
Indoor Robot Navigation with Single Camera Vision 

Giuseppina Gini, Alberto Marchi 

DEI, Politecnico di Milano, piazza L. da Vinci 32, Milano, Italy 
gini@elet.polimi.it 

Abstract. In the large area of autonomous robot navigation, encompassing map 
creation, path planning, and self-localization, we develop the idea of a simple 
autonomous agent relying only on vision information. Our integrated navigation 
system replicates some functions of natural systems, as using little a-priori 
knowledge, on board computation, no omni-directional vision. Since our goal is 
essentially to move the robot on a floor, avoiding obstacles and people, the 
camera is on top of the robot and in fixed orientation to look ahead at the floor. 
After a simplified calibration, floor images are taken and positions of obstacles 
detected New images dynamically grow a grid map, constructed with simple 
mathematics and heuristics. For path planning obstacles are enlarged in 
minimum way, and path computed. 

1 Introduction 

An essential task in autonomous robots is to move safely in an unknown environment, 
possibly using artificial vision to detect and recognize obstacles. Visually guided 
systems are so being developed since some years. Some of them use artificial 
landmarks, while more advanced ones rely on natural landmarks [1-3]. The latter is 
the method of choice when the robot has to move in real, unstructured environments. 

Moreover, visually guided navigation is important when limited autonomy is 
needed as in supervisory control. When remotely controlled by an operator, robots are 
given the task point to reach from the user, and can run towards the goal position in 
autonomous way. The integration of virtual reality and autonomous systems is 
becoming crucial, being a virtual reality model of the environment useful in the GUI 
user interface. In autonomous systems it is recognized that robots must build their 
models using their sensors, while in virtual reality it is well known that world models 
should automatically follow changes in the real world. All those requirements should 
meet to obtain a viable system. 

We develop here a navigation system using as the principal source of data a vision 
system. A single camera can solve problems in an indoor environment, in a 
moderately dynamic system, when the robot moves on a plane surface.  

The subtasks to approach are so the classical ones: 
• From images to models (map learning); 
• Path planning and Obstacle avoidance;  
• Self-localisation.  



Map learning is a well studied area [4-6], but map creation using a single camera 
can offer advantages over more reliable but expensive solutions as laser beams. After 
calibration we can transform the visual information of the floor into a grooving grip 
map, setting a confidence value that the position is free or occupied by an obstacle. 
Self-localization with natural landmarks is again an important field, and we solve it as 
a matching problem between maps. 

Natural landmarks require comparing the sensory data with the known maps of the 
environment. The results give the possible position of the robot, usually as a 
probability density function. After more self-localizations, the uncertainty is reduced. 
The usual algorithm applies Kalman filtering to integrate past and present data. In our 
case instead we build a local map using the sensory data, and we integrate the local 
into the total map. 

 

Image
acquisition

Analysis and floor

search

Map modification

some floor?

yes

No

Planning of the

possible path

yes

No

Path found? ?

move for a step the

robot in the given
direction

start

New goal
definition

 

Fig. 1. Flow-chart of the whole system 

In order to create the map the robot has to recognise where obstacles are located 
and where the floor is clear by discriminating pixels belonging to the floor from those 
which do not. Our algorithm makes statistical analyses on the intensity and saturation 



of every single pixel in the image. The main computing steps of the system are shown 
in Fig. 1. Our experimental setup includes a Robuter, a PC, and a color camera. The 
Robuter® is a mobile robot with differential drive, equipped with a sonar belt. The on-
board computer executes the motion commands and communicates at 9600 baud 
through a serial link with a PC. The camera is from Sony, PAL standard, with 768 x 
512 pixels, and is fixed and pointing to the floor. Matrox Meteor frame grabber is 
used in single acquisition. The external personal computer, Pentium II 350Mhz, 64 
Mb RAM, is for user interface and vision analysis. Programs are developed in 
Borland C Builder. 

The strong points we will illustrate in the following Sections are: 
• New reduced calibration algorithm 
• Floor analysis and obstacles detection in single camera images 
• Map creation using only visual data 
• The navigation algorithm and self-localisation as maps matching.  

