
Kybernetes
Emerald Article: SOFTWARE FEATURES FOR INTELLIGENT INDUSTRIAL ROBOTS
P. CORTI, G. GINI, M. GINI

Article information:

To cite this document: P. CORTI, G. GINI, M. GINI, 1979"SOFTWARE FEATURES FOR INTELLIGENT INDUSTRIAL ROBOTS", Kybernetes, Vol. 8 
Iss: 2 pp. 149 - 154

Permanent link to this document: 
http://dx.doi.org/10.1108/eb005517

Downloaded on: 14-09-2012

To copy this document: permissions@emeraldinsight.com

This document has been downloaded 12 times since 2008. *

Users who downloaded this Article also downloaded: *

Marwa M. Hassan, Stan Gruber, (2008),"Application of discrete-event simulation to study the paving operation of asphalt 
concrete", Construction Innovation: Information, Process, Management, Vol. 8 Iss: 1 pp. 7 - 22
http://dx.doi.org/10.1108/14714170810846495

Fotis Vouzas, (2004),"HR utilization and quality improvement: the reality and the rhetoric - the case of Greek industry", The TQM 
Magazine, Vol. 16 Iss: 2 pp. 125 - 135
http://dx.doi.org/10.1108/09544780410523026

Ancau Mircea, (2012),"Main aspects concerning PCB manufacturing optimization", Circuit World, Vol. 38 Iss: 2 pp. 75 - 82
http://dx.doi.org/10.1108/03056121211222291

Access to this document was granted through an Emerald subscription provided by POLITECNICO DI MILANO

For Authors: 
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service. 
Information about how to choose which publication to write for and submission guidelines are available for all. Please visit 
www.emeraldinsight.com/authors for more information.

About Emerald  www.emeraldinsight.com
With over forty years' experience, Emerald Group Publishing is a leading independent publisher of global research with impact in 
business, society, public policy and education. In total, Emerald publishes over 275 journals and more than 130 book series, as 
well as an extensive range of online products and services. Emerald is both COUNTER 3 and TRANSFER compliant. The organization is 
a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive 
preservation.

*Related content and download information correct at time of download.



SOFTWARE FEATURES FOR INTELLIGENT 
INDUSTRIAL ROBOTS 

P. CORTI, G. GINI and M. GINI 
Istituto di Elettrotecnica ed Elettronica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 

20133 Milano (Italy) 

(Received February 14, 1978) 

Kybernetes © Thales Publications (W.O.) Ltd. 
1979, Vol. 8, 149-154 Printed in Great Britain 

The automation of complex handling and assembly operations can be achieved by the introduction of industrial robots, 
computer-controlled and equipped with simple tactic sensors. A difficult problem in such robots are emergency situations 
when a defective component part is encountered. The lack of the capability for an automatic emergency recovery is a 
serious limitation of the present industrial robots. The purpose of this paper is to investigate and illustrate these emergency 
situations and the problem of emergency recovery, and to propose a solution by suitable software. It is also pointed out 
that some features of Artificial Intelligence programming languages are suitable for solving this problem in an industrial 
robot. The problem of suitable software for such robots is then approached on the basis of the obtained results 
implemented on a UNIVAC 1108 computer, by simulating the behaviour of a SIGMA robot. 

1 INTRODUCTION 

The problem tackled in this paper is related to the 
introduction of a reasonable degree of intelligence in 
industrial robots. This intelligent behaviour is greatly 
required in order to solve the emergency situations 
which arise during normal activity. 

The robot to which we are referring is a manipu­
lator employed in assembly processes. It can inter­
act with a mini-computer, which has the task of 
monitoring the execution of the appropriate 
sequence of elementary actions necessary in order to 
achieve the assembly of a mechanical system. 

This choice is motivated by the interest of the 
mechanical assembly process. In fact, the auto­
mation of such processes is a very developed field in 
industrial robotics and, since the early studies of 
intelligent robots,1-6 it has been considered of great 
interest. 

