, regression methods based on neurall
networks (NN) have been shown to overcome some of
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these problems as they can account for non-linear
structure-activity relationships {10, 12].

A central objective of machine learning research is to
develop algorithms that learn predictive relationships
from data. This is a central component of data mining
and knowledge discovery tasks. However, it is a difficult
task, because inferring a predictive function from data is
again an "ill-posed" problem; that is, many functions can
often "fit" a given finite data set, and yet these functions
might generalise very differently on new data drawn
from the same distribution.

Several expert systems have been claimed to predict
toxicity of chemicals. These ES use different
approaches, usually incorporating a knowledge base of
explicit rules derived from hurmnan experts, or relying on
purely statistical approaches [7, 8, 9]. The advantage of
rule-based systems is obvious, however it is very hard or
impossible to obtain from experts a complete set of rules
about toxicity problems not well understood, as in the
case of many eco-toxicology problems. For this reason, a
system able to reason on data and to extract usable rules
would be valuable. This can be obtained using clustering
and classification trees [4, 14, 15]..

2. The problem
representation

and its

2. 1. The chemical knowledge

The common practice in Al, starting with DENDRAL,
has been to represent molecules as graphs. Nodes
represent atoms, and arcs are the bonds. This view of the
chemical structures is too weak, for many reasons. First
of all, graphs represent only the planar topology of the
molecule and are unable to consider the 3D structure.
Second, other information, as the energy information, is
lost.
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Given the compound structure, that can be graphically
entered, there are different ways to compute descriptors
that better account for the geometry, physics and
properties of the molecule. We preferred to use
calculated descriptors because in this case it is not
necessary to synthesise the compound.

2.2. The toxicity endpoint

Aquatic toxicity has been addressed within this study.
This toxicity has been usually of concern of the pesticide
industry, and the available data expresses the effects as
measured on plants and animals. Knowledge about how
to transpose this knowledge to man or to the
environment is out of our purposes.

Structures and toxicity data of pesticides have been
obtained from “the Pesticide Manual, eleventh edition™
[11]. It contains data on 759 compounds. Missing data
is common: for instance, some pesticides have toxicity
data on trout, others on duck, others on both.

Lethal concentration for 50% of the animals (LCsp) on
rainbow trout (Onchorynkus mykiss) and daphnia
(Daphnia magna) were the two most common endpoints
in aquatic toxicity. About 200 molecules presented
toxicity data for these endpoints. We eliminated
pesticides for which toxicity is referred to mixtures of
diastereoiomers, because the toxic activity of the
individual diastereoisomers is likely different; we kept
data referred to a single diastereoisomer when available.
We maintained pesticides with one chiral centre, even if
mixtures of enantiomers. Polymers have not been
considered. A set of 164 pesticides has been finally
obtained (Set 1).

We chose to predict LCsy, computed as mmol/litre
(millimoles per litre).

2. 3. The data sets

Chemical subsets of the compounds have been
individuated; in particular in this study we also selected
Organophosphate pesticides (OPs), which account for 27
compounds. OPs were the most numerous, however their
number was too low. For this reason we collected data
from other sources, building a set of 56 OPs (Set 2).
In this way we also studied a limited set (Set 2) of
compounds more similar but smaller, and a larger set
" (Set 1) that is better for generalisation but poses the
problem of the much more different toxic mechanisms
and chemical classes it contains.
Preliminary molecular modelling has been done using
HyperChem 5.0 (Hypercube, Inc, USA) to generate 3-D
representations of the compounds. The 3-D structures
have been refined with the PM3 Hamiltonian, a
semiempirical method for energy minimization.
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Quantum-chemical descriptors have been calculated

using HyperChem. Most of the descriptors have been

calculated by CODESSA 2.2.1 (SemiChem, Inc., USA):

o  constitutional descriptors, depending on the number
and type of atoms, bonds and functional groups, 38
descriptors (18 as discrete values).

e Geometrical descriptors, which give molecular
surface area and volume, moments of inertia,
shadow area projections and gravitational indices,
12 descriptors.

e Topological descriptors, related to the degree of
branching in the compounds, 38 descriptors. For
some compounds some descriptors are not
applicable (for instance: charge on a given atom, if
the molecule does not have this atom).

o Electrostatic descriptors, such as partial atomic
charges and others depending on the possibility to
form hydrogen bonds, up to 77 descriptors (3 as
discrete values).

e Quantum chemica. descriptors, related to the
molecular orbitals and their properties.

