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Abstract. The common practice in inducing toxicity models from data is regression analysis. The 
predictive power of such models is usually poor with very different molecules and toxicity end-points. 
In the present work, we study toxicity classification of pesticides: we discuss about knowledge 
representation, and we test probabilistic and softcomputing techniques. We conclude with the 
interpretability of the induced models. 

 
1. Introduction 

 
  The study of the consequences of chemicals on the health of human beings and wildlife requires new 
computer-based approaches to analyse complex information and to automatically discover knowledge 
implicitly contained in data [4]. The goal of toxicity prediction is to describe the relationship between 
chemical properties and biological and toxicological processes. So far most of the studies are 
Quantitative Structure-Activity Relationship (QSAR) models, which predict a continuous value [5]. 
However, due to the variability of the toxicity phenomenon [1], classification may present advantages 
because it determines intervals of the toxic effect, and has direct application for regulation of chemicals.  
  In the present study we report on different methods to build models for aquatic toxicity prediction, as 
linear and non linear regression, Bayesian networks [7], Self-Organizing Map (SOM) [8], and Support 
Vector Machine (SVM) [2]. Fuzzy logic [12] is finally used. Some major points are discussed: 
- Choice of the chemical class before studying toxic activity: it is difficult to obtain good predictive 
models for heterogeneous sets of compounds.; 
- Reliability of prediction; neither the means square error, nor the correlation, are good measures of the 
predictive power of a model. A commonly used validation method is the leave-one-out (LOO) cross-
validated coefficient R2

cv, calculated as 1 – PRESS/SSY, where PRESS is the prediction error sum of 
squares of the model and SSY is the sum of squares for the Y variable. With this method results are 
optimistic compared to the validation with an external set; however a major problem in toxicity 
prediction is the availability of too few experimental data  to split them in two sets (training and test); 
- Molecule description: our hypothesis is to consider the whole molecule and not some of its fragments.  
  The road here proposed is to see how to use the available knowledge, not to produce a symbolic system 
to integrate the induced models. 
 
2. Knowledge Representation: Eco-Toxicity and Molecules  
 
  In QSAR models, logP is commonly used to model the bioaccumulation potential of chemicals, but 
alone is not enough to model toxicity . Two of the open problems in QSAR are defining the relevant 
molecular descriptor,s and the availability of general models. We faced these problems studying 
pesticides. Structures and toxicity data of pesticides have been obtained from "The Pesticide Manual 
(1997)". Lethal concentration for 50% of the animals (LC50) is the chosen endpoint. A set of 235 
pesticides (Table 1). has been obtained, and checked, for rat and aquatic toxicity. Modelling has been 
done on the whole data set or on chemically homogeneous subsets, which share the same biological 
mechanism. Correlation analysis of the toxicity is in Table 2. About chemical knowledge, the practice in 
AI has been to represent molecules as graphs. Nodes represent atoms, arcs are the bonds. This view of 
the chemical structures is too weak: graphs represent only the planar topology of the molecule, and are 
unable to consider the 3D structure or energy formation. Our model building uses more chemical 
information, as in Figure 1. 



Table 1: Number of compounds for each chemical class. 
Chemical Class Total Training Set Test Set 
Anilines 39 21 18 
Aromatic halogenated 83 57 26 
Carbamates 26 23 3 
Heterocycles 119 93 26 
Organophosphorous 59 27 32 
Ureas 31 24 7 
Different Class 5 4 1 
Total 362 249 113 

Table 2: Correlation matrix of LC50 (correlation coefficient r). 
 Quail Trout Daphnia 

Trout -0.02   
Daphnia 0.21 0.06  

Duck 0.55 0.44 0.14 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: Construction of the models. 

 
3. Regression studies 

3.1. Multivariate Analysis 

  Data have been analyzed using principal component regression (PCR) and partial least squares (PLS). 
Table 3 shows, for internal validation, that no results were obtained modelling all pesticides. PLS models 
on single chemical classes showed variable results: no toxicological end-point was predicted for all 
chemical classes, and no chemical class gave good results for all end-points (Table 3).  

Table 3: Linear regression for LC50using PLS. Figures indicate R2
cv , when > 0.5. 

Chemical Class rainbow trout daphnia rat duck quail 
Aniline 0.78 0.72 No results No results No results 

Carbamate No results No results No results No results No results 

Organophosphorus No results 0.69 No results No results No results 

Urea 0.78 0.85 0.59 No results No results 

Heterocyclic No results 0.56 No results 0.55 No results 

Halogenated aromatic No results No results No results No results 0.55 

 
3.2. NN 

  We used NN as non-linear regression. Descriptors selection was necessary. In order to statistically study 
the input variables, Principal Component Analysis (PCA) has been used, since it permits to evaluate 
correlation and relevance of variables, to see the multivariate information characterizing the objects in a 
two dimensional orthogonal space, to synthesise data and eliminate noise. The loading plot graph permits 
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to identify the role of each variable (molecular descriptor) towards the two principal components 
considered and their direct or inverse correlations. Considering loading plots on I and II component, 15 
variables with the greatest weight have been selected. The same approach has been used on the III and IV 
principal component yielding a selection of six other descriptors. The total variance expressed by the 
four components is 90%. With the selected variables we built a predictor with back-propagation NN. 
Results were good in LOO, not for an external validation set of 13 molecules. A problem may be the 
coupling of PCA and NN: PCA compresses data on the basis of linear behavior, but does not keep into 
account non-linearity assumed for aquatic toxicity.  
  So we switched from regression to classification, a matter addressed also in other studies [11]. 
 