Industrial robots in use today are not very easily 
programmable handling devices that perform simple 
and repetitive jobs, involving few alternative actions 
and a minimum of communication with the 
environment.7 

Considering the wide range of needs it is, 
however, possible to single out a vast group of pro­
duction processes, as the production in small series, 
or relatively complex processes to be performed on a 
large number of machines with the frequent mani­
pulation of parts or operations involving the fitting 
and joining together of parts, for which an easily 
programmable robot would be desirable.8 

This paper deals with the emergency situations 
which happen when a defective component part is 
encountered in the assembly process. 

In fact, about 2% of the mechanical component 
parts are usually defective and stop the execution of 
the assembly process. The solution of these events 
is generally available to the man who has to find out 
how to recover from the emergency situation in 
order to start again the deterministic and automatic 
assembly process. 

The purpose of this paper is to investigate such 
emergency situations and to point out the charac­
teristics of the software able to solve them.9 

The emergency recovery problem solution is 
related to the availability of alternative paths from 
the error point in order to reach again a legal 
situation. The choice of the new branch to expand 
and its reentry point in the normal assembly process 
depends on the error point and on the way in which 
the emergency problem has been solved. 

A non-deterministic programming language seems 
very apt for these exigencies; consequently, some 
Artificial Intelligence techniques can be fruitfully 
employed.10 

In Section 2 the emergency recovery problem is 
illustrated and in Section 3 a case study is pre­
sented; a solution has been implemented on a 
UNIVAC 1108 computer by simulating the robot 
behaviour. In Section 4 the implemented solutions 
are discussed and the most significant aspects of the 
programming languages employed are pointed out. 
In Section 5 the relevant aspects of the control 

149 



150 P. CORTI, G. GINI AND M. GINI 

structures and the context mechanism for solving 
these problems are presented, and the possibility of 
introducing such features in present industrial robots 
is discussed. 

This work represents an aspect of the research 
activity, developed at the Politecnico di Milano in 
collaboration with the Olivetti Company, which is 
aimed at introducing some new software facilities in 
the SIGMA robot. 

2 THE EMERGENCY SITUATIONS 

The industrial robot, to which we are referring, is 
employed in some mechanical assembly processes in 
order to build up a mechanical system composed of 
several parts. 

A robot of this class is devoted to the automatic 
execution of a fixed sequence of elementary assem­
bly operations, which makes up the completely 
assembled system. Although quite sophisticated as 
artificial systems, the industrial robots have no 
ability to overcome sudden difficulties which arise 
when an emergency situation occurs. 

These emergency situations have very different 
causes,4,9,11 but in our analysis we consider only the 
situations related to the presence of defective 
component parts. In such an event the execution of 
one elementary assembly operation fails. The 
solution of that occurrence is available only to the 
man, who has to find out how to recover from the 
emergency situation in order to start again the auto­
matic assembly process. 

In fact in the industrial robots there is no plan 
formation activity,3-5 but there is only a program 
constituted by a fixed sequence of steps. The 
assembly process is then constituted by a linear 
sequence of applications of elementary operators 
(deterministic program) as shown in Figure 2. 

For the automatic solution of an emergency 
problem it is necessary to insert some new branches 
in those points in which the emergency problem 
arises. The structure of the process is then modified 
in a graph structure (non-deterministic program). 
The choice of the branch to extend is not indifferent, 
but it is related to the desired strategy required to 
recover from the emergency. 

The reentry point of the expanded branch in the 
deterministic program depends on the point where 
the emergency has arisen and on the way in which 
the emergency has been recovered. 

This way may be selected as well according to a 
global strategy, which takes account of additional 

information, e.g. the number of tried strategies 
without success, the cost of the components parts, 
the cost of the different operations, etc. 

3 A CASE STUDY 

We now intend to introduce the emergency re­
covery problem by a case study, which was pro­
posed by the Olivetti Company. 

The mechanical subsystem to assembly is a driver 
of a teletype drum. The driver is composed of four 
blocks and one bar fixed on the blocks by means of 
four screws. 

