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CORAL: Monte Carlo Method as a Tool for the Prediction of
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A. P. Toropova,[a] A. A. Toropov,*[a] S. E. Martyanov,[b] E. Benfenati,[a] G. Gini,[c] D. Leszczynska,[d] and
J. Leszczynski[e]

1 Introduction

Quantitative Structure–Property/Activity Relationship
(QSPR/QSAR) models, which are based on structural de-
scriptors, are often classified as theory. However, they make
it possible to formulate a new type of experiments. Instead
of experimental work with chemical compounds, one can
employ computational treatment of available experimental
data to gain novel insight and supplement it by informa-
tion on compounds not studied experimentally.[1–9]

The choice of the representation of the molecular struc-
ture is an important component of the QSPR/QSAR analy-
ses. CORAL software[10,11] is a tool that could be used to
build up a QSPR/QSAR model. The Simplified Molecular
Input Line Entry System (SMILES) has been tested as repre-
sentation of the molecular structure for models generated
by the CORAL software. However, there are various ap-
proaches that could be applied as representations of mo-
lecular structures. The molecular graph is the “classic” alter-
native to SMILES in QSPR/QSAR studies. It should be point-
ed out that there are endpoints for which a preferable
model can be calculated with representation of the molec-
ular structure by SMILES,[13] but there are also endpoints for
which a preferable model can be calculated with “hybrid”
representation (i.e. taking into account both representa-
tions by SMILES and by molecular graph).[14]

The Bioconcentration Factor (BCF) represents an impor-
tant ecological characteristic of substances which can be
considered as industrial pollutants.[15] Recently, the CORAL
models calculated with SMILES for BCF were examined.[16–18]

The aim of the present study is to compare the models for
BCF calculated with: (i) SMILES, (ii) molecular graph, and (iii)
the “hybrid” model which is calculated with representation

of the molecular structure by SMILES together with molec-
ular graph.[14]

2 Method

2.1 Data

We used bioconcentration factor (fish) data of 239 com-
pounds taken from Lu et al.[15] The CAS numbers of the
considered compounds are defined in the US Medicinal
Laboratory.[19] We found that two substances in the data
set are ambiguous. These are acenaphthalene and ace-
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naphthylene. The analysis of literature data[19] has shown
that both substances have the same CAS number 208-96-8.
Under these circumstances we have decided to consider
the remaining 237 compounds, without the above-men-
tioned two compounds. We have split the data of these
substances six times into sub-training set, calibration set,
test set, and validation set. The validation set is not in-
volved in building up the model. These splits are random,
but we have tried to obtain the same ranges of endpoint
for these three sets. SMILES for calculations with the CORAL
software were generated with ACD/ChemSketch.[20]

2.2 Optimal Descriptors

We have formulated the following principles of building up
a model of an endpoint with CORAL software:

– The molecular structure of each compound can be repre-
sented by molecular features which are extracted from (i)
SMILES, (ii) graph, (iii) SMILES together with graph.

– There are local and global molecular features which can
be extracted in the above-mentioned cases (i), (ii), and
(iii).

– The building up of a QSPR/QSAR model for an arbitrary
split into the training and test sets can be examined as
a random event.

– The statistical quality of each QSPR/QSAR model is
a mathematical function of the split into training and
test sets.

– The average statistical quality of QSPR/QSAR models that
is obtained for several splits into training and test sets is
a more robust criterion for the estimation of an ap-
proach than the statistical quality for solely one split.

– The average statistical quality of models for external test
sets is a more significant attribute than the average stat-
istical quality for training sets.

The correlation weights for molecular features (which are
calculated with SMILES) can be used for classification of the
above-mentioned features according to their values for sev-
eral models into three categories: features with stable posi-
tive values of correlation weights (promoters of increase for
an endpoint) ; features with stable negative values of corre-
lation weights (promoters of decrease of an endpoint) ; and
unstable features which have positive values of correlation
weights together with negative correlation weight values
for several models.

The graph based optimal descriptors are calculated as
the following:

GraphDCWðThreshold;NepochÞ ¼
X

CWðAkÞþ

a
X

CWðEC0kÞ þ b
X

CWðEC1kÞ þ g
X

CWðEC2kÞ

þd
X

CWðEC3kÞ

ð1Þ

where Ak is a chemical element (C, O, N, etc.). The chemical
elements represent vertexes in hydrogen-suppressed mo-
lecular graphs (HSG), covalent bonds are edges in HSG. The
extended connectivity of j-th order (ECJ) is an integer char-
acteristic of a vertex in HSG calculated with the recurrent
formula (Figure 1). The extended connectivity can be also
calculated with the hydrogen-filled graph and with graph
of atomic orbitals.[21,22]

The extended connectivity of zero order is the number
of vertexes (atoms) connected with a given vertex (atom).
The adjacency matrix is the representation of a molecular
graph used for computational operations (Figure 2).