¢ LogD, the apparent partition coefficient, (calculated
with Pallas 2.1 by CompuDrug, Hungary). We
selected the values at pH 3, 5, 7.4 and 9. These
descriptors are the expression of the lipophilicity of
the molecule at various pH.

A total set of about 170 descriptors has been built.

3. Clustering

Clustering has been done by Divisive Partitioning
Principal. Direction. Divisive Partitioning (PDDP) [4] is
an unsupervised clustering procedure which constructs a
hierarchical classification tree top-down. Representing
each pesticide by a vector of chemical descriptor values,
this method splits the entire collection along the
direction of maximal variance (“"principal direction"),
and then recursively splits each subpart along the local
direction of maximal variance. This process builds a
tree structure top-down with the root representing the
entire collection. This method operates on the numerical
values themselves and predicts numerical toxicity
values, unlike CART [6] which predicts only a discrete
class of toxicity out of a small collection of classes. To
test PDDP as a predictor, we used a leave-one-out
approach, in which one attempts to predict the toxicity
of each pesticide based on the actual toxicity values for
all the remaining pesticides. The PDDP splitting process
was carried out until clusters of at most 5 entries were
obtained, and the toxicity value predicted for each
pesticide was defined to be the average of the toxicities
for the other pesticides in the same cluster. The process
takes only 2.5 sec on a Sun Sparc workstation using a
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Matlab implementation available from the University of
Minnesota [17].

We used the LC50 values for Trout, which on a
logarithmic scale range from -5.23 to +1.11. Of the 164
pesticides tested in this example (Set 1), the predicted
toxicity values for 100 (61%) were within 1 unit of the
respective true values on this scale, while those for 45
(27%) differed by more than 1 but less than 2 units, and
those for 19 (12%) differed by more than 2 units on this
scale. The distribution of the actual numerical predicted
values is illustrated in Fig 3.1 in which the dashed dotted
lines enclose the regions where the predicted and actual
values differ by at most 1 and 2 units, respectively, on
this scale.

To compare the results with the CART method, we also
divided the scale into 3 classes of equal length and
counted the entries in each part: Class 1 from -5.23 to -
3.12, in the logarithmic scale range, Class 2 from -3.12
to —1.00, Class 3 from -1.00 to +1.11. These classes are
represented in Fig 3.1 by the vertical and horizontal
lines. The class results are given in Table 3.1 below,
showing an error rate of 37.2%. The correct values are
on the diagonal.

Table 3.1: the predicted class obtained with PDDP
using LC50 Trout values.

18 |0
13 7 2
23 2

From Fig 3.1, it is seen that several pesticides were
placed in the wrong class, but the predicted value
differed very little from the true value. Thus using a few
discrete classes (as in CART) instead of numerical
values on a continuous scale (as in PDDP) gives a much
cruder analysis of the performance of the method, as
well as cruder predictions.

168

fodc ity preciicsons using PDOP
T T

T -~ e —
1} .
tE ° ,/' ®
of ’ e
§ PR “"‘;li
°
§-1‘ P e P o g s
i ® $oe © ‘J' [3 -,
£ ) Y1) s
O =
-2 P LS . : e B® be O’ . ¢ J
- ® < @ sfg g o % e
% 0. e # 0] o &
‘s e ,"/ [ % .° -"'.a
‘g-&-. ’ 8 ‘_0 ’,4. L hd N e b
30 &,6,. s"; N o ¥
s i ®° 4 %
L, 9 °’ ]
il (.
.
-8 4 R 4
- 1 =1 L i 1
-5 1

-+ -3 -2 -1 Q
five value I I:q‘° ol ™1 airbaw trout LCS0 98h mmolT

Fig 3.1. Diagram of numerical predicted (y) vs true
values (x), showing the region where the two values
differ by less than 1 (dashed line) and 2 (dotted line)
units. The classes of Table 3.1 are delimited by the
vertical and horizontal lines.

4. Classification

Two classifiers have been used to predict the toxicity
class: CART [6] and Bayda [1].

4.1. CART

A classification tree is an empirical rule for predicting

the class of an object from values of predictor variables

[13, 16]. Common features of classification tree methods

are

e Merging: relative to the target variable, non-
significant predictor categories are grouped with the
significant categories.

« Splitting: a variable to split population is chosen by
comparison to all others. The method recursively
splits nodes until a stopping rule is triggered

e Stopping: rules to determine how far to extend the
splitting of nodes.

¢ Pruning: branches that add little to the predictive
value of the tree are removed.

e Validation and error estimation: measurement of.
true error vs. apparent error, and validation using
separate or resampled data are performed
identically.