The assembly task is performed by a computer-
controlled robot SIGMA† which is made up by a 
mechanical arm, whose hand is used to pick up a 
component part from its loader, and to put it in the 
appropriate position of the assembly platform. 
Moreover the hand is used to screw together one 
block with the bar. 

The elementary operators necessary for executing 
the assembly activity are as follows: 
TRANSLATE (p,q) defined for the movement of 

the arm from the position p to 
the position q; 

GRASP (ob,p) defined for picking up the 
object ob in the position p; 

UNGRASP (ob,p) defined for leaving the object 
ob in the position p; 

SCREW (p) defined for the clockwise rota­
tion of a screw in the position 
p; 

UNSCREW (p) defined for the anticlockwise 
rotation of a screw in the 
position p. 

In the particular problem these elementary 
operators are applied in a fixed sequence; therefore it 
is useful to define two "macro-operators" 
MOVE (ob,p,q,r) which is defined by the 

sequence "TRANSLATE 
(p,q); GRASP (ob,q); 
TRANSLATE (q,r); UN-
GRASP (ob,r)"; 

† SIGMA is a programmable industrial robot,8 developed and 
produced by the Ing. C. Olivetti Co. Italy. 



INTELLIGENT ROBOTS 151 

DISASSEMBLE (p,q) defined by the sequence 
"TRANSLATE (p,q); UN-
SCREW (q)." 

We will utilize: 
P1,P2,P3,P4,P5 to indicate the central position of 

each block and of the bar on the 
assembly platform; 

L1,L2,L3 to indicate the picking up position 
from the loaders of the blocks, the 
bars and the screws; 

W to indicate the wastebin for defec-
tive pieces; 

SAVE to indicate a reserved position on 
the platform; 

POSIN to indicate the initial position of the 
arm; 

POSFIN to indicate the final position in 
which the assembled objects are 
carried out. 

The solution of the assembly task is then consti­
tuted by the sequence shown in Figure 2. The hand 
brings an object assembled grasping it by the bar. So 
it is possible also to write "MOVE(bar,P4,P5, 
POSFIN)" instead of "MOVE(object,P4,P5, 
POSFIN)". 

The operators which are used to make up the 
solution of the normal assembly problem do not 
make use of the DISASSEMBLE macro-operator, 
which is used only when an emergency arises. 

The assembly process previously defined is based 
on the assumption that all the component parts have 
no defects, but that is not the real situation. We are 
now considering only two possible defects of the 
component parts, because the other may be 
approached in a very similar way: 

i) the holes are defective (in width, pitch or 
position) in the bar or in some block; 

ii) the screws are defective (in pitch, length or 
width). 

Such an emergency forces the robot to interrupt 
the assembly in the application of the operator 
SCREW. If we have no information about the 
reason of the emergency, we can choose among 
some different strategies, for example: 

E l : to change the screw; 
E2: to change the block and the screw on which the 

assembly process has stopped; 
E3: to unscrew all the screws and to change the bar, 

the block and the screw on which the assembly 
has stopped. 

Everyone of the illustrated solutions is realized 
using a suitable sequence of operators; the reentry 
point in the normal assembly process depends on the 
strategy. 

In this way the assembly process can be repre­
sented by a more complex structure, a part of which 
is shown in Figure 3. 

4 SOLUTIONS OF AN EMERGENCY 
RECOVERY PROBLEM 

In the previous Section we have examined an 
example of mechanical assembly and we have 
discussed an emergency and its automatic solution. 

We shall now illustrate the experimental results 
which have been obtained on a UNIVAC 1108 
computer, using the interpreters of MICRO-
PLANNER12 and LISP and MAGMALISP.13 

These languages are not available, at the moment, 
on minicomputers controlling industrial robots, but 
we intend to investigate which of these classical 
languages of Artificial Intelligence is the most 
suitable to solve this kind of problems. 