2  Camera calibration 

To find the correspondence between the real coordinates and the image coordinates 
we developed a calibration procedure [7]. As usually we chose the pin-hole model, 
which gives a way to compute the world coordinates from the image coordinates and 
the focal distance f. The H matrix gives this transform. 

u'

v'

w'

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

=

f 0 0 0

0 f 0 0

0 0 1 0

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 
*

x

y

z

1

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

= H *

x

y

z

1

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

    (1) 

Since we need to account for other relevant characteristics, in particular: a) the 
principal point is not exactly in the projection center; b) the aspect ratio is relevant; c) 
the axes in the image are not necessarily orthogonal and a parameter α is needed, we 
build a K matrix from image to geometric-image considering that: 

• the origin of the geometric system is (u0 v0), 
• the transform of  u is [1, 0, 0]T  
• the transform of v is the product a . [α, 1, 0]T.  

K =

1 a *! u
0

0 a v
0

0 0 1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

      (2) 

The complete transform from scene to image is so: 

u'

v'

w'

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

= K *

f 0 0 0

0 f 0 0

0 0 1 0

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 
*H *

x

y

z

t

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

    (3) 

Since we are interested only in the transform between the two reference frames, we 
can multiply the three matrices and obtain M: 

 



u'

v'

w'

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

=

m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 
*

x

y

z

t

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

= M *

x

y

z

t

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

  (4) 

To calibrate the camera we work in two phases: first from image to floor, then 
from floor to robot. The estimate of the twelve elements of the matrix M is reduced to 
eleven considering the scale factor. 

In the first calibration phase the camera takes a picture of a calibration object 
whose dimension is known. We do not want to use the classical least-squares method, 
which requires precise measures in world coordinates, so we choose all the points of 
the calibration object to be on the floor (z is null, and 3 elements of M are null). The 
calibration object is a white square, 21-cm width. The vertex coordinates are 
computed. The estimate of M is done on the first picture using least squares and 
trying to match the reference square. The initial estimate is then improved with 
Newton method. This is a minimization problem, where the function to minimize is 
the difference between the estimated segment length and the real length.  

 

Fig. 2. The reference system from the first calibration phase is robot independent 

After the reference system on the floor (see Fig. 2), we construct the matrix to 
transform it in the reference of the robot. During this second calibration phase, 
pictures of the object are taken from different positions and orientations of the robot, 
and again this minimization problem is solved as before.  

We consider as robot reference system the one used by dead-reakoning of the 
ROBUTER®. Let x be the coordinate vector on the ROBUTER,  

)~(__* xTritoBiTx =  

where x~ is the vector of the point in the image, Bi_to_Tri is the function computing 
the floor point in the reference computed in the first phase. The T matrix to estimate 
is: 

T =

a b 0 h

c d 0 k

0 0 1 0

0 0 0 1

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

=

cos(' ) sin(' ) 0 (x

) sin(' ) cos(' ) 0 (y

0 0 1 0

0 0 0 1

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

  (5) 



where x! , y! , and 0 are translations, ! the rotation between the two systems. To 
compute T we put the square on the floor, collect the coordinates of the vertices and 
the odometry many times moving the robot to obtain coordinates for different 
viewpoints. Remember that T is a roto-translation matrix, where non-linear conditions 
should hold: 

0**

1

1

22

22

=+

=+

=+

dcba

db

ca

       (6) 

 

!

"x"y

 
 

Fig. 3. From the reference system on the floor to the robot reference system 
 

To solve on the unknown ! , x! , and y!  (see Fig. 3) we define a function which 
accepts the four vertices coordinates of a square in two different positions and the 
robot pose. The function uses M and the available estimation of T to project the 
image points in the world points and computes the distance. The distance is then 
minimized (since the two points are the same physical point). The algorithm is 
iterative, starts from a brute estimation of T, and divides the parameters space in cells. 
For each cell T and the error are computed. After building M and T, a point in 
Cartesian space can be transformed into the pixel coordinates using:  

u'

v'

w'

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

= M *T '1
*

x

y

0

1

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

u =
u'

w'

v =
v'

w'

    (7) 

For the reverse transformation, we invert the equation and get the formulas: 



19*

*124*)10*2(

610*
19*

)10*2(*)59*(
19*

)*124(*)59*(
12*8

mmu

ummSmum
D

mmv
mmu

mummmv

mmu

ummmmv
mvm

S

!

!+!
=

!+
!

!!
!

!!
!!

=
 

x'

y'

z'

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

= T *

S

D

0

1

! 

" 

# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 

    and     x

y

z

! 

" 

# 
# 
# 

$ 

% 

& 
& 
& 

=

x'
z'

y'
z'

0

! 

" 

# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 

  (8) 

The calibration problem is so completely solved. 