After a tree has been built, two verification methods

have been used: partitioning and cross-validation (leave-

one-out). This method uses all but one of the data to
build the tree; the risk estimate is computed by
partitioning the data into k separate groups or folds
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(where k =1). Next, k trees are built using the same
growing criteria as the tree being evaluated. The first tree
uses all folds except the first, the second tree uses all
folds except the second, and so on, until each fold has
been excluded once. Fore each of these trees, a risk
estimate is computed (the proportion of all cases
incorrectly classified.), and the cross-validated risk
estimate is the average of these k risk estimates for the k
trees, weighted by number of cases in each fold.
CART (Classification and Regression Trees) is a non-
parametric classification method that constructs a binary
decision tree. The high dimensional space of the objects
in the training set is divided into subspaces such that
each subspace can be associated with a single class.
CART classification rule has a tree form that is easy to
interpret, yet it takes into account the fact that different
relationships may hold among variables in different parts
of the data. CART does automatic stepwise variable
selection. It performs well when the pattern space can be
separated into pure class subspaces by few hyperplanes
perpendicular to variable axes.

The optimal tree is the one that has the minimum cross-

validated risk. For each non-terminal node of the optimal

tree, are displayed:

o the risk associated with the node;

e the variable and its threshold value where the
objects are split to form the left and the right child
nodes;

For each terminal node, are shown:

e the number of objects in the node;

e the probability of the node;

o the class associated with the node (the class that
contains most of the objects in the node);

o the risk associated with the node;

e the pureness of the node

The pureness is reported as the number of objects in

each class and the class probabilities. In an ideal case,

only objects from a single class are in a terminal node,

i.e. one of the classes has probability 1.0 and the rest

have probability 0.0.

The misclassification matrix, calcr'ated without and

with cross-validation, has rows corresponding to the true

classes, and columns corresponding to the assigned
classes (calculated with and without cross-validation). In

a perfect classification, all the off-diagonal elements of

the misclassification matrix are zero.

The cross-validated error rate and cross-validated risk

are measures of the goodness of class prediction. If the

default priors and loss function are used, the error rate
equals the risk.

The classification analysis has been performed with

SCAN (Minitab Inc., USA) on both the full set and the

OPs.
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4.1.1. Analysis of the full set

For the set of the 164 pesticides, we defined three
toxicity classes, with toxicity from 1 to 0.66, from 0.66
to 0.33 and from 0.33 to 0, in the normalised logarithmic
scale. In this way the population of each class is similar.
The inputs were all descriptors. We obtained an error in
validation of 26.3%. Table 4.1. shows the real class and
the class predicted in validation (leave-one-out).

Table 4.1. The predicted classes for the 164 pesticides

4.1.2. Analysis of the OPs

In a similar way we used CART with the OPs subset.

We used only 21 descriptors, selected in a previous

study [9], and defined four classes:

e with toxicity values (antilog of LC50 for trout,
scaled between -1 and 1) between -1 and --0.5;

e  with toxicity values between -0.5 and 0;

o  with toxicity values between 0 and 0.5

e  with toxicity values between 0.5 and 1.

The four classes are quite balanced (6 elements for the

first class, 13 for the second one, 15 for the third one, 9

for the fourth). Table 4.2. shows the results for the 43

molecules assigned in validation using leave-one-out.

The Error Rate was low: 0.12.

Table 4.2. The predicted class for the 56 OPs, using
leave-one-out method.

However, this classification model used to predict the
validation set of 13 molecules gave an error rate of 0.38,
as in Table 4.3.

Table 4.3. The predicted class for the 56 OPs, using the
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The class 3 (the most represented in the training set) has
been correctly assigned. There are two mistakes for the
second class and three for the fourth class. In the test set
there were not first class molecules and the model
correctly assigned no one object in this class.

The descriptors selected by CART in this case are
different from those selected in the previous model built
with 27 compounds.

The classification tree for trout, using the OPs, is
illustrated in Figure 4.1. We can see that for a class there
may be more than one leaf.

The chemical descriptors used in the tree may be useful
to have information on the molecular features involved
in the toxic mechanism. For instance, in the tree
illustrated in Figure 4.1 some descriptors are topological,
as “Average2”, “Kier shl1”, “Randic 2”. They give
information on atomic connectivity in the molecule.
Other descriptors are constitutional, such as “Number
O”, the number of oxygen atoms. Others are
electrostatic, such as “HA depen” and “PNSA-1P”, and
reflect characteristics of the charge distribution of the
molecule. Finally, some descriptors are geometric,
referring to the moment of inertia “Moment 0”, or to the
molecular surface area “Molecula”.