The final aim of this research activity is to design 
and to implement on a minicomputer an appro­
priate high-level language for industrial robots. 

4.1 MICROPLANNER Solution 

The normal assembly process is achieved in 
MICROPLANNER by activating the "ASSEM­
BLY" theorem. 

The emergency problem is simulated by the LISP 
pseudofunction READ and by a casual sequence of 
T and NIL; T simulates a screw by which it is 
possible to screw together one block with the bar, 
NIL simulates a screw which cannot be used owing 
to some defects. 



152 P. CORTI, G. GINI AND M. GINI 

When an emergency problem arises, the 
"EMERGENCY" theorem is activated and each 
strategy is achieved using three different sequences 
of goals. 

The choice by which a particular strategy is 
selected is realized by means of flags that are 
unfurled when a strategy has been tried. This 
behaviour may be seen as a serious limit for non-
determinism, but it is a way to guide the computer in 
automatically constructing a good solution of the 
emergency problem; without any information the 
interpreter of MICROPLANNER would go on 
changing screws until it finds a screw which can be 
screwed or until the screws' loader is empty (very 
expensive and silly situation). 

Another very serious problem is how the in­
terpreter carries out the control flow of Figure 3. In 
fact, all the knowledge about the environment is kept 
in the database of the external theorem; only this 
makes it possible to avoid a failure that in an 
emergency strategy could destroy the results already 
obtained. When an emergency occurs the control 
passes to the EMERGENCY theorem, which 
realizes the different strategies E1, E2 and E3. 

When a sequence of emergency is ended the 
control returns to the ASSEMBLY theorem through 
EMERGENCY one. In this last theorem are stored 
all the data that the program requires to end an 
emergency strategy or to choose a new strategy after 
the failure of the last tried. In the database of the 

ASSEMBLY theorem are stored the following: the 
state of the assembly process, the point in which it 
has stopped and from which the deterministic pro­
gram has to go on. 

In Figure 4 we represent the flow of control 
realized by a MICROPLANNER interpreter. 

4.2 LISP Solution 

The philosophy for the solution of the problem using 
LISP is quite different. We define one function for 
every operator introduced in Section 3 with suitable 
parameters. It is also possible to make a different use 
of the parameters, because in LISP there are several 
possibilities for defining and evaluating global and 
local variables. 

In LISP the emergency recovery has to be inter­
preted as an operator or a set of different operators 
which are called when there is a fault, and which 
produces the recovery from the emergency and 
returns the control to the normal assembly process. 



INTELLIGENT ROBOTS 153 

In order to use different strategies it is necessary 
to have a control structure like that realized by the 
ATTEMPT function.† 

With this function we can obtain a structure very 
similar to the previous one, or also a structure like 
that one shown in Figure 5. 

As in the MICROPLANNER program the result 
of the evaluation is the sequence of the elementary 
actions of the robot necessary to solve the par­
ticular assembly problem. 

4.3 MAGMALISP Solution 

MAGMALISP13 is an extended LISP system, pro­
posed by the authors as an implementation tool for 
Artificial Intelligence languages. The fundamental 
idea of MAGMALISP is that a tree structure of 
independent computation environments (context 
tree) is the supporting structure of any non-
deterministic system. The Bobrow and Wegbreit's14 

model of control structures, which allows the user to 
define his own heuristics, is on the basis of this 
language. 

The main idea of MAGMALISP is the notion of 
context, as a complete environment capable of 
deterministic computations, which includes also the 
control structure. Non-determinism, necessary for 
solving emergency recovery problem, is attained by 
exploring different alternatives in different contexts 
or by generating, deleting and switching among dif­
ferent procedures. 

The system acts like a system with many inde­
pendent computation environments in which it is 
possible to transfer information from one context to 
another. 

According to these features this language seems 
to be a good solution of the emergency recovery 
problem, not only in the proposed case, but also in 
complex situations. In fact, using MAGMALISP it 
is possible to break off the evaluation in the normal 
sequence when an emergency arises, to execute a 
chosen emergency strategy and to reenter in the 
right point. 