4. Classifiers  
 
  We used the log values of LC50, scaled between 0 and 1, and we divided this interval into four classes 
(ClassA 0÷0.25; ClassB 0.25÷0.5; ClassC 0.5÷0.75; ClassD 0.75÷1). 
 
4.3 Bayesian 
  Bayes theorem expresses a way to update beliefs in a hypothesis given additional evidence and the 
background context. Bayesian networks are a graphical formalism for reasoning about probability 
distributions: they use a directed acyclic graph (DAG) to encode conditional independence assumptions 
about the domain. Each variable is represented as a node, an arc between two nodes denotes the existence 
of a direct probabilistic dependency between the two variables. A Bayesian Network classifier contains a 
node C for the class variable and a node X for each of the domain feature. Given an instance vector x, the 
network computes the probability P(C = ckX = x) for each class ck. If the true distribution P(CX) is 
known we achieve the optimal classification by selecting the class ck for which the probability is 
maximum. Unfortunately the true distribution can only be approximated from the training set, a process 
NP-hard for general networks; so we chose the Naï ve Bayes Classifier, where all the features nodes are 
directly connected to the class node. Table 4 shows results using LOO with Bayda 
(www.cs.Helsinki.FI/research/cosco.Projects/).  

Table 4: Correct classification (%) by Bayda using LOO for all or selected descriptors  

 Trout Daphnia Rat 

Chemical class All descr. Sel. descr. All descr.Sel. descrAll descr.Sel. descr.
Anilines 46 38 63 60 51 51 
Carbamates 50 100 42 54 35 35 
Heterocycles 47 42 51 60 45 49 
Halogenated Aromatics 49 35 45 54 42 39 
Organophosphorous 39 37 51 49 27 37 
Ureas 68 61 55 34 64 71 

 
4.2 Self Organizing Maps (SOM) 
  Vector Quantization (VQ) networks are unsupervised density estimators. Each competitive unit 
corresponds to a cluster, the center of which is called a "codebook vector". Kohonen's learning law finds 
the codebook vector closest to each training case and moves the "winning" codebook vector closer to the 
training case, according to a learning rate. In a SOM, the neurons (clusters) are organized into a grid. The 
grid exists in a space that is separate from the input space; any number of inputs may be used as long as 
the number of inputs is greater than the dimensionality of the grid space. A SOM tries to find clusters 
such that any two clusters that are close to each other in the grid space have codebook vectors close to 
each other in the input space. After SOM have been trained, the quality of prediction has been evaluated 
on the mapping precision (Table 5). However with an external validation set, no results could be 
obtained. For this reason, subsets of chemical classes were considered for daphnia (Table 6). The results 
are correct, (about 70%) but difficult to generalize with an external validation set. 
 
4. 3 Support Vector Machines (SVM) 
  A common problem of neural networks is overfitting. SVM try to avoid this by finding the hyperplane 
with maximal distance from the hyper plane to data in the feature space. The hyper plane is represented 
by an expansion of a subset of the training data, called support vector. Support Vector Machines non-
linearly map their n-dimensional input space into a high dimensional feature space, where a linear 
classifier is constructed. Two features make this approach successful: the generalisation ability, and the  



Table 5: Correct classification (%) obtained with SOM using LOO for all the compounds on five species. 
Animal Daphnia Duck Quail Rat Trout 

Correct % 65 71 76 63 55 

Table 6: Comparison between %values obtained with LOO and validation set for Daphnia (SOM). 
 LOO Validation Set 
Chemical Class  Training Set Test Set 
Anilines 69 71 21 
Aromatic halogenated 71 75 38 
Carbamates 73 83 0 
Heterocycles 65 70 48 
Organophosphorous 67 78 45 
Ureas 65 75 60 

simplicity (construction of the classifier only needs to evaluate an inner product between two vectors of 
the training data). For classification, SVM operate by finding a hyper surface in the space of possible 
inputs, to split the positive examples from the negative ones. The split will be chosen to have the largest 
distance from the hyper surface to the nearest of the positive and negative examples. Although the 
separating hyper plane is linear, it is on a feature space induced by a kerne, hence can separate data, 
which are linearly no separable in input space. For our experiments (table 7) we applied the MatLab 
OSU_SVM toolbox, (http://www.eng.ohio-state.edu/ maj/osu_svm).  