Figure 4. 1. A tree obtained with CART

However, it is not easy to obtain simple and stable rules.
Similar models can be obtained with CART starting
from different selected descriptors, and even if the trees
perform equally well, the descriptors and the critical
values for the nodes may change. For this reason it may
be useful to perform several attempts, in order to find
confirmation of important descriptors.

4. 2. Bayesian Classifier
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Bayesian networks are a graphical formalism for
reasoning about probability distributions. They use a
directed acyclic graph (DAG) to encode conditional
independence assumptions about the domain. Each
variable is represented as a node in the network. An arc
between two nodes denotes the existence of a direct
probabilistic dependency between the two variables. The
lack of an arc between two nodes implies that no direct
probabilistic influence exists between those variables.

A Bayesian Network classifier is a Bayesian Network
applied to a classification problem. It contains a node C
for the class variable and a node X for each of the
domain feature. Each node has a finite number of states:
the class node has a state for each class, the feature
nodes have a discrete set of values.

Given an instance vector x, a Bayesian network allows
to compute the probability P(C = ¢, | X = x) for each
possible class ¢,. If the true distribution P(C| X) is
known, we achieve the- optimal classification by
selecting the class ¢, for which the probability is
maximised. Unfortunately the true distribution is not
available and can only be approximated from the
training set.

The simplest such classifier is the Naive Bayes
Classifier, which makes the strong assumption that all
the features are conditionally independent from one
another. In this case the features nodes are all directly
connected to the class node. The initial probability is
computed from the Mutual Available Information from
the training set. Several approaches have been made to
improve the classification abilities of Bayesian networks,
but the introduction of interaction between feature
variables makes the problem of inducing an optimal
classifier NP-hard.

Bayda 1.31, from the University of Helsinki, is a Java
implementation of a Bayesiar predictive discriminant
analysis based on a Naive Bayes model build from the
data set. It supports continuous-valued nodes, missing
data handling, forward/backward variable selection, and
external leave-one-out cross-validation.

The experiments with BAYDA are based on class
subdivision studied to make sirnilar the cardinality of the
classes in the training set.

4.2.1. Rats
Taking the normalised values for rats, we defined four
classes:

Class 1, toxicity 0 through (.02 (39 elements),

Class 2, toxicity 0.02 through 0.13 (39),

Class 3, toxicity 0.13 through 0.45 (44)

Class 4, toxicity 0.45 through 1 (42).
Accuracy: 43.9% of the classifications are correct, as in
Table 4.4.
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Table 4.4. The predicted class for rats

55% [33% |21% | 58% | Success

class |1 2 3 4

53 |45 |28 38 | # predicted

4.2.2. Daphnia
Taking the normalised values for daphnia, we
defined four classes:

Class 1, toxicity 0 through 0.255 (40

elements),

Class 2, toxicity 0.255 through 0.39 (41),

Class 3, toxicity 0.39 through 0.58 (41)

Class 4, toxicity 0.58 through 1 (42).
Accuracy: 45.7% of the classifications are correct, as in
Table 4.5.

Table 4.5. The predicted class forDaphnia.

55% |45% | 29% | 54% | Success
class |1 2 3 4
38 |44 |41 41 | # predicted

Results were poor compared to those obtained with
CART. We may only comment on those results
concluding that a naive Bayes classifier is unable to
capture the real structure of the data.

5. Conclusions

The prediction of toxicity using advanced models is a
topic that deserves study for the possible advantages
offered by these models, compared to laboratory
experimental methods. However, the matter of
prediction is a complex one. The target of these models,
the definition of the inputs, the software to be used, the
way to assess the results, are matter of discussion. In this
sense it is highly useful to have studies comparing
different approaches on more data.

In the present study we compare methods to predict
categories of toxic effects. On a general point of view it
is preferable to have methods offering a better resolution
of the predicted value. However, the predicted value
should always be evaluated considering that the
experimental values used for training (resulting from
laboratory experiments on animals) are affected by a
variability, which may be quite high, due to animal
variability and to variability for the experimental
procedure. This is the first reason for considering
methods that provide categorical values. The second one
is that the obtained classification can help for a first
screening of toxic properties of chemicals, according to
regulatory schemes that classify chemicals.
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Most of the published studies on modelling of properties
of chemical compounds (SAR and QSAR) use the leave-
one-out validation method, or, in several cases, only
show the values in fitting, without any validation. In the
present study we show results both with leave-one-out
and validation set. We can observe that the leave-one-
out method is quite optimistic, and the only way to adapt
to a large number of new individuals is to re-train the
network for updating the model. The real problem is
how representative can be a model built on the basis of a
limited population. Even if the results appear very good
according to the leave-one-out method, a dramatic
reduction of the prediction appears using a larger set of
compounds for validation. This problem is probably not
due to over-fitting, but to the high discontinuity of the
function to be learned.