The SMILES based optimal descriptors are calculated as
the following:

SMILESDCWðThreshold;NepochÞ ¼

a
X

CWðSkÞ þ b
X

CWðSSkÞ þ g
X

CWðSSSkÞ
þd � CWðPAIRÞ þ x � CWðNOSPÞ þ y � CWðHALOÞ
þz � CWðBONDÞ

ð2Þ

where Sk, SSk, SSSk are local SMILES attributes which are ex-
tracted from SMILES; If SMILES are represented by “ABCDE”,
the definitions of Sk, SSk, SSSk are the following:

Sk : A, B, C, D, E

SSk : AB, BC, CD, DE

SSSk : ABC, BCD, CDE

It should be noted that: (i) Sk can be represented by two
characters e.g. ‘Cl’, ‘Br’, ‘@@’, etc. ; (ii) SSk, SSSk are ordered
according their ASCII code in order to avoid a situation
where the same molecular fragment is represented twice:
AB and BA, or ABC and CBA. PAIR, NOSP, HALO, and BOND
are global SMILES attributes which are extracted from
SMILES.[10,23,24] Table 1 contains definition for PAIR. Table 2
contains definitions for NOSP, HALO, and BOND.

The CORAL software gives the possibility to define the
“hybrid” optimal descriptors which are calculated as the fol-
lowing:

Figure 1. Example of calculation of extended connectivity for ver-
texes of HSG by the recurrent formula.
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HybridDCWðThreshold;NepochÞ ¼
SMILESDCWðThreshold;NepochÞ þ GraphDCWðThreshold;NepochÞ

ð3Þ

Threshold and Nepoch represent parameters of the Monte
Carlo optimization. Threshold is a tool that defines two
classes of molecular features (i.e. graph invariants and/or
SMILES attributes): rare (noise) and not rare, i.e. active. The
optimal descriptors are calculated with the correlation

weights of active molecular features (attributes). Correlation
weights for rare attributes are fixed equal to zero, i.e. these
are not involved in the modeling process. Figure 2 shows
the architecture of the hybrid representation of the molec-
ular structure together with correlation weights for various
molecular features extracted from HSG and SMILES.

Nepoch is the number of iterations of the Monte Carlo opti-
mization. The target function (TF) of the optimization is de-
fined as the following:

Figure 2. Example of calculation of the hybrid descriptor with correlation weights obtained by the Monte Carlo method

Table 1. The definition of PAIR descriptors indicates simultaneous presence of two molecular features. B2 and B3 are indicators of presence
of double and triple bonds, respectively.
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TF ¼ Rþ R0 �WR � R� R0j j
�WC � ð C0j j þ C

0

0

�� ��þ C1 � C
0

1

�� ��Þ
ð4Þ

where R and R’ are correlation coefficients between the op-
timal descriptor and an endpoint (EP) for sub-training and
calibration sets, respectively ; C0, C1, C0’,and C1’ are coeffi-
cients from equations obtained by the Least squares
method:

EP ¼ C0 þ C1 �Choice DCWðThreshold;NepochÞ
or sub� training set

ð5Þ

EP ¼ C
0

0 þ C
0

1 �Choice DCWðThreshold;NepochÞ
or calibration set

ð6Þ

WR = 0.1 and WC = 0.01 are empirical parameters; ‘Choice’
includes SMILES, or Graph, or Hybrid. Coefficients a, b, g, d,
x, y, and z can be 0 or 1: it gives possibility to select differ-
ent versions for the optimal descriptors.

The increase of the threshold leads to decrease of corre-
lation coefficient (between experimental and calculated
values of endpoint) for the sub-training and calibration
sets, but as the rule, there is a maximum of the correlation
coefficient for the test set. The increase of the number of
epochs of the Monte Carlo optimization leads to increase
of the correlation coefficient for sub-training and calibra-
tion sets, but again, as the rule, there is the maximum of
the correlation coefficient for the test set. Thus, it is neces-
sary to define preferable values of the threshold (T*) and

Table 2. Definitions of the BOND, NOSP, and HALO attributes.

