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(Received 17 June 2012; in final form 3 August 2012)

This work proposes a new structure–activity relationship (SAR) approach to mine
molecular fragments that act as structural alerts for biological activity. The entire process is
designed to fit with human reasoning, not only to make the predictions more reliable but
also to permit clear control by the user in order to meet customized requirements. This
approach has been tested on the mutagenicity endpoint, showing marked prediction skills
and, more interestingly, bringing to the surface much of the knowledge already collected in
the literature as well as new evidence.
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1. Introduction

This paper deals with qualitative structure–activity relationships (SAR). SAR typically uses
rules created by experts and expert systems to produce models that relate molecular or
chemical substructures to a biological property – toxicity in our case. Here we show a new
method to automatically develop such rules if a suitable set of results of biological
experiments is available.

Data on the biological activity of chemical substances have triggered a proliferation of data
mining approaches to predict the toxicity of unknown substances. In most cases, statistical tools
search for a numerical correlation between chemical properties and biological activity. These
models have significant prediction abilities on new compounds and can be profitably used for
classification, but it is hard to extract the underlying rationale. Physicochemical properties or
structural information on chemicals are numerically quantified into so-called molecular descrip-
tors [1], whose chemical or biological meaning is not obvious. Sometimes, the equation that
binds an instance to its prediction is not intelligible. This may be the case of neural networks,
where often good performance is closely related to network complexity.

The structure of chemicals is explicitly taken into account by some graph-mining
approaches, such as AGM [2], FSG [3] and MoFa [4], which mine large datasets for frequent
substructures using ‘a priori’, an algorithm for rule induction designed for finding frequent item
sets in a database [5].

Human experts usually estimate toxicity on the basis of detection of structural fragments
already known to be responsible for the toxic property under investigation. Such fragments are
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referred to as Structural Alerts (SAs) [6], toxicophores [7] or biophores [8], and human experts
can obtain them from knowledge of the biochemical mechanism of action (such as the activation
of an enzyme cascade or the opening of an ion channel, which leads to a biological response).

Only a few approaches have been developed to help experts extract this knowledge from
data. Some are based on inductive logic programming (ILP) [9]; they cannot be directly
applied to standard chemical formats for molecule representation and require extra computa-
tion. Others, including MCASE [10] and recently LAZAR [11], use a mixed approach.
MCASE mines relevant fragments from a set of experimentally tested molecular structures
(training set) by breaking down each structure into its constituent parts and selecting the ones
with statistically significant non-random distribution among the active and inactive classes of
compounds. The fragments that appear mostly in active molecules, and may therefore be
responsible for the biological activity, are labelled biophores; additional features that seem to
regulate a biophore’s activity are called modulators and can influence the final prediction.
LAZAR searches only for linear fragments selected with the chi-square statistical test; the
final prediction is determined by a weighted majority vote from neighbours. In both cases,
only simple substructures are taken into account on a purely statistical basis. It is worth
mentioning that while LAZAR is open source and MCASE is commercial.

We developed and used SARpy (SAR in python), a new ad hoc SAR approach aimed at
finding relevant fragments in a transparent way, to extract a set of rules directly from data
without any ‘a priori’ knowledge. The algorithm generates substructures of arbitrary complex-
ity, and the fragment candidates to become SAs are automatically selected on the basis of
their prediction performance on a training set.

The output of SARpy consists in a set of rules in the form: ‘IF contains <SA> THEN
<apply label>’, where the SA is expressed as Simplified Molecular Input Line Entry Specifi-
cation (SMILES) [12], for use by human experts or other chemical software. Those rules can
be used as a predictive model simply by calling a SMARTS matching program.

SMARTS (SMiles ARbitrary Target Specification) strings are a text representation of
substructures [13]. While very similar to SMILES, SMARTS also allows specification of
wildcard atoms and bonds, which can be used to formulate substructure queries for a chemi-
cal database. To be matched, the SMILES and the SMARTS strings are translated into graphs
and the two graphs compared.

In SARpy, fragmentation is done directly on the SMILES notation of structures. A similar
approach has been implemented in SMIREP [14], but there the SMILES strings were simply
split into ‘branching fragments’ and ‘cyclic fragments’. In other words, only entire branches
or entire cycles are considered (that is to say, in the SMILES syntax, from parenthesis to
parenthesis and/or from number to number). CORAL too [15] uses small SMILES fragments,
but they are finally merged into a numerical molecular descriptor, so the whole structural
information content of the SMILES string is never explicitly taken into account. In our
method instead we explicitly consider each bond.

In the following sections we introduce the property we intend to model, the conceptual view
of our approach, and its results on a large dataset of publicly available molecular structures
tested with the Ames test for mutagenicity. Finally, the results and the knowledge extracted are
discussed and compared with the present state-of-the-art of the mutagenicity domain.

1.1 Tests and prediction methods for mutagenicity

Mutagenic toxicity is the ability of a substance to cause genetic mutations. This property is of
considerable public concern because of its close relationship with carcinogenicity and possible
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reproductive toxicity [16,17]. Today, regulators require the mutagenicity potency to correctly
label mutagens/carcinogens and restrict exposure to them. Another important field is drug and
pesticide discovery, where the development of potential mutagens/carcinogens should be
stopped as early as possible.

Mutagenic toxicity can be experimentally assessed by various test systems. The most
common is the Ames test for mutagenicity, using several strains of genetically engineered
Salmonella typhimurium, sensitive to a large array of DNA-damaging agents [18,19]. As
discussed by Piegorsch and Zeiger [20] the estimated inter-laboratory reproducibility of
Salmonella test data is 85%.

