M. Pintore et al.

Predicting Toxicity against the fathead Minnow by Adaptive Fuzzy

Partition

Marco Pintore?, Nadege Piclin™, Emilio Benfenatic, Giuseppina Gini’, Jacques R. Chrétien*"*

2 BioChemics Consulting, Innovation Center, 16 rue Leonard de Vinci, 45074 Orléans, France

b Laboratory of Chemometrics & Biolnformatics, University of Orléans, BP 6759, 45067 Orléans Cedex 2, France
¢ Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157 Milano, Italy

¢ DEI, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

Recent progress in the development of powerful tools
suitable to design and to classify large chemical libraries
can be fruitfully extended also to the ecotoxicity domain.
Amidst these methods, Fuzzy Logic concepts, based on the
possibility to handle the “concept of partial truth”,
constitute interesting approaches to developing general
predictive models.

In this work, a global strategy of Database Mining was
applied on a data set of 568 chemicals, extracted from a
toxicity database concerning the fathead minnow and
divided into four classes, according to the toxicity ranges
defined by the European Community legislation. Two
large sets of molecular descriptors were tested on the 2D
and 3D structures, and the best ones were selected with
help of a procedure combining Genetic Algorithm con-

cepts and stepwise method. After selecting the training set
with a rational selection based on the Self Organizing
Maps (SOM), structural-activity models were built by
Adaptive Fuzzy Partition (AFP). This method consists in
modeling relations between molecular descriptors and
biological activities, by dynamically dividing the molecular
descriptor hyperspace into a set of fuzzy subspaces. The
best model was selected by a validation set, and its
robustness was confirmed by predicting a test set of 80
chemicals never used to define the AFP models. An
encouraging validation ratio of about 72% was obtained in
the prediction of the experimental toxicity class. Further-
more, very similar results were obtained by using mo-
lecular descriptors computed on 2D or 3D structures.

1 Introduction

There are increasing needs to evaluate the effects of
pollutants on the environment. This object requires also to
analyze the high number of degradation and transformation
compounds derived from the chemicals released into the
environment, as well as the impurities present in the parent
compounds [1]. Taking these products into account sensibly
increases the already huge cost of experimentally assessing
and developing, for example, a pesticide.
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Furthermore, experimental tests are usually performed
on animals and human toxicity is extrapolated from these
results. In addition to ethical considerations associated to
animal experimentation, most extrapolated models lack
robustness and can be only applied to limited series of
compounds.

An attractive alternative to laborious and expensive
experimental studies consists in developing predictive tools
based on computational methods [2-4]. These tools allow
to evaluate a large number of compounds, for a range of
toxicological end-points, automatically extracting new
knowledge from all the information incorporated in the
toxicity databases. The goal of the computational methods is
to define relationships between biological activities and
chemical structures, which can be represented in a numer-
ical way by a large number of molecular descriptors
including physicochemical, topological, quantum mechan-
ical, constitutional and electronic parameters.

So far, up to 3000 descriptors have been exploited to build
predictive models [5]. Efficient methods have to be used for
selecting relevant parameters able to represent the ranges of
toxicity levels. No general rule exists to define the best
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approach, the only essential condition consists in deriving a
subset of descriptors from which it is possible to develop a
generalist system. Several selection strategies are proposed
in the literature, based, for example, on the stepwise method
[6], principal component analysis (PCA) [7, 8], and Genetic
Algorithms (GA) [9, 10]. The latter are probably the most
powerful methods, as they are able to thoroughly explore
the molecular descriptor hyperspace.

After selecting the most relevant descriptors to represent
the biochemical activities in a toxicity database, the next
step consists in defining the best computational method to
develop robust predictive models. Standard Quantitative
Structure — Activity Relationship (QSAR) approaches
based, for example, on linear regression algorithms, such
as Partial Least Squares [11] or non linear techniques, such
as Back-Propagation Neural Networks [12], have proved
their efficiency in several studies concerning ecotoxicity [8,
13-16]. But, although many international regulatory bodies
recognize the potential benefits of QSAR techniques [17],
they are scarcely used, as their real application in risk
assessment problems is complicated by several factors [18]:
i) the high variability in the experimental data, due to the
wide range of biological answers; ii) the wide range of
physiological and biochemical processes; iii) the lack of
standardized protocols.