Calculation of the BOND index

= # @ Comments

0 0 0 There are no double, triple, or stereo chemical bonds
0 0 1 The molecule only contains stereo chemical bonds
0 1 0 The molecule only contains triple bonds
0 1 1 The molecule contains triple and stereo chemical bonds
1 0 0 The molecule only contains double bonds
1 0 1 The molecule contains double bonds and stereo chemical bonds
1 1 0 The molecule contains double and triple bonds
1 1 1 The molecule contains double, triple, and stereo chemical bonds

Calculation of the NOSP index

N O S P Comments

0 0 0 0 Nitrogen, oxygen, sulfur, and phosphorus are absent
0 0 0 1 The molecule only contains phosphorus
0 0 1 0 The molecule only contains sulfur
0 0 1 1 The molecule contains sulfur and phosphorus
0 1 0 0 The molecule only contains oxygen
0 1 0 1 The molecule contains oxygen and phosphorus
0 1 1 0 The molecule contains oxygen and sulfur
0 1 1 1 The molecule contains oxygen, sulfur, and phosphorus
1 0 0 0 The molecule only contains nitrogen
1 0 0 1 The molecule contains nitrogen and phosphorus
1 0 1 0 The molecule contains nitrogen and sulfur
1 0 1 1 The molecule contains nitrogen, sulfur, and phosphorus
1 1 0 0 The molecule contains nitrogen and oxygen
1 1 0 1 The molecule contains nitrogen, oxygen and phosphorus
1 1 1 0 The molecule contains nitrogen, oxygen, and sulfur
1 1 1 1 The molecule contains nitrogen, oxygen, sulfur, and phosphorus

Calculation of the HALO index

F Cl Br Comments

0 0 0 Fluorine, chlorine and bromine are absent
0 0 1 The molecule only contains bromine
0 1 0 The molecule only contains chlorine
0 1 1 The molecule contains chlorine and bromine
1 0 0 The molecule only contains fluorine
1 0 1 The molecule contains fluorine and bromine
1 1 0 The molecule contains fluorine and chlorine
1 1 1 The molecule contains fluorine, chlorine, and bromine
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the number of epochs (N*) which provide maximum of cor-
relation coefficient for the test set (Figure 1).

The method that has been used for the HSG-based
models is defined as a= 1, b= 1, g= 0, d= 0 (in Equation
1). The method that has been used for the SMILES-based
models is defined as a= 1, b= 1, g= 0, d= 1, x = 0, y = 0,
z = 1 (in Equation 2). The hybrid method is the unification
of the two described methods (HSG-based and SMILES-
based).

3 Results and Discussion

Table 3 contains statistical characteristics of one-variable
models calculated with Equation 5 for the sub-training, cali-
bration, and test sets, for six random splits. One can see
that preferable models are obtained in the case of the
hybrid representation of the molecular structure (i.e. by
SMILES together with hydrogen suppressed graph). Un-
fortunately, the best models are revealed for quite different
values of the threshold (T*) and values of the number of
epochs (N*). It indicates that a split into sub-training, cali-
bration, and test sets influences the statistical quality of the
models.

Table 4 contains various criteria of predictability[2,25,26] for
the above-mentioned best models. One can see (Table 4)
that all six models are quite acceptable according to those
criteria. Figure 4 contains the graphical representation of

models for logBCF (for six splits) which are calculated with
the CORAL software.

According to OECD principles,[27] a QSPR/QSAR model
must be associated with the following information:

– a defined endpoint;
– an unambiguous algorithm;
– a defined domain of applicability ;
– appropriate measures of goodness-of-fit, robustness and

predictability ;
– a mechanistic interpretation, if possible.

The approach described above has been applied in
building up the logBCF model using data taken from the
literature.[15] Thus the endpoint should be classified as
a quite “defined”. The algorithm of the Monte Carlo optimi-
zation has been described and checked up in a few previ-
ous studies.[10,13,14,16] The ideal applicability domain for
CORAL models involves substances without blocked attri-
butes. In reality, however, one should use some compro-
mise, e.g. select substances with less than 10 % of blocked
attributes. The correlation coefficient between experimental
and calculated values of an endpoint for test set can be
used as a measure of statistical quality of a CORAL model.
Stable positive values of correlation weight in series runs of
the Monte Carlo optimization are indicators of molecular
features which are promoters of increase for an endpoint.
Contrary, stable negative values of correlation weights are
indicator of molecular features which are promoters of de-

Table 3. QSAR models for the bioconcentration factor logBCF calculated according to scheme shown in Figure 3. The best statistical char-
acteristics are indicated in bold.