However, the hope that a symbolic description could
help in understanding the rationale of the toxic activity
results is now fable. The classification trees obtained
from CART are so variable in their structure to leave a
little space for automatic scientific discovery.

No single approach is likely enough to solve the
problem. The knowledge and the simulation of the
interaction between the chemical compound and the cell
is still the best way to asses the mechanism of the toxic
effect, but a QSAR study, as in our experiment, has
valuable results for a first screening.

Besides that, in our classification experiments CART
gave good results; it may be worthwhile to mix different
classifiers obtained through CART and other
approaches.

Acknowledgements

We acknowledge the financial contribution of the
European Commission, project COMET, ENV4-CT97-
0508 and, partially, of NATO (CRG 971505), and NSF
grant [1S-9811229.

References

1. BAYDA software,
http://www.cs.Helsinki.Fl/research/cosco.Projects/
2. E. Benfenati, P. Grasso, S. Pelagatti, and G. Gini,
“On Variables and Variability in Predictive
Toxicology”, IV Girona Seminar on Molecular

Similarity, Girona, Spain, July 5-7, 1999.

3. E. Benfenati, and G. Gini, “Computational
predictive programs (expert systems) in toxicology”,
Toxicology, 119:213-225, 1997.

4. M. Berthold, and D. J. Hand, “Intelligent Data
Analysis — An introduction”, Springer, Berlin, 1999.
D. L. Boley: “Principal Direction Divisive
Partitioning”, Data Mining and Knowledge
Discovery, vol 2 #4, p 325-344, Dec. 1998.




10.

Fourth International Conference on knowledg

Q.

Based Intelligent Engi

L. Breiman et al., “Classification and Regression
Trees (CART)”, Wadsworth & Brooks, 1984.

R.D. Combes, and P. Judson, “The use of artificial
intelligence systems for predicting toxicity”,
Pestic. Sci., 45:179-194, 1995.

J.C. Dearden, M.D. Barratt, R. Benigni, et al.,
“The development and validation of expert
systems for predicting toxicity”, ATLA, 25:223-
252, 1997.

G. Gini, and A. Katritzky, (Eds.) “Predictive
Toxicology of Chemicals: Experiences and Impact
of Artificial Intelligence Tools”, Proc. AAAI
Spring Symposium on Predictive Toxicology,
Report $S-99-01, AAAI Press, Menlo Park,
California, 1999.

G. Gini, E. Benfenati, P. Grasso, M. Lorenzini,
and A. Vittore. “Some results for the prediction of
carcinogenicity using hybrid systems”, Proc.
AAAI Spring Symposium on Predictive
Toxicology, Report SS-99-01, AAAI Press, Menlo
Park, California, 1999, pp 138-143.

ing Sy

172

11.

12.

13.

14.

15.

16.

17.

& Allied Technologies, 30™ Aug-1" Sept 2000, Brighton, UK

The Pesticide Manual, Eleventh Edition, British
Crop Protection Council, Berks (UK), 1997.

G. Gini, M. Lorenzini, E. Benfenati, and P.
Grasso, “Predictive Carcinogenicity: a Model for
Aromatic Compounds, with Nitrogen-containing
Substituents, Based on Molecular Descriptors
Using an Artificial Neural Network”, J. Chem. Inf.
Comp. Sci., 39, pp. 1076-1080, 1999.

J.S.U. Hjorth, (1994), “Computer Intensive
Statistical Methods: Validation, Model Selection,
and Bootstrap”, London: Chapman & Hall.

D. J. Hand, “Construction and Assessment of
Classification Rules”, Wiley, 1997.

D. Michie, D.J. Spiegelhalter, and C.C. Taylor
(eds.), “Machine Learning, Neural and Statistical
Classification”, Ellis Horwood, 1994,

J. Mingers, ”An Empirical Comparison of
Pruning Methods for Decision Tree Induction”,
Machine Learning, 4, 227-243 1989.

Principal Direction Divisive Partitioning Software
http://www.cs.umn.eduw/~boley/PDDP.html