Besides methods based on regression algorithms that are
able to predict exact values such as toxic doses, others
techniques use discrimination algorithms to define the range
of activities in which a given compound can be located.
These classification methods allow to work on toxicity
ranges that are directly linked to the requirements of the
international regulations and, quite often, to derive more
general models. In fact, the aim of the classification
algorithms is not to fit all the activity values related to the
training set compounds, but to find relations in the
descriptor hyperspace able to separate different compound
categories included in the data set. Then, the prediction
results derived from classification methods, even if less
precise, should be more general, as a category is more
representative than isolated compounds [19].

Amidst these methods, Fuzzy Logic (FL) concepts [20]
constitute interesting approaches to overcome the draw-
backs related to a virtual screening of toxicity data sets. FL
methods, based on the possibility to handle the “concept of
partial truth”, provide solutions to classification problems
within the context of imprecise categories, in which toxicity
can be included. The main ability of the fuzzy classification
consists in representing the boundaries between neighbor-
ing activity classes as continuous, assigning to compounds a
degree of membership of each class within a 0 to 1 range.

The aim of this work was then to apply a FL procedure,
called Adaptive Fuzzy Partition (AFP) [21,22], to a data set
of 568 chemicals that are active against the fathead minnow
(Pimephales promelas) and derived from the works of
Brooke et al. [23-27]. This data set has already been studied
by Russom et al. [28], which developed an expert system
predicting the modes of action from the chemical structures.
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In this study, Russom et al. criticize the QSAR developed
“on the assumption that compounds from the same chemical
class should behave in a toxicology similar manner”. In fact,
the compoundsincluded in different chemical classes can act
through the same mode of action, and compounds within the
same chemical class can show different modes of action.

In the proposed approach, a predictive model was derived
by taking into account all chemical classes and modes of
action. The data set of 568 compounds was divided into four
intervals, according to toxicity ranges established by the
European Community [29]. Two sets of molecular descrip-
tors were analyzed, computed respectively on 2D and 3D
structures, in order to test whether the 3D contribution
sensibly increases the prediction power of the AFP models.
The most relevant parameters were selected by a procedure
derived from the Genetic Algorithm concepts combined
with a stepwise technique [30]. Finally, the training set, on
which the structure - activity models were built, was defined
by an experimental design strategy based on the analysis of
molecular diversity by Self Organizing Map (SOM) [31].

2 Materials and Methods

2.1 Compound selection

A data set of 568 compounds was derived from analyses of
the chemicals in the fathead minnow acute toxicity database.
A detailed description of the biological and chemical test
protocols used in the study had been published [23-27].
Several chemical classes such as organophosphates, alkanes,
ethers, alcohols, aldehydes, ketones, esters, amines and
other nitrogen compounds, aromatic and sulfur compounds,
and several modes of action, such as narcosis (I, II and III),
oxidative phosphorylation uncoupling, respiratory inhibi-
tion, electrophile/proelectrophile reactivity, acetylcholines-
terase (AChE) inhibition, and mechanisms of central
nervous system (CNS) exposure are represented in this
data set.

A ninety-six-hour lethal concentration killing 50% of the
fathead minnow population (96h-LC50) was used to char-
acterize toxicity. Four toxicity classes were generated
according to the intervals established by the European
Community legislation [29]: LC50 < 1 mg/l for class 1; 1 mg/
1<LC50 <10 mg/l for class 2; 10 mg/l < LC50 < 100 mg/1
for class 3; LC50 > 100 mg/1 for class 4.

The data set compounds were split in three sets: training,
validation and test set. The test set includes molecules that
were never used for developing the model. The validation
set was used during the development of the model, based on
the training set, to optimize the parameters and to validate
the models.

2.2 Molecular descriptors

General molecular descriptors have proved a good com-
promise for data mining in large databases in terms of
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efficiency, as these parameters are able to take into account
the main structural features of each molecule. Two sets of
molecular descriptors were used to build the structure-
activity models. The first one included 164 parameters
computed on the 2D structures. Constitutional, information,
topological, electrotopological, physicochemical, and elec-
tronic parameters were taken into account [32—-35]. All the
parameters were computed by ChemlInter [36] and SciQ-
SAR2D [37], excepting the lipophilicity descriptors that
were calculated by Pallas [38]. The latter parameters were
represented by the apparent octanol/water partition coef-
ficient (logD), evaluated at various pH: 3, 5, 7.0, 7.4 and 9.
More details about the different molecular descriptors used
can be found in reference [39].

