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a b s t r a c t

Indices of the presence of atoms (IPA) encode the presence or absence of atoms, such as nitrogen, oxygen,
sulphur, phosphorus, fluorine, chlorine, and bromine in a molecule. They are calculated with the
simplified molecular input line entry system (SMILES). Using the Monte Carlo method for correlation
weights of these indices, one can improve the predictive ability of optimal SMILES-based descriptors in
quantitative structureeactivity relationships (QSAR) for bioconcentration factor. The model without IPA
gave the following results: n¼ 503, r2¼ 0.6803, q2¼ 0.6781, s¼ 0.759, F¼ 1066 (subtraining set);
n¼ 322, r2¼ 0.8181, rpred

2 ¼ 0.8159, s¼ 0.565, F¼ 1439 (calibration set); n¼ 105, r2¼ 0.6703,
rpred
2 ¼ 0.6577, Rm2 ¼ 0.6628, s¼ 0.728, F¼ 209 (test set); n¼ 106, r2¼ 0.6624, rpred2 ¼ 0.6502, Rm2 ¼ 0.6212,
s¼ 0.757, F¼ 204 (validation set) The model with IPA gave: n¼ 503, r2¼ 0.7082, q2¼ 0.7062, s¼ 0.725,
F¼ 1216 (subtraining set); n¼ 322, r2¼ 0.8401, rpred

2 ¼ 0.8383, s¼ 0.528, F¼ 1682 (calibration set);
n¼ 105, r2¼ 0.7489, rpred

2 ¼ 0.7402, Rm
2 ¼ 0.7252, s¼ 0.637, F¼ 307 (test set); n¼ 106, r2¼ 0.7306,

rpred
2 ¼ 0.7217, Rm2 ¼ 0.7010, s¼ 0.680, F¼ 282 (validation set).

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Quantitative structureeproperty/activity relationships (QSPR/
QSAR) models are often classified as theory. However, they make it
possible to formulate a new type of experiment. Instead of direct
work with substances, one can employ computational treatment of
available experimental data to gain fresh knowledge [1e7].

Data on the bioconcentration factor (BCF) is important from an
ecological point of view [8e12]. It is also important for regulatory
purposes. The European regulation on chemical substances REACH
[13] requires BCF for all compounds. Experimental definition of the
BCF is complex technical task. This leads to an increase of QSAR
studies dedicated to models of BCF of organic compounds. BCF can
be represented as a mathematical function of topological indices
(n¼ 16, r2¼ 0.5673, biphenyls) [8]. A hybrid model (i.e. a consensus
of a group of model) quite well predicted BCF (training set: n¼ 378,
r2¼ 0.83, test set n¼ 95, r2¼ 0.80) [9]. The molecular electroneg-
ativity-distance vector (MEDV) gave a model for a set of organic
pollutants with n¼ 236, r2¼ 0.8080, q2¼ 0.7873 [10]. Finally, the
super structureeactivity relationship for the BCF of biphenyl was
gave n¼ 58, rcv¼ 0.958 [11].

Unfortunately, it is hard to compare these models, since they are
not standardized: they use different sets of compounds, some sets
are numerous, others quite small, and the algorithms and valida-
tion procedures are different.

The aim of the present QSAR analysis was to assess the balance
of correlations [14,15] as a tool for modelling the BCF. The basic idea
of the balance of correlations is to split the training set into sub-
training and the calibration sets. The calibration set serves as
a preliminary estimate of the model for substances which are then
used to optimize the model parameters in order to avoid over-
training. The calibration set is a preliminary test set.

In addition to local SMILES attributes [16e18] we used global
SMILES attributes [19,20], which are indices of presence of atoms
(IPA). IPA use information on the presence or absence of atoms such
as nitrogen, oxygen, sulphur, phosphorus, fluorine, chlorine, and
bromine as additional components for the QSARmodelling. The IPA
represents some global constituents of the molecules, while local
attributes [16e18] are representations of molecular fragments.

2. Method

2.1. Data

The numerical data for BCF were selected from the literature
[21e25]. Salt substances were used after removing the cation, and
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neutralising them.Duplicateswere removedusingChemFinderUltra
v10.0. The endpoint we have examined is the decimal logarithm,
log BCF. Different BCF values were available for the same substance.
We eliminated values from experiments done at pH outside the
limits in guidelines defined by the REACH legislation [13]. The
arithmetic meanwas then used as experimental value of reference.