Optimal descriptors calculated with SMILES

Split T* N* Sub-training set Calibration set Test set

n r2 s n r2 s n r2 s

1 10 50 118 0.8303 0.561 50 0.8303 0.634 45 0.8436 0.517
2 2 30 122 0.8270 0.577 50 0.8561 0.525 39 0.8482 0.465
3 3 24 87 0.7728 0.602 63 0.8384 0.669 70 0.8507 0.475
4 5 49 84 0.8119 0.599 73 0.8811 0.545 62 0.8514 0.514
5 9 22 72 0.7047 0.763 73 0.7158 0.778 31 0.8348 0.512
6 6 29 82 0.7822 0.563 65 0.8243 0.490 69 0.8364 0.631

Optimal descriptors calculated with hydrogen suppressed molecular graph

1 4 33 118 0.7916 0.622 50 0.8509 0.603 45 0.8432 0.516
2 1 30 122 0.8129 0.600 50 0.8386 0.618 39 0.8896 0.512
3 2 25 87 0.7732 0.601 63 0.8224 0.706 70 0.8625 0.576
4 3 50 84 0.7953 0.624 73 0.8860 0.404 62 0.8424 0.534
5 7 26 72 0.7079 0.759 73 0.7348 0.759 31 0.8573 0.485
6 1 35 82 0.8326 0.603 65 0.8325 0.453 69 0.8204 0.637

Optimal descriptors calculated with SMILES together with hydrogen suppressed molecular graph

1 4 49 118 0.8841 0.464 50 0.8897 0.529 45 0.8629 0.467
2 1 38 122 0.8813 0.478 50 0.9012 0.446 39 0.9158 0.440
3 1 27 87 0.8334 0.515 63 0.8804 0.603 70 0.8858 0.529
4 2 42 84 0.8741 0.490 73 0.8996 0.443 62 0.8930 0.520
5 1 32 72 0.8691 0.508 73 0.8684 0.576 31 0.8788 0.438
6 5 32 82 0.8264 0.614 65 0.8691 0.413 69 0.8836 0.541
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crease for an endpoint. This data can be an indication for
a mechanistic interpretation related to a given endpoint.
For a given data set and for all six splits, the carbon vertex
in HSG with Morgan’s connectivity of zero order (i.e. 0ECk =
2), branching in an aromatic system (i.e. fragment of
SMILES = ‘c(’ ), and an aromatic ring (i.e. fragment of
SMILES = ‘c1’) are promoters of increase for logBCF. On the
other hand, 0ECk = 3; 1ECk = 4 (carbon vertex in HSG); and
the presence of oxygen together with chlorine (PAIR) are
promoters of decrease for logBCF. Thus, the developed
CORAL model follows the OECD principles.

Two models for logBCF described by Lu et al.[15] have
been done for two groups of substances according to the
range of octanol water partition coefficient (logKow). The
first model is characterized by n = 214, r2 = 0.781, s = 0.614
(1< logKow<7). The second model is characterized by n =
20, r2 = 0.795, s = 0.617 (logKow>7). The statistical character-
istics of the logBCF model from Toropov et al.[18] are n =
105, r2 = 0.805, s = 0.528. The statistical characteristics of
a model for logBCF from Sahu and Singh[28] are n = 131, r2 =
0.871, s = 0.978. The model for logBCF from Jacksonet al.[29]

gives n = 93, r2 = 0.88. The model for logBCF from Dimitrov
et al.[30] is characterized by n = 511, r2 = 0.84. According to

Figure 3. General scheme of the building up of CORAL models.
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Lombardo et al. ,[31] BCFBAF v3.00 and CAESAR give models
of logBCF which are characterized by n = 527, r2 = 0.75, s =
0.68 and n = 527, r2 = 0.81, s = 0.57, respectively.

The comparison of the statistical quality of the above-
mentioned models described in the literature[15,18,28–31] with
the statistical quality of the models represented in Tables 3
and 4 shows that the CORAL software gives quite good
models for logBCF.

The CORAL software is available (freely) on the Internet
together with instructions how to use this software. It
should be noted that the CORAL software has been tested
as a tool of QSAR analysis of various endpoints (not only
logBCF).[8–11,13,14,32–34]

Supporting Information

The Supporting Information contains details of six splits
into the sub-training, calibration, and test sets which were
examined in this study together with data on the logBCF
and octanol/water partition coefficient.

4 Conclusions

The models for the bioconcentration factor (logBCF) devel-
oped here, by means of the CORAL software, are confirmed
to comply with the OECD principles. The statistical quality

Figure 4. Graphical representation of the best CORAL models for logBCF.
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Table 4. Criteria of predictability[2,25,26] for models calculated with
the CORAL software.