The second set of molecular descriptors, including 168
parameters, was computed on the 3D structures. Before
calculating these parameters, all 3D molecular structures
were optimized by a procedure exploiting tools included in
the Hyperchem software [40] and subdivided in three steps
consisting in: i) conformational analysis by using
MM+ force field; ii) energy minimization of the lowest
energy conformer by the steepest descent method; iii) after
convergence of the minimization procedure, final optimi-
zation by the PM3 Hamiltonian. This preliminary steps were
necessary to improve the generation of those descriptors
depending on molecular geometry.

Most parameters were calculated by CODESSA 2.2.1
[41], particularly the constitutional, topological, geometri-
cal, and electronic descriptors. Quantum-chemicals descrip-
tors, i.e. total energy of the molecule, the energies of the
lowest unoccupied and highest occupied molecular orbital
(HOMO and LUMO), ionization potentials, heat of for-
mation, etc. were computed by using the PM3 Hamiltonian.
Finally, the same parameters derived in the 2D case by Pallas
were used to represent the lipophilicity of the molecules at
various pH.

2.3 Molecular descriptor selection

To select, amidst the two sets of molecular descriptors, the
best parameters for classifying the data set compounds, a
method based on GA concepts was used [42, 43]. GA,
inspired by population genetics, is very effective for
exploratory search, applicable to problems where little
information is available, but it is not particularly suitable for
local search. Then, a stepwise approach was combined with
GA in order to reach local convergence [30-44], as it is
quick and adapted to find solutions in “promising” areas
already identified.

Finally, a specific index was derived from the fuzzy
clustering method to evaluate the fitness function. This index
has the advantage to be calculated quite quickly and to be
able to estimate the descriptor relevance also by analyzing
complex molecular distributions, in which finding separating
edges between the different categories is difficult.

To prevent over-fitting and a poor generalization, a cross
validation procedure was included in the algorithm during
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the selection procedure, randomly dividing the database
into training and validation sets. The fitness score of each
chromosome is derived from the combination of the scores
of the training and validation sets.

The speed of convergence of this approach is sensibly
dependent on the discriminant power of the initial set of
descriptors. In fact, it has to be underlined that 95% of the
processing time is devoted to compute the fitness scores
whereas only 5% is devoted to the steps involving the
genetic and stepwise procedures.

After completing the selection procedure, the 10 best
fitness scores were evaluated to isolate the most relevant
descriptors. The higher values were obviously favored, but
when several chromosomes showed similar scores, i.e. with a
variation within 2%, the descriptor set which included the
lowest number of parameters was selected, in order to
increase the possibilities to obtain a general classification
model.

Finally, it has to be underlined that this selection method
represents a pre-classification tool. A global method
combining selection and classification steps could be also
envisaged, by computing the fitness function, e.g., by AFP.
But this approach would be very time consuming as regard
to fitness score computation by fuzzy clustering and, there-
fore, it would not be suitable in data mining of large
databases. Moreover, the evaluation of the best descriptor
subset by the proposed procedure is “objective” and does
not influence the efficiency of the successive data set
classification by AFP.

More details about the strategy of molecular descriptor
selection proposed and the proprietary software used can be
found in reference [30].

The following parameters were used in the data process-
ing of the data set of 568 chemicals:

i) fuzzy parameters: weighting coefficient = 1.5, tolerance
convergence = 0.001, number of iterations =0, cluster
number = 6;

ii) genetic parameters: chromosome number =10, chro-
mosome size = 153 or 168 (number of descriptors used),
initial active descriptors in each chromosome = §, cross-
over point number =1, percentage of rejections =0.1,
percentage of crossover=0.8, percentage of muta-
tion =0.05, number of generations = 10;

iii) stepwise parameters: ascending coefficient =0.02, de-
scending coefficient = —0.02.

2.4 Self Organizing Map

SOM [31] is a non-linear mapping technique which gives a
2D space representation of a given set of points from a
multidimensional space derived from a large series of
molecular descriptors. Each point of this set is related to a
SOM node, which is characterized by N weighted connec-
tions varying between 0 and 1.