For the modelling purposes, we split the chemicals randomly
into subtraining (n¼ 503), calibration (n¼ 322), test (n¼ 105), and
validation (n¼ 106) sets. We verified that the ranges of log BCF

values for these sets were approximately the same ones, according
to OECD principles [26].

2.2. Optimal descriptors

We studied two versions of SMILES-based optimal descriptors
[27e29]:

DCW(T)¼ P
CW(Sk)þ

P
CW(SSk)þ

P
CW(SSSk) (1)

DCW(T)¼ CW(NOSP)þ CW(HALO)þP
CW(Sk)þ

P
CW(SSk)þ

P

CW(SSSk) (2)

The T is threshold and it is used to divide SMILES attributes into
two categories: rare or active (not rare). The attribute is rare if the

Table 1
An example of preparation of SMILES attributes: SMILES¼ “Clc1ccc(cc1)C(c2ccc(Cl)cc2)C(Cl)(Cl)Cl”; CAS¼ 50-29-3; DCW(3)¼ 44.7234623NOSP of this structure should be
defined as ‘NOSP0000’ (Table 2), correlationweight for this value is CW(‘NOSP0000’)¼ 9.3732049; HALO of this structure should be defined as ‘HALO010’ (Table 3), correlation
weight for this value is CW(‘HALO010’)¼ 2.3172002. Numerical data on the correlation weights were obtained by the Monte Carlo method. Each attribute is represented by
string of 12 symbols. Each SMILES element is represented by a zone of four symbols; Sk involves only one zone; SSk involves two zones; and SSSk involves three zones.

Sk CW(Sk) SSk CW(SSk) SSSk CW(SSSk)

Zone Zone Zone Zone Zone Zone Zone Zone Zone

1 2 3 1 2 3 1 2 3

Clxxxxxxxxxx 1.3730003
cxxxxxxxxxxx 0.0628097 cxxxClxxxxxx 3.3772763
1xxxxxxxxxxx �0.9370994 cxxx1xxxxxxx 1.5594321 Clxxcxxx1xxx 1.8763542
cxxxxxxxxxxx 0.0628097 cxxx1xxxxxxx 1.5594321 cxxx1xxxcxxx 0.3170920
cxxxxxxxxxxx 0.0628097 cxxxcxxxxxxx 0.2495392 cxxxcxxx1xxx �0.9995273
cxxxxxxxxxxx 0.0628097 cxxxcxxxxxxx 0.2495392 cxxxcxxxcxxx 0.7490967
(xxxxxxxxxxx �1.3758277 cxxx(xxxxxxx �0.3772863 cxxxcxxx(xxx 1.7504048
cxxxxxxxxxxx 0.0628097 cxxx(xxxxxxx �0.3772863 cxxx(xxxcxxx 1.7521419
cxxxxxxxxxxx 0.0628097 cxxxcxxxxxxx 0.2495392 cxxxcxxx(xxx 1.7504048
1xxxxxxxxxxx �0.9370994 cxxx1xxxxxxx 1.5594321 cxxxcxxx1xxx �0.9995273
(xxxxxxxxxxx �1.3758277 1xxx(xxxxxxx �1.0578391 cxxx1xxx(xxx 0.1268784
Cxxxxxxxxxxx �0.6234328 Cxxx(xxxxxxx �0.3130233 Cxxx(xxx1xxx 1.6889031
(xxxxxxxxxxx �1.3758277 Cxxx(xxxxxxx �0.3130233 (xxxCxxx(xxx 1.4383448
cxxxxxxxxxxx 0.0628097 cxxx(xxxxxxx �0.3772863 cxxx(xxxCxxx 2.3733259
2xxxxxxxxxxx 0.4980521 cxxx2xxxxxxx 1.1901563 2xxxcxxx(xxx �0.8102675
cxxxxxxxxxxx 0.0628097 cxxx2xxxxxxx 1.1901563 cxxx2xxxcxxx �1.2545720
cxxxxxxxxxxx 0.0628097 cxxxcxxxxxxx 0.2495392 cxxxcxxx2xxx 1.0012945
cxxxxxxxxxxx 0.0628097 cxxxcxxxxxxx 0.2495392 cxxxcxxxcxxx 0.7490967
(xxxxxxxxxxx �1.3758277 cxxx(xxxxxxx �0.3772863 cxxxcxxx(xxx 1.7504048
Clxxxxxxxxxx 1.3730003 Clxx(xxxxxxx 0.8757681 cxxx(xxxClxx 2.0577519
(xxxxxxxxxxx �1.3758277 Clxx(xxxxxxx 0.8757681 (xxxClxx(xxx �0.5642011
cxxxxxxxxxxx 0.0628097 cxxx(xxxxxxx �0.3772863 cxxx(xxxClxx 2.0577519
cxxxxxxxxxxx 0.0628097 cxxxcxxxxxxx 0.2495392 cxxxcxxx(xxx 1.7504048
2xxxxxxxxxxx 0.4980521 cxxx2xxxxxxx 1.1901563 cxxxcxxx2xxx 1.0012945
(xxxxxxxxxxx �1.3758277 2xxx(xxxxxxx �2.0033907 cxxx2xxx(xxx �0.6220122
Cxxxxxxxxxxx �0.6234328 Cxxx(xxxxxxx �0.3130233 Cxxx(xxx2xxx 3.1830874
(xxxxxxxxxxx �1.3758277 Cxxx(xxxxxxx �0.3130233 (xxxCxxx(xxx 1.4383448
Clxxxxxxxxxx 1.3730003 Clxx(xxxxxxx 0.8757681 Cxxx(xxxClxx 1.8082129
(xxxxxxxxxxx �1.3758277 Clxx(xxxxxxx 0.8757681 (xxxClxx(xxx �0.5642011
(xxxxxxxxxxx �1.3758277 (xxx(xxxxxxx �1.1226275 Clxx(xxx(xxx 3.1878825
Clxxxxxxxxxx 1.3730003 Clxx(xxxxxxx 0.8757681 Clxx(xxx(xxx 3.1878825
(xxxxxxxxxxx �1.3758277 Clxx(xxxxxxx 0.8757681 (xxxClxx(xxx �0.5642011
Clxxxxxxxxxx 1.3730003 Clxx(xxxxxxx 0.8757681 Clxx(xxxClxx �1.2515411