Table 7: Comparison between % values obtained with LOO and validation set for Daphnia (SVM). 
 LOO Validation Set 

Chemical Class  Training Set Test Set 
Anilines 86 87.5 54.5 

Aromatic halogenated 53 64 42 
Carbamates 85 88 67 

Heterocycles 64 61 62 
Organophosphorous 84 53 41 

Ureas 97 90 60 

5. The new Adaptative Fuzzy Partition (AFP) classifier 

  AFP is a supervised classification method [9]. It models relations between molecular descriptors and 
chemical activities by dynamically dividing the descriptor space into a set of fuzzy partitioned subspaces. 
In a first phase, the global descriptor hyperspace is cut into two subspaces where the fuzzy rules are 
derived. These two subspaces are divided step by step into smaller subspaces until certain conditions are 
satisfied, namely:  
• the number of molecular vectors within a subspace attains a minimum threshold number; 
• the difference between two generated subspaces is negligible in terms of chemical activities; 
• the number of subspaces exceeds a maximum threshold number. 
  The aim of the algorithm is to select the descriptor and the cut position which allow getting the maximal 
difference between the two fuzzy rule scores generated by the new subspaces. The score is determined by 
the weighted average of the chemical activity values in an active subspace A and in its neighbouring 
subspaces. If the number of trial cuts per descriptor is defined by N_cut, the number of trial partitions 
equals (N_cut + 1) N. Only the best cut is selected to subdivide the original subspace.  
  All rules created during the fuzzy procedure are considered to establish the model between descriptors 
hyperspace and chemical activities. Indicating with P(x1, x2, ... xn) a molecular vector, a rule for a 
subspace Sk is defined by:  
if x1 is associated with µ1k(x1) and x2 is associated with µ2k(x2) … and xN is associated with µNk(xN)  ⇒ the 
score of the activity O for P is OkP, 

where xi  represents the value of the ith descriptor for the molecule P, µ1k is the membership function for 
the subspace k related to descriptor i and OkP is the activity value related to the subspace Sk. The “and” is 
represented by the Min operator and the membership functions are defined by trapezoidal shapes. If the 
width of a subspace Sk on the ith dimension, after each cut, is represented by wi, the p and q parameters 
defining the shape of the trapezoid are calculated as p = λiwi and q = νiwi , where the to parameters λi and 
νi vary so that p ≥ 1 and q ≤ 1. All the rules created during the fuzzy procedure are considered to build 
the model. After establishing AFP model, a centroid defuzzification procedure [5] determines the 
chemical activity of a new test molecule. All the subspaces k are considered and the the membership 
degree for the activity O and a molecule Pj is:  



O (P j ) =
(Min i

N

k = 1
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∑ µ ik ( x i )P j
).( O k )
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N µ ik (x i ) P j

)
k = 1

N_subsp

∑
 

jPiik )x(µ  membership function for descriptor i in molecule Pj 

N total number of molecular descriptors 
N_subsp total number of subspaces 
Ok, global score of the activity in the subspace Sk 

  The full set of the pesticides was used for the prediction of toxicity against the trout, considering two 
different classifications. The first one includes four toxicity classes as established by the EU Directive 
92/32/EEC, the second defines three toxicity classes so to include in the training set a similar number of 
compounds. The relevant descriptors were selected by an innovative procedure based on genetic 
algorithms [10]. After establishing the AFP model on the training set, the toxicity classes for the test set 
were predicted. The statistical results for the validation tests are reported in Table 8. For the 
homogeneous intervals, the AFP model predicts the correct activity for 71% of the test set compounds. 
Similar results are derived for the training set s, confirming the goodness of the model. Moreover, class 
3, including high toxicity compounds, was the best correctly predicted (86%). In the case of the EU 
intervals, AFP established a model able to predict correctly 60% of the test set compounds and 78% of 
the training set compounds (Table 8). The most toxic class was better predicted (69%).  AFP builds up a 
scheme of the rules used for each toxicity class, as for example:   

if 0 < x(log D-pH5) < 0.26 and  0 < x(Balaban Index) < 0.51 and x(Randic Index) > 0.81…. ⇒ the 
membership degree of class 1, for the compound 34, is 0.5. 

Table 8: Statistical values (%) for classification established on the homogeneous and EU intervals. 
Classes range EU EU % range hom. Homogeneous %  

 LC50 (mg/l) Training Set Test Set LC50 (mg/l) Training set Test Set 
Class1 > 100 77 58 > 12 75 57 
Class2 10 – 100 79 46 1.2 –12 76 63 
Class3 1 – 10 74 58 < 1.2 64 86 
Class4 < 1 83 69    
Total  78 60  72 71 

 
6. Conclusions  
  
  Specific problems for ecotoxicity are the incomplete knowledge on toxicity, the quality of the 
experimental data affected by a high variability, their limited number. Here we show results with LOO 
and validation set; and observe that LOO is quite optimistic, probably for the high discontinuity of the 
function to be learned. AFP shows the best capability to generalize, and allows deriving rules which 
could give insights in the biochemical processes.  
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