Split The statistical characteristics

1 logBCF = 0.0037 (�0.0100) + 0.0840 (�0.0003) * DCW(4,49)
Test set
n = 45
r2 = 0.8629
r0

2 = 0.8455

r’0
2 = 0.8629

r2�r2
0

r2 ¼ 0:0000 < 0:1
r2�r020

r2 ¼ 0:0201 < 0:1

k ¼ 1:0035ð0:85 < k < 1:15Þ
k’= 0.9753 (0.85<k’<1.15)

rm
2 = 0.8599>0.5

r2
m ¼ 0:8045 > 0:5;Dr2

m ¼ 0:1108 < 0:2
Validation set
n = 24
r2 = 0.8850
r0

2 = 0.8839
r0’

2 = 0.8791
r2�r2

0

r2 ¼ 0:0012 < 0:1
r2�r020

r2 ¼ 0:0067 < 0:1

k ¼ 1:0702ð0:85 < k < 1:15Þ
k’= 0.9177 (0.85<k’<1.15)

rm
2 = 0.8560>0.5

r2
m ¼ 0:8364 > 0:5;Dr2

m ¼ 0:0391 < 0:2
2 logBCF = 0.3806 (�0.0120) + 0.0789 (�0.0003) * DCW(1,38)

Test set
n = 39
r2 = 0.9158
r0

2 = 0.9056

r0’
2 = 0.9153

r2�r2
0

r2 ¼ 0:0111 < 0:1
r2�r020

r2 ¼ 0:0005 < 0:1

k = 0.9706 (0.85<k<1.15)

k’= 1.0115 (0.85<k’<1.15)

rm
2 = 0.8967>0.5

r2
m ¼ 0:8600 > 0:5;Dr2

m ¼ 0:0734 < 0:2
Validation set
n = 26
r2 = 0.8901
r0

2 = 0.8857

r0’
2 = 0.8885

r2�r2
0

r2 ¼ 0:0049 < 0:1
r2�r020

r2 ¼ 0:0017 < 0:1

k = 0.9995 (0.85<k<1.15)

k’= 0.9851 (0.85<k’<1.15)

rm
2 = 0.8552>0.5

r2
m ¼ 0:8432 > 0:5;Dr2

m ¼ �0:0239 < 0:2

Table 4. (Continued)

Split The statistical characteristics

3 logBCF = 0.0004 (�0.0165) + 0.0507 (�0.0003) * DCW(1,27)
Test set
n = 70
r2 = 0.8858
r0

2 = 0.8566
r0’

2 = 0.8831
r2�r2

0

r2 ¼ 0:0330 < 0:1
r2�r020

r2 ¼ 0:0030 < 0:1

k = 0.8917 (0.85<k<1.15)

k’= 1.0982 (0.85<k’<1.15)

rm
2 = 0.8400>0.5

r2
m ¼ 0:7872 > 0:5;Dr2

m ¼ 0:1056 < 0:2
Validation set
n = 17
r2 = 0.8700
r0

2 = 0.8691
r0’

2 = 0.8432
r2�r2

0

r2 ¼ 0:0011 < 0:1
r2�r020

r2 ¼ 0:0308 < 0:1

k = 1.1552 (0.85<k<1.15)

k’= 0.8471 (0.85<k’<1.15)

rm
2 = 0.8431>0.5

r2
m ¼ 0:7854 > 0:5;Dr2

m ¼ 0:1155 < 0:2
4 logBCF = 0.0132 (�0.0148) + 0.0700 (�0.0004) * DCW(2,42)

Test set
n = 62
r2 = 0.8930
r0

2 = 0.8267
r0’

2 = 0.8776
r2�r2

0

r2 ¼ 0:0742 < 0:1
r2�r020

r2 ¼ 0:0171 < 0:1

k = 0.9409 (0.85<k<1.15)

k’= 1.0374 (0.85<k’<1.15)

rm
2 = 0.7825>0.5

r2
m ¼ 0:7228 > 0:5;Dr2

m ¼ 0:1194 < 0:2
Validation set
n = 18
r2 = 0.8476
r0

2 = 0.8330

r0’
2 = 0.7493

r2�r2
0

r2 ¼ 0:0172 < 0:1
r2�r020

r2 ¼ 0:1160 < 0:1

k = 1.0120 (0.85<k<1.15)

k’= 0.9637 (0.85<k’<1.15)

rm
2 = 0.7452>0.5

r2
m ¼ 0:6635 > 0:5;Dr2

m ¼ 0:1634 < 0:2
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of these models is a mathematical function of the split into
the sub-training, calibration, and test sets. These models
have been checked up with external validation sets (i.e.
with substances which were not involved in building up
the model). Thus, for each split, the CORAL software gives
a quite good model.
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