Table 2
Calculation of the NOSP. This index relates to the presence or absence of four
chemical elements: nitrogen, oxygen, sulphur, and phosphorus

N O S P Comments

0 0 0 0 Nitrogen, oxygen, sulphur, and phosphorus are absent
0 0 0 1 The molecule only contains phosphorus
0 0 1 0 The molecule only contains sulphur
0 0 1 1 The molecule contains sulphur and phosphorus
0 1 0 0 The molecule only contains oxygen
0 1 0 1 The molecule contains oxygen and phosphorus
0 1 1 0 The molecule contains oxygen and sulphur
0 1 1 1 The molecule contains oxygen, sulphur, and phosphorus
1 0 0 0 The molecule only contains nitrogen
1 0 0 1 The molecule contains nitrogen and phosphorus
1 0 1 0 The molecule contains nitrogen and sulphur
1 0 1 1 The molecule contains nitrogen, sulphur, and phosphorus
1 1 0 0 The molecule contains nitrogen and oxygen
1 1 0 1 The molecule contains nitrogen, oxygen and phosphorus
1 1 1 0 The molecule contains nitrogen, oxygen, and sulphur
1 1 1 1 The molecule contains nitrogen, oxygen, sulphur, and

phosphorus

Table 3
Calculation of the HALO. This index relates to the presence or absence of three
chemical elements: fluorine, chlorine, and bromine.

F Cl Br Comments

0 0 0 Fluorine, chlorine and bromine are absent
0 0 1 The molecule only contains bromine
0 1 0 The molecule only contains chlorine
0 1 1 The molecule contains chlorine and bromine
1 0 0 The molecule only contains fluorine
1 0 1 The molecule contains fluorine and bromine
1 1 0 The molecule contains fluorine and chlorine
1 1 1 The molecule contains fluorine, chlorine, and bromine
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number of SMILES of the subtraining set which contain this attri-
bute is less than T. Active SMILES attributes were used to calculate
of the BCF models, and rare SMILES attributes were blocked, fixing
their value at zero, so rare attributes were not involved in the
modelling process. We used a threshold value of three after
preliminary experiments. This threshold (three) gives the best
statistical quality of the model for the external (validation and test)
set of substances. Also, we tested thresholds of 2 and 4, and
obtained very similar (but slightly worst) results.