Training SOM consists in rearranging the layer nodes by
gradually adjusting their weights. After selecting a first
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hyperspace point, the distances between its coordinates and
each node of the SOM layer are calculated. The node having
the shortest distance is called “winner” and the hyperspace
point is “projected” on this node of the map. Then, the
weights of the winning node and its neighbors are modified
according to the equation:

wi(t+ 1) =wj(t) + a(t)y(t, r)(x; — wy(t)) ey

where x; is the component j of input vector x; w; represent
the weight vector of the node i for the descriptor j; t and a.(t)
are respectively the iteration number and the learning rate;
v(t, r) is the triangular neighborhood function depending on
the iteration number and the distance r between the node i
and the winning unit.

The learning rate a(t) is linearly decreased during the
training process from a(0) to zero. The triangular function
v(t, r) works on the whole map and it is discretely decreased
with increasing the distance and the number of iterations.

The same procedure is successively repeated for all the
hyperspace vectors and each point is associated with a node
in the SOM layer. The points which are close in the
descriptor hyperspace remain close in the SOM layer,
occupying the same nodes or the neighboring ones. When
SOM is applied on a chemical data set, the maps can then
reveal similar compounds, if the Euclidean distance is
accepted as a similarity measure.

The data set compounds were distributed in a map
defined by 10 columns and 10 rows. The calculations were
performed using proprietary software.

2.5 Adaptive Fuzzy Partition (AFP)

AFP is a supervised classification method implementing a
fuzzy partition algorithm [45] and it was already presented
and validated elsewhere [21, 22]. It models relations
between molecular descriptors and chemical activities by
dynamically dividing the descriptor space into a set of fuzzy
partitioned subspaces. The aim of the algorithm is to select
the descriptor and the cut position which allow to get the
maximal difference between the two fuzzy rule scores
generated by the new subspaces. The score is determined by
the weighted average of the chemical activity values in an
active subspace A and in its neighboring subspaces.

All the rules created during the fuzzy procedure are
considered to establish the model between descriptor
hyperspace and biochemical activities. Indicating with
P(x,. ... x,) a molecular vector in a n-dimensional descriptor
hyperspace, a rule for a subspace S, is defined by [46]:

if x, is associated with p,,(x;) and x, is associated
with py(x;) . .. and xy is associated with uy(Xx) =
the score of the activity O for P is Oyp (2)

where x; represents the value of the i descriptor for the

molecule P, ;, is the membership function related to the
descriptor i for the subspace k, and Oy is the biochemical
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activity value related to the subspace S,. The “and” of the
fuzzy rule is represented by the Min operator [47], which
selects the minimal value amidst all the p;, components.

The membership functions are defined by trapezoidal
shapes. The latter functions are based on the boundaries of
the subspaces. If the width of a subspace S, on the i*
dimension, after each cut, is represented by w;, the p and q
parameters defining the shape of the trapezoid are calcu-
lated by

p=»Nw; and q=uw; 3)

where the parameters A; and v; vary so thatp > 1land q < 1.If
p=1 and q=1, the membership function becomes a
rectangle.

All the rules created during the fuzzy procedure are
considered to establish the model between descriptor
hyperspace and biochemical activities. The global score in
the subspace S, can be represented by

%[: (MiniNﬂik(Xi)Pj) : (APJ)
O ="+ )
> (MiniN#ik(Xi)Pj)

i=1

M is the number of molecular vectors in a given subspace, N
is the total number of descriptors, py(x;)p; is the fuzzy
membership function related to the descriptor i for the
molecular vector P;, and Ay, is the experimental activity of
the compound P;. A classic centroid defuzzification proce-
dure [48] is implemented to determine the chemical activity
of a new test molecule. All the subspaces k are considered
and the general formula to compute the score of the activity
O for a generic molecule Pj is

N_subsp

> (MiniNﬂik(Xi)Pj) “(Oy)
O(P) =—5 (%)

N_subsp

> <Min?]:uik (Xi)Pj )

k=1

where N subsp represents the total number of subspaces.
The following parameters were used to process the data
set of 568 chemicals:
maximal number of rules for each chemical activity = 35;
minimal number of compounds for a given rule=4;
maximal number of cuts for each axis=4; p = 1.05 = 1.55
and g = 0.55 - 0.95

3 Results and Discussion

3.1 3D structures

Before starting the database mining procedure, a test set was
generated by randomly extracting 80 molecules from the
data set of 568 chemicals. Then, the technique combining
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Table 1. Most relevant descriptors selected for the 2D and 3D data sets of 568 pesticides.