In the proposed case the control structure is 
similar to that one of Figure 5, but the control flow is 
programmed in a very natural way, because for each 
procedure an access environment, a return point and 
a context would be explicitly expressed. 

5 CONCLUDING REMARKS 

We have proposed a solution of the emergency 
recovery problem by examining a simple case of 
mechanical assembly process on which the most 
relevant aspects of the emergency situations can be 
focused. We have examined the possibility of solving 
the problem by particular features of some Artificial 
Intelligence programming languages. In order to 
perform our task, which is the introduction of some 
emergency recovery capabilities in industrial robots, 
we have now to draw some conclusions. 

A language with some capabilities to deal with 
non-deterministic programs is desirable. Since the 
most important part of the assembly is performed by 
a fixed sequence of steps, the non-determinism is 

† The ATTEMPT function allows a particular evaluation of 
an expression; if an error of a defined type arises, the system 
stops the evaluation and goes to another expression which 
allows a recovery from the error situation. 



154 P. CORTI, G. GINI AND M. GINI 

mainly required in conjunction with a flexible control 
structure, which can easily manage the activation 
and the interruption of the processes. 

On the other hand, the usual non-deterministic 
languages can not be practicable for a mini­
computer connected with the industrial robot. 

It is then crucial to find the only important 
features to be introduced into new software for 
robots. The result outlined in this paper constitutes 
the basis for the implementation project of an 
extended LISP system (like MAGMALISP) in a 
LABEN minicomputer connected with our SIGMA 
robot. 

REFERENCES 

1. T. Winograd, "Procedures as a representation for data in a 
computer program for understanding natural languages" 
MAC TR-84 (M.I.T., Cambridge, Mass., 1971). 

2. R. E. Fikes and N. J. Nilsson, "STRIPS: a new approach to 
the application of theorem proving to problem solving" 
Proc. 2nd IJCAI, London, England (1971). 

3. S. E. Fahlman, "A planning system for robot construction 
tasks" Artificial Intelligence 5 (1974). 

4. E. D. Sacerdoti, "A structure for plans and behaviour", A.I. 

Center, Tech. N. 109 (S.R.I., Menlo Park, California, 
1975). 

5. A. Tate, "Interacting goals and their use" Proc. 4th IJCAI 
Tbilisi, Georgia (1975). 

6. R. Waldinger, "Achieving several goals simultaneously" 
A.I. Center, Tech. N. 107 (S.R.I., Menlo Park, California, 
1975). 

7. R. G. Abraham, J. F. Beres and M. Yaroshuk, "Require­
ments analysis and justification of intelligent robots" Proc. 
5th IS1R, Chicago, Illinois (1975). 

8. A. D'Auria, and M. Salmon, "SIGMA: an integrated 
general purpose system for automatic manipulation" Proc. 
5th ISIR, Chicago, Illinois (1975). 

9. G. Gini, M. Gini and M. Somalvico, "Emergency recovery 
in intelligent robots" Proc. 5th ISIR, Chicago, Illinois 
(1975). 

10. D. Bobrow and B. Raphael, "New programming languages 
for Artificial Intelligence" Computing Surveys 6, 3 (1974). 

11. P. H. Winston, "Water's arm dynamics theory" in New 
progress in Artificial Intelligence AI-TR-310 (M.I.T., 
Cambridge, Massachusetts, 1974). 

12. G. J. Sussman, T. Winograd and E. Charniak, "MICRO-
PLANNER Reference manual" AI TR-203 (M.I.T., Cam­
bridge, Mass. 1970). 

13. C. Montangero, G. Pacini and F. Turini, "MAGMALISP: 
a machine language for Artificial Intelligence" Proc. 4th 
IJCAI, Tbilisi, Georgia (1975) 

14. D. G. Bobrow and B. Wegbreit, "A model for control 
structures for Artificial Intelligence programming lan­
guages" Proc. 3rd IJCAI, Stanford, California (1973). 