Sk, SSk, and SSSk are SMILES attributes involving one, two, and
three elements respectively [16e18]. The SMILES element is
a fragment of the SMILES that cannot be separated into parts, e.g.,
‘Cl’, ‘Br’, etc. CW(Sk), CW(SSk), and CW(SSSk) are the correlation
weights for the Sk, SSk, and SSSk. Table 1 shows the definition of Sk,
SSk, and SSSk. Table 2 shows the definition of the NOSP index
involving nitrogen, oxygen, sulphur, and phosphorus. Table 3 shows
the definition of the HALO index which involves fluorine, chlorine,
and bromine. CW(NOSP) and CW(HALO) are correlationweights for
the NOSP and HALO, respectively.

The CW(xSk) were calculated by the Monte Carlo optimization
method. The target function was:

IS¼ Rþ R0 � abs(R� R0)� dRweight� abs
(C0þ C00 þ C1� C10)� dCweight, (3)

where R and R0 are correlation coefficient between log BCF and
optimal descriptor for the subtraining and calibration sets; C0 and
C00 are intercepts for the subtraining and calibration sets; C1
and C10 are slopes for the subtraining set and calibration set.
dRweight and dCweight are empirical parameters. Thus the target
function calculated with Eq. (3) is a modification of the balance of
correlations [14e16] where the slopes (experimental versus pre-
dicted) are taken into account: the maximum IS should lead not
only to a minimal difference between correlation coefficients for
the subtraining and calibration sets, but also to minimal differences
between the slopes for these sets.

Thus, each set (subtraining, calibration, test, and validation) has
special function.Subtrainingset isused forbuildingupamodel (values
of correlation weights for active attributes). Calibration set is used to
avoid the overtraining. The statistical characteristics of the test set are
an indicator of predictive potential of a model. Finally, the statistical
characteristics of the validation set serve as the second additional
checking of the model: one can speak about the ideal situation if
statistical characteristics for the test and validation sets are similar.

3. Results

The computational experiment showed the following preferable
values of the options: the number of epochs of the training (i.e., the
Monte Carlo optimization [27]) is 15; dRweight¼ 0.1; dCweight¼ 0.01;

coefficients for the optimization procedure are Dstart¼ 0.5,
dprecession¼ 0.1.

Table 4 shows the statistical quality of the models obtained with
the threshold of 3 in the case of the DCW(3) calculatedwith Eqs. (1)
and (2), with the statistical characteristics on three probes of the
Monte Carlo optimization. The first probe of the model based on
DCW(3) calculated with Eq. (1) is the following:

log BCF¼ 0.6920þ 0.0928DCW(3) (4)

n¼ 503, r2¼ 0.6803, q2¼ 0.6781, s¼ 0.759, F¼ 1066
(subtraining set);
n¼ 322, r2¼ 0.8181, rpred

2 ¼ 0.8159, s¼ 0.565, F¼ 1439
(calibration set);
n¼ 105, r2¼ 0.6703, rpred

2 ¼ 0.6577, Rm
2 ¼ 0.6628, s¼ 0.728,

F¼ 209 (test set);
n¼ 106, r2¼ 0.6624, rpred

2 ¼ 0.6502, Rm
2 ¼ 0.6212, s¼ 0.757,

F¼ 204 (validation set).

The first probe of the model based on DCW(3) calculated with
Eq. (2) is the following:

log BCF¼�0.0316þ 0.0898DCW(3) (5)

n¼ 503, r2¼ 0.7082, q2¼ 0.7062, s¼ 0.725, F¼ 1216 (subtrain-
ing set);
n¼ 322, r2¼ 0.8401, rpred2 ¼ 0.8383, s¼ 0.528, F¼ 1682 (calibra-
tion set);
n¼ 105, r2¼ 0.7489, rpred

2 ¼ 0.7402, Rm
2 ¼ 0.7252, s¼ 0.637,

F¼ 307 (test set);
n¼ 106, r2¼ 0.7306, rpred

2 ¼ 0.7217, Rm
2 ¼ 0.7010, s¼ 0.680,

F¼ 282 (validation set).