Symbol Definition Descriptor family
3D structures

NrO Relative number of oxygen atoms Constitutional

NCRS Relative negative charged surface area Electronic

LogD-pHS5 Lipophilicity at pH=35 Physicochemical

LogP Lipophilicity at pH=7 Physicochemical
2D structures

Xvch10 Valence 10 order chain chi index Topological

SdCH2 Sum of all H E-state values for (= CH,) Electro-topological

SHBint4 E-state of internal H bonds (5 path length) Electro-topological

LogP Lipophilicity at pH=7 Physicochemical

E = class 1;H = class 2;0 = class 3;l = class 4
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Figure 1. Molecular diversity analysis by SOM on the data set from which the AFP models were derived; the 4 descriptors computed on
the 3D structures and selected by the GA/SW procedure were taken into account. The histogram heights represent the number of
compounds of each class in any cell of the map.

GA and stepwise method (GA/SW) was applied on the
molecular descriptors computed on the remaining 3D
structures, in order to isolate the most relevant parameters.
Table 1 shows the four descriptors selected and, amidst
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them, there are two parameters concerning lipophilicity
(Log P and LogD-pHS), a very important property involved
in the mechanism of molecular accumulation into the fish
body [49]. The other parameters represent the relative

QSAR Comb. Sci. 22 (2003)
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Table 2. Compound repartition in the training, validation, and test
sets.

Classes Training set Validation set Test set
1 43 15 15
2 105 21 21
3 137 23 23
4 123 21 21
All classes 408 80 80

7 =NrO; Jll = NCRS; [ = logD-Ph5; [ = logP

i

Fraquency

Class1 Class2 Class3 Class4
Figure 2. Representation of the descriptor contribution for each
toxicity class, evaluated by computing descriptor frequency in the

AFP rules.

number of oxygen atoms (RnO) and the relative negative
charged surface area (RNCS).

The four descriptors selected were used to derive the
SOM chart represented in Figure 1, which was employed to
define the training and validation sets, maximizing, for each
class, the molecular diversity; the compounds were selected
in each cell of the map, according to the molecular
frequency. The molecular distribution in the 4 classes is
reported in Table 2, where the test set is also represented.

The map shows several regions characterized by a main
toxicity class and the AFP method, working directly on the
hyperspace, should be then able to define robust structure-
activity relationships (SAR) for this data set. The AFP
model was established on the 408 training set compounds
distributed in the 4D descriptor space. Twenty-six rules were
implemented to define each relationship between the
molecular structures and the toxicity activities, and an
example of rule defining an AFP subspace is represented by
the following definition:

if 0<x(RnO)<2 and 2.3 <x(logP)<4.0=the score
(class 4) for a given compound is 1.

This relation evidences a subspace specially devoted to
defining the least toxic class.

Figure 2 shows the descriptor contribution for each class,
evaluated by computing the frequency of the molecular
parameters in the rules. Even if all descriptors are taken into
account to discriminate each class, their relative importance

Table 3. Comparison between experimental (Exp.) and predicted toxic classes for the 80 validation set compounds predicted by the AFP
model established by molecular descriptors computed on 2D and 3D structures.