3 Image analysis  

The basic hypothesis is that the floor has a uniform texture. Using statistical analysis 
we can extract from the picture of the floor the areas occupied by obstacles because 
they change the regular pattern [8]. Since the image is in RGB format; for each pixel 
the algorithm computes the mean and the 4th order moment for each of the RGB 
component of the pixel. The formulas for the red component are: 

µ _red(x, y) =

red(i, j)
( i, j )!"(x ,y )

#

N
 

and   

m _red(x,y) =

(red(i, j) ! µ _red(i, j))4

(i , j)"#( x , y)

$

N
    (9) 

(where N is the number of pixels in the region)  
The 4th order moment is significant because it is a measure of the disparity of the 

pixels in the considered region. It has low values in uniform areas, high when there is 
a sharp change of the colors, as when an obstacle is seen on a floor. To reduce 
computations the average and the moment are not computed for every pixel but for a 
subset of uniformly distributed pixels and by linear interpolation for the other pixels. 
After computation a new image is created with new components for pixels 
constructed from mean and moment for each color: 

 
),(__*)),(_),((),(__ yxnormredmyxredyxredyxredrednew µµ !+=  (10) 

The new image is then transformed in HSL1 format, filtered and transformed in 
binary, removing the obstacles. This requires choosing a dynamic threshold; to 
compute it for each frame we use a little square region in the bottom part of the image 
as example of the floor. In this region the mean of L and H are computed and used as 
the reference values for the floor. The formulas to compute the dynamic threshold for 

                                                             
1 RGB is an additive model, with 3 primary colors. HSL, instead, describes the image as 

saturation (S), Luminance (L, 0 for black, 1 for white) and hue (H, an angular value). 



L and H contain a static component and a dynamic component, modified by a 
function f acting as a filter.  The static and dynamic parameters are manually set and 
depend on the floor texture and on illumination conditions. The function f is: 

fx =

(3 !
moment(x, y)

moment _maxred ,green ,blue

" )

3
   (11) 

The final picture represents the floor in white, the obstacles in black, as in Fig. 4. 
. 

 

Fig. 4. An example of image analysis 

4 Map creation and navigation 

The map is a grid map, with square cells initialized to a mean numeric value. The 
value represents how much the robot “trusts” in the cell classification defined as free, 
obstacle, or unknown. Whenever the cell is seen again as free its vote is increased, if 
occupied is decreased; The value is a vote, which can filter also obstacles in 
movement because temporary obstacles do not affect too much the value of a free 
cell. The size of the grid cell used can be chosen considering the needed 
performances: using the Robuter, cells with a side of 5 cm give very good results.  

Using the parameters obtained from the camera calibration, the binary image is 
mapped on the floor plane and added to the map, in a position obtained using the 
estimated pose. So, the map is created and enlarged after every image analyzed. 
Considering the images in Fig. 4, the map generated is in Figure 5. The gray pixels 
represent free space, the darker on the edges represent obstacles, the black ones are 
unknown and the gray all around are unknown and not yet allocated in memory (to 
save memory). At start the robot has no information about the environment. To create 
the map the start position of the robot is defined, and a destination assigned. To reach 
the destination the robot will explore the world, looking at the floor and generating 
the first obstacles. Every time a new obstacle is detected, the robot computes the path 
to reach the destination, and the map grows. To map the entire environment it will be 
enough to give a goal location unreachable, as outside a wall. 

Using the map the robot is able to navigate autonomously in the environment 
towards a specified goal given as robot coordinates [9, 10]. The path is found with A* 

Reference zone



on the visibility-graph of expanded obstacles. Obstacles are enlarged by the half of 
the robot-width, not considering its length; in fact the robot moves forward and keeps 
obstacles on the sides. To allow the robot to move in narrow corridors with curves, 
the obstacles are enlarged and also smoothed. In this way, the robot can pass through 
very small passages, only a few centimeters wider than the robot. However, not 
considering the robot length implies that we have to take care of possible frontal 
collisions with obstacles; this is avoided using the sonars during the movement. In the 
same way highly dynamic obstacles are avoided just stopping and switching to 
another path. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 5. The map part constructed from Fig. 4. 

5 Self-localization 

When the robot has a map of the environment, it can auto-localize itself [11]. To do 
this, it creates a new map, starting from scratch, and compares it with the complete 
map. The comparison is based on the angles between the walls. The robot can upgrade 
its location matching the global and the local maps. 