The Rm
2 is the measure of predictive potential for a QSPR/QSAR

model suggested by Roy P.P. and Roy K. [2]. According to Ref. [2],
a model is satisfactory if Rm2 > 0.5. Fig. 1 shows themodel calculated
with Eq. (5) graphically.

4. Discussion

In assessing the quality of a QSAR model, it is important define
its predictive ability. Besides internal validation, external validation
with a set of compounds never used in building up the model is
recommended for regulatory use of QSAR models [26].

A robust principle may be formulated as the following: the test
and validation set must be interchangeable. In other words, the
model must give similar (identical) statistical quality for the test

Table 4
Statistical characteristics of the model based on the DCW(3) calculated with Eqs. (1) and (2). Nact is the number of SMILES attributes which are involved in the modelling
process (i.e., which are not rare, if the threshold used is 3).

Probe Nact Subtraining set, n¼ 503 Calibration set, n¼ 322 Test set, n¼ 105 Validation set, n¼ 106

r2 s F r2 s F r2 s F r2 s F

Eq. (1), i.e., without NOSP and HALO
1 513 0.68 0.76 1066 0.82 0.57 1439 0.67 0.73 209 0.66 0.76 204
2 0.68 0.76 1044 0.81 0.57 1395 0.68 0.72 215 0.66 0.76 206
3 0.68 0.76 1056 0.82 0.57 1438 0.66 0.73 201 0.65 0.77 193

Eq. (2), i.e., with NOSP and HALO
1 530 0.71 0.73 1216 0.84 0.53 1682 0.75 0.64 307 0.73 0.68 282
2 0.70 0.73 1178 0.84 0.53 1689 0.74 0.65 295 0.73 0.67 285
3 0.70 0.73 1199 0.84 0.53 1698 0.71 0.68 258 0.74 0.66 297
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and validation set. In fact both test and validation set are actually
independent and give no information for models calculated with
Eqs. (4) and (5).

The model calculated with Eq. (5) can be considered preferable,
since its statistical quality is better than the model calculated with
Eq. (4) (Table 3).

The statistical characteristics of the log BCF model from Ref. [29]
are n¼ 105, r2¼ 0.805, Rpred2 ¼ 0.797, s¼ 0.528, F¼ 427 (test set);
Ref [30] are n¼ 131, r2¼0.871, s¼ 0.978, F¼ 213. The model from
Ref. [31] gives n¼ 93, r2¼ 0.88 and Ref. [32] gives n¼ 511, r2¼ 0.84.
Comparison of these models and the one calculated with Eq. (5)
indicates that our approach gives similar satisfactory prediction
for log BCF. However the present study used considerably larger
number of substances than in Refs. [29e32].

The correlation weights for HALO and NOSP indices show they
are statistical contributors to the BCF model. In case when there are
no halogens (the index is ‘HALO00000000’), correlation weights in
three probes of the Monte Carlo optimization are 6.8100887,
6.1827120, 5.8742920; this index is present in subtraining set 279
times, in calibration set 184, and in test set 53. The chlorine
(HALO01000000) correlation weights in three probes of the opti-
mization are 2.3172002, 1.2516364, 1.3703599, in the subtraining,
calibration and test sets are 147, 106, and 41, respectively. The most
significant promoter of NOSP indices is the presence of nitrogen
with oxygen (NOSP11000000) correlation weights are 1.8782653,
1.5038785, 2.3713518; and the subtraining, calibration and test sets
have 122, 85, and 14. For nitrogen, oxygen and sulphur
(NOSP11100000), correlation weights are 4.0613332, 3.6904595,
4.5024961, present in subtraining, calibration and test sets 44, 29, 8.

Supplementary materials section contain correlation weights for
calculating theDCW(3), experimental log BCFandcalculatedwithEq.
(5), andsplit into thesubtraining, calibration, test, andvalidationsets.

5. Conclusions

Correlation weights for IPA which are a mathematical function
of the presence of nitrogen, oxygen, sulphur, phosphorus (Table 1),
fluorine, chlorine, and bromine (Table 2) have improved statistical

characteristics of the prediction for the bioconcentration factor
(log BCF). Statistical characteristics of models calculated with Eqs. 4
and 5 are reproduced in three probes of the Monte Carlo optimi-
zation (Table 3).
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