Name Exp. Predicted classes
3D structures 2D structures
1 2 3 4 1 2 3 4

Flucythrinate 1 0.79 0.17 0.02 0.06 0.91 0.09 0.00 0.04
Rotenone 1 0.06 0.52 0.02 0.06 0.00 0.85 0.05 0.04
Terbufos 1 1.00 0.17 0.02 0.06 0.84 0.00 0.05 0.04
2,2’-methylene bis(3,4,6-trichlorophenol) 1 0.82 0.00 0.02 0.06 0.94 0.00 0.00 0.04
1,3-dichloro-4,6-dinitrobenzene 1 0.55 0.25 0.21 0.06 0.32 0.55 0.23 0.04
Diphenyl phthalate 1 0.71 0.00 0.02 0.06 0.98 0.00 0.00 0.04
Manool 1 0.82 0.64 0.02 0.06 0.94 0.00 0.00 0.04
Nonylphenol 1 0.81 0.64 0.02 0.06 0.94 0.57 0.00 0.04
Pentachlorophenol 1 1.00 0.28 0.02 0.25 0.35 0.57 0.05 0.04
3-(3.,4-dichlorophenoxy )benzaldehyde 1 1.00 0.34 0.02 0.06 1.00 0.00 0.05 0.04
n-undecyl cyanide 1 0.66 0.00 0.02 0.06 0.80 0.57 0.00 0.04
t-butylstyrene 1 0.48 0.34 0.02 0.06 0.84 0.43 0.05 0.04
Di-n-butylterephthalate 1 0.86 0.00 0.02 0.06 0.98 0.00 0.00 0.04
Di-n-hexylamine 1 1.00 0.14 0.02 0.05 0.05 0.00 0.35 0.00
3,5-dibromosalicylaldehyde 1 0.28 0.09 0.18 0.16 0.41 0.61 0.54 0.04
p-phenylazophenol 2 0.02 0.81 0.24 0.06 0.00 1.00 0.05 0.04
Chloroacetonitrile 2 0.00 0.08 0.00 0.68 0.00 0.00 0.00 1.00
2-undecanone 2 0.20 0.92 0.02 0.06 0.00 0.71 0.05 0.04
Amylbenzene 2 1.00 0.27 0.02 0.06 0.84 0.43 0.05 0.04
Dehydroabietic acid 2 0.83 0.16 0.02 0.06 0.57 0.71 0.00 0.04
Nonylamine 2 0.01 0.13 0.00 0.00 0.02 0.33 0.00 0.00
Hexane 2 0.08 0.97 0.00 0.06 0.02 0.56 0.00 0.04
4,6-dimethoxy-2-hydroxybenzaldehyde 2 0.11 0.14 0.41 0.03 0.00 0.13 0.67 0.16
4,9-dithiadodecane 2 0.06 1.00 0.02 0.06 0.00 0.85 0.05 0.04
QSAR Comb. Sci. 22 (2003) 215
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Table 3. (cont.)

Name

Exp.