The self-location problem is important when the robot has to move in autonomous 
way. Dead reakoning reduces the location error, but is unable to keep the error under 
a given threshold. When used in tele-control the self location is again important: the 
robot starts from any position, builds a map with any origin, but we need to match the 
new map with the standard one that is in the user interface. 

So the problem is to match a partial map onto a complete map, as in Fig.6.  
The features to match are necessarily obtained from image analysis. Since the 

vector quantization is imprecise, we switched to a more robust feature, the angles. 
Angles too are affected by errors in vector quantization, the vertex position can be 
slightly different, but the angle in indoor environments is usually of 90°, or 180° if 
two vectors are found for a single segment. Starting from vector quantization we have 



to individuate segments having a common vertex. The user can set a parameter to fix 
the threshold for the distance of segments to be considered as forming an angle. 

The map matching will find the correspondence (position and orientation) of the 
partial map in the global map using a vote system. Two lists of angles in the two maps 
are maintained: they report position, orientation, and amplitude. Each local angle is 
matched against all possible global angles and the rototraslation matrix is computed. 
Every match generates a positioning hypothesis of the local map with an associated 
vote (weight)  

180

21

*10

amplitudeamplitude

eweight

!!

=   (12) 
with the maximum for same amplitude angles. 

 

Fig. 6.  Matching a global and a partial map. 

 
Each hypothesis has low weight if the match of the angles is poor. The real 

position has a high weight, since all the angles are correctly matched. To compute the 
best position we have to find the hypothesis with the highest vote. To account for the 
imprecision about the data we associate a gaussian, with maximum equal to the vote, 
to every position. Summing up all the gaussians we obtain a surface with a maximum 
in the position where the probability to have the robot is maximum. 

This algorithm is very good in simulation, but can encounter problems is real 
world. To improve it we introduce the segments. For each local maximum the vote of 
the associated position increases if this position matches two segments in the maps. 
Segment matching is crucial because different segments can describe the same line. 

The matching is confirmed only when: 
• The angular difference is less than a threshold 
• The centroid distance of the segments is less than half of the greater segment 
• The maximum distance of the segments is less than a threshold. 

The new weight is:  



 
 

(13) 
 

which gives a low weight to segments far away and with different amplitudes. In this 
way only the correct position gets a high vote. 

6 Conclusions 

The unusual aspects of our navigation system are its simple design, efficient use of 
special properties of the environment, and large autonomy. Its efficiency and 
reliability are due to various factors. The specialization of the environment allows the 
robot to reduce the vision computation. The use of simple reactive strategies reduces 
the risk of failures, because obstacle avoidance is always active. Finally, the 
environment does not need any modification to insert the robot. As illustrated in the 
previous sections, the uncertainty of the world is simply managed through heuristics 
and through a strict use of information only obtained through sensors. 

References 

1. Ayache Nicholas "Artificial vision for mobile robots" The MIT Press, Cambridge, 
Massachusetts, 1991. 

2. Betke Margrit, Gurvits Leonid “Mobile robot localization using landmarks”, IEEE 
Transaction on robotics and automation, Vol 13, No. 2, April 1997, p.251-263. 

3. Horswill Ian, “Polly: A Vision-Based Artificial Agent” Proceedings of AAAI-93, AAAI 
Press/The MIT Press. 

4. Anousaki G.C., Kyriakopoulos K.J. “Simultaneous Localization and Map Building for 
Mobile Robot Navigation”, IEEE Robotics & Automation Magazine, September 1999, p 
42-53. 

5. Miller David P., Slack Marc G. “Global symbolic maps from local navigation” 
Proceedings of AAAI-91, AAAI Press/The MIT Press, p 750-755. 

6. Thrun Sebastian “Learning metric-topological maps for indoor mobile robot navigation”, 
Artificial Intelligence, 1998, Vol 99, p 21-71. 

7. Freeman Herbert "Machine vision for inspection and measurement" Academic Press, San 
Diego 1989. 

8. Mirmehdi Majod, Petrou Maria “Segmentation of color textures”, IEEE Trans PAMI, Vol 
22, n° 2, February 2000, p 142-159. 

9. Latombe Jean-Claude "Robot motion planning" Kluwer, Boston, 1991. 
10. Canny John F. "The complexity of robot motion planning" The MIT Press, Cambridge, 

Massachusetts, 1987. 
11. Burgard Wolfram, Fox Dieter, Thrun Sebastian “Active mobile robot localization”, 

Robotics, 1997, p 1346-1352. 
 

 

2

tanmax_

*1

21

* K

cedis

eK

amplitudeamplitude

eKweight

!!!

=