Predicted classes

3D structures

2D structures

1 2 3 4 1 2 3 4
2,5-dinitrophenol 2 0.13 0.16 0.77 0.07 0.55 0.13 0.23 0.77
2-chloro-5-nitrobenzaldehyde 2 0.00 0.04 0.44 0.25 0.39 0.54 0.13 0.04
Dibutyl succinate 2 0.32 0.98 0.11 0.06 0.41 0.73 0.19 0.04
Cyclohexane 2 0.01 0.16 1.00 0.06 0.02 0.16 0.54 0.04
1-naphthol 2 0.02 0.16 0.48 0.06 0.02 0.20 0.54 0.04
p-tert-butylphenol 2 0.02 0.22 0.84 0.06 0.02 0.20 0.71 0.04
3,8-dithiadecane 2 0.01 0.16 0.33 0.06 0.02 0.23 0.54 0.04
2.,4,6-tribromophenol 2 0.49 0.55 0.02 0.06 0.34 0.57 0.05 0.04
Pentachloroethane 2 0.03 0.34 0.00 0.06 0.02 0.73 0.30 0.04
1,2 ,4-trimethylbenzene 2 0.04 0.75 0.00 0.06 0.02 0.49 0.19 0.04
Oxamyl 2 0.01 0.13 0.24 0.78 0.00 0.43 0.14 0.07
Propoxur (baygon) 2 0.19 0.23 0.44 0.06 0.00 0.13 0.54 0.04
4-butylaniline 3 0.00 0.16 0.28 0.06 0.02 0.23 0.54 0.04
Hexanal 3 0.01 0.13 0.42 0.41 0.02 0.13 0.54 0.04
2-allylphenol 3 0.02 0.16 0.49 0.06 0.02 0.19 0.54 0.04
3-pyridinecarboxaldehyde 3 0.01 0.13 0.24 0.56 0.02 0.13 0.75 0.07
Diethyl adipate 3 0.00 0.24 0.44 0.04 0.67 0.13 0.54 0.04
4-fluoroaniline 3 0.01 0.12 0.03 0.90 0.02 0.13 0.21 1.00
1-chloro-3-nitrobenzene 3 0.03 0.38 0.44 0.06 0.37 0.15 0.54 0.04
2,4-dimethoxybenzaldehyde 3 0.15 0.13 0.44 0.19 0.00 0.13 0.54 0.04
Methyl p-nitrobenzoate 3 0.00 0.15 0.44 0.03 0.49 0.11 0.64 0.04
Tert-octylamine 3 0.01 0.13 0.00 0.00 0.02 0.13 0.27 0.00
p-ethoxybenzaldehyde 3 0.43 0.24 0.44 0.04 0.48 0.13 0.54 0.04
1-fluoro-4-nitrobenzene 3 0.28 0.34 0.44 0.06 0.00 0.13 0.54 0.04
S-nonanone 3 0.02 0.32 0.06 0.06 0.01 0.20 0.73 0.04
Butyl ether 3 0.02 0.21 0.84 0.06 0.02 0.67 0.65 0.04
2-chloro-4-methylaniline 3 0.00 0.16 0.26 0.06 0.02 0.13 0.54 0.04
N,n-dimethylbenzylamine 3 0.01 0.13 1.00 0.31 0.02 0.13 0.98 0.67
2,6-dinitrophenol 3 0.06 0.13 0.91 0.04 0.00 0.13 0.52 0.00
A, a, a-trifluoro-o-tolunitrile 3 0.00 0.16 0.84 0.06 0.02 0.20 0.54 0.04
Trichloroethylene 3 0.27 0.13 0.38 0.41 0.02 0.13 0.54 0.04
3'-chloro-o-formotoluidide 3 0.02 0.16 0.56 0.07 0.02 0.13 0.54 0.04
2,4,5-trimethoxybenzaldehyde 3 0.00 0.15 0.44 0.10 0.00 0.13 0.54 0.04
2'-hydroxy-4'-methoxyacetophenone 3 0.05 0.15 0.24 0.16 0.00 0.13 0.66 0.16
2,5-dimethylfuran 3 0.01 0.12 0.24 0.79 0.02 0.13 0.54 0.94
4-methoxyphenol 4 0.01 0.16 0.29 0.57 0.00 0.13 0.44 0.73
4-toluidine 4 0.01 0.15 0.34 0.88 0.02 0.13 0.54 0.91
3,4-dimethyl-1-pentyn-3-ol 4 0.01 0.12 0.24 0.37 0.02 0.13 0.21 0.97
Pyrrole 4 0.01 0.14 0.03 0.93 0.02 0.13 0.12 0.97
Ethyl acetate 4 0.01 0.13 0.21 0.87 0.00 0.13 0.12 0.13
Butylamine 4 0.01 0.13 0.03 0.92 0.02 0.13 0.04 0.63
Methyl acetate 4 0.01 0.13 0.17 0.61 0.00 0.13 0.26 0.45
Tert-butyl acetate 4 0.04 0.15 0.24 0.68 0.00 0.13 0.49 0.69
5-diethylamino-2-pentanone 4 0.01 0.13 0.13 0.33 0.02 0.13 0.04 0.93
4-picoline 4 0.01 0.13 0.03 1.00 0.02 0.13 0.25 0.97
2-hexanone 4 0.01 0.13 0.42 0.58 0.02 0.13 0.54 0.04
1,6-dicyanohexane 4 0.00 0.13 0.76 0.39 0.02 0.13 0.54 0.04
N,n-bis(2,2-diethoxyethyl)methylamine 4 0.05 0.11 0.24 0.01 0.02 0.60 0.54 0.04
4-acetamidophenol 4 0.01 0.13 0.24 0.87 0.00 0.13 0.12 0.69
2-picoline 4 0.01 0.13 0.03 0.95 0.02 0.13 0.12 0.97
1,3-diaminopropane 4 0.01 0.00 0.00 1.00 0.02 0.13 0.00 1.00
3-pentanone 4 0.01 0.12 0.24 0.83 0.02 0.13 0.31 0.73
2-butanone 4 0.20 0.13 0.24 0.56 0.02 0.13 0.12 0.12
1,3-diethyl-2-thiobarbituric acid 4 0.01 0.01 0.00 0.99 0.02 0.13 0.00 1.00
1-(2-hydroxyethyl)piperazine 4 0.01 0.00 0.00 1.00 0.02 0.13 0.00 1.00
5,5-dimethylhydantoin 4 0.01 0.13 0.22 0.87 0.00 0.13 0.00 0.75
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Table 4. Statistical values defining the robustness of the AFP
model developed on the 2D and 3D data sets.

Class Training set Validation set Test set
(%) (%) (%)
3D structures
1 53 87 67
2 66 43 67
3 77 78 74
4 80 90 76
All classes 72 74 72
2D structures
1 80 67 53
2 57 57 56
3 65 83 74
4 90 76 81
All classes 71 72 72

is quite different. For example, logP is used to characterize
classes 1, 2, and 3, whereas its contribution is negligible in
class 4. In an analogous way, the descriptor logD-pHS is
specially devoted to defining classes 2 and 4, whereas the
parameters RnO and RNCS, related to the molecular
reactivity, play a major role to represent all classes.

The AFP models were validated by predicting the toxicity
range of the 80 validation set compounds. The method
allows to get the degrees of membership of the different
classes for each compound, within a 0 to 1 range. The
comparison between predicted and experimental values for
all the validation set compounds is reported in Table 3. The
validation results for the best AFP model are shown in
Table 4. The experimental toxicity class was predicted
correctly for 72% of the validation set compounds and,
moreover, a similar score was obtained by testing the
training set compounds, showing the model developed is
general. But the robustness of this AFP model is chiefly
confirmed by the validation statistics derived from the test
set: in this case too about 72% of the molecules were
predicted correctly. In fact, the main object in developing
prediction models should not consist in getting impressive
scores by predicting training and validation sets, but in
developing robust models able to predict correctly also test
sets never involved in the model building procedures.

3.2 2D structures

The above proposed global database mining procedure was
applied on the set of descriptors computed only on the 2D
structures, in order to evaluate whether it lost in prediction
power compared with the previous set computed on 3D
structures. Four relevant parameters were isolated by the
GA/SW method (see Table 1) and, like in the 3D structure
case, a lipophilicity parameter is present. The other descrip-
tors represent a topological index (xvch10) and two electro-
topological parameters related to H-bonds (SHBint4) and
terminal double-bonded CH, groups (SdCH2). After se-
lecting a new training set by SOM, but keeping the same
proportions as indicated in Table 2, a new AFP model was

QSAR Comb. Sci. 22 (2003)

built by using 36 rules. In this case too very similar results
were obtained by predicting training, validation, and test
sets, confirming the robustness of the model developed by
AFP (Tables 3 and 4). But even more important is the fact
that all these results indicate that prediction power is very
similar in 2D and 3D models.

4 Conclusions

The need to better understand and predict the impact of the
chemicals on human health and wildlife requires to develop
ever more efficient SAR models. Fuzzy Logic concepts
constitute an interesting solution to derive general classi-
fication models. In this work, an Adaptive Fuzzy Partition
algorithm was applied on a data set of 568 chemicals, divided
into four classes, defined by the European Community
legislation, according to their different toxicity against
fathead minnow. The AFP method consists in modeling
molecular descriptor — activity relationships by dynamically
dividing the descriptor hyperspace into a set of fuzzy
subspaces. Two sets of molecular descriptors, respectively
computed on 2D and 3D structures, were tested and the
most relevant parameters were selected with help of a
procedure based on genetic algorithm concepts and a
stepwise method. The experimental toxicity class was
predicted correctly for about 72% of the validation set
compounds. Due to the high variability affecting the
experimental procedures in the area of ecotoxicity [18]
and the complexity of the phenomena related, these
preliminary results are very encouraging. Furthermore,
similar validation scores were obtained by using molecular
descriptors computed on 2D or 3D structures. This under-
lines that probably, in ecotoxicity, where a large number of
complex and interactive mechanisms define the biological
phenomena, the role of the 3D descriptors in generating
SAR models could be less important regarding other fields.

It has to be also underlined that the AFP method needs
only few minutes to test several thousand molecules. Then,
at present, work is underway to use these global SAR
models to screen large databases, in accordance with the
criteria of efficient and rapid structural alert.
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