In silico methods proposed for mutagenicity include quantitative structure–activity
relationship (QSAR) and SAR. These can be generated using a wide variety of statistical
methods and a large choice of molecular descriptors.

Usually, the first step in making a QSAR model is to calculate the molecular descriptors
[1] or the other type of numerical values (such as fingerprints) used to encode the structural
characteristics of a chemical compound into a fixed bit vector [21]. QSAR has been applied
for predicting mutagenicity. One of the first attempts [22] used only four descriptors, namely
the energy level of the lowest unoccupied molecular orbital (LUMO); the partition coefficient
between octanol and water (log P); a structural indicator and a descriptor to exclude mole-
cules considered outliers. This model was built using 230 nitro-aromatic compounds. One
problem in the method was the use of a quantum computation descriptor (LUMO), which
needed a long process time to be obtained, and the limitation to a single chemical class.

The SAR approach aims to identify particular structural fragments of a molecule known
to be responsible for the toxic property under investigation. In the mutagenicity/carcinogenic-
ity domain, the key contribution in the definition of such toxicophores was made by Ashby
[19]. Basing his work on the electrophilicity theory of chemical carcinogenesis developed by
Miller and Miller [23], which correlates the presence of electrophiles (like halogenated ali-
phatic or aromatic nitro substructures) to genotoxic carcinogenicity, Ashby compiled a list of
19 SAs for DNA reactivity. In a later study, Ashby and Tennant [24] mined a few hundred
data from the US National Toxicology Program (NTP) manually to confirm their findings;
however, the authors did not present numerical correlations between individual substructures
and mutagenicity because their database was not large enough.

Every subsequent effort has started from knowledge collected by Ashby to derive more
specific rules, such as a more recent work [7] where an understanding of the mechanism of
action is combined with statistical criteria. The analysed dataset includes more than four thou-
sand molecules with the respective Ames test binary results. A drawback is that molecules
tested with different methods (with and without metabolic trial) are mixed; however, it is
widely accepted and used in the scientific community. From this core data a few other papers
have been published [25,26].

If the aim is to use mutagenicity as an indicator of carcinogenic substances, the correla-
tion between mutagenicity and rat carcinogenicity is poor [27]. In particular, while mutagens
correlate with carcinogens, non-mutagens do not correlate with non-carcinogens [28]; thus
most of the SAs for genotoxicity are also present in the list of the SAs for carcinogenicity.

Practically SAs, in the context here, are rules which state the condition of mutagenicity
depending on the presence or absence of specific chemical substructures.

The mutagenicity SAs are based on observations of chemicals with that moiety. These
SAs derive from chemical properties and have a sort of mechanistic interpretation. However
their presence alone does not give a definitive method to prove the mutagenicity of a new
compound towards Salmonella, since there is a number of false positives in many cases,
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probably because other substituents can change the classification. For instance, Snyder and
colleagues [29] reported the results of checking the main commercial systems built over rules
in predicting the mutagenicity of pharmaceutical compounds; sensitivity of all systems was
poor. Moreover, in many cases toxicity was present but no SAs.

In previous work [30,31] we showed the advantage of integrating QSAR and SAR to
improve the accuracy of the classifier. Here we illustrate a deeper integration, since the SAs
are automatically extracted from data. The SAs are combined using statistical tools.

2. Materials and methods

2.1 The SARpy paradigm of knowledge extraction

Given a training set of molecular structures, with their experimental activity binary labels,
SARpy generates every substructure in the set and mines correlations between the incidence
of a particular molecular substructure and the activity of the molecules that contain it. This is
done in three steps starting just from the structural SMILES notation:

(1) Fragmentation: this novel, recursive algorithm considers every combination of bond
breakages working directly on the SMILES string. This fast procedure is capable of
computing every substructure of the molecular input set.

(2) Evaluation: each substructure is validated as potential SA on the training set. It is a
complete match against the training structures, aimed at assessing the predictive power
of each fragment.

(3) Rule set extraction: from the huge set of substructures collected, a reduced set of rules
is extracted in the form: ‘IF contains <SA> THEN <apply activity label>’.

2.1.1 Fragmentation

The aim of this phase is to detect the chemical substructures present in the set of training
chemicals. This challenging task is carried out in a straightforward manner: the totality of
substructures is identified by recursively applying a very simple fragmentation algorithm. This
performs only a rough fragmentation of the input structures, but by iterating each fragmenta-
tion step on the output of the previous one, it is possible to collect substructures of increasing
complexity until the in-depth fragmentation of the original structures is complete.

In detail, each fragmentation step iterates over every bond in the input structures and
collects the two fragments that would result if the bond were broken. Each step considers all
the possible couples of fragments obtainable from each input structure. After the first step all
the substructures derivable from every bond breakage (taken individually) are computed and
collected. Applying the next fragmentation step to the output of the previous one, all the pos-
sibilities of a second bond breakage are explored, and so on, until no more new fragments
can be extracted. For example, on a general A–B–C structure, the first fragmentation step will
raise the two fragments A and B–C by breaking the first bond, then the A–B and C fragments
by breaking the second bond; the B fragment will be found in the next step. See Figure 1 for
a real example. The proposed breadth-first approach considers every combination of bond
breakages, adding at each search level the possibility of further breaking, but only new
substructures are added to the collection and propagated through the fragmentation.

The chemical structures are fragmented directly on their SMILES strings. The time
complexity of algorithms working on strings is polynomial, an advantage with respect to
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algorithms working on graphs. In fact, considering that parsing with context-free grammars
has a cubic worst-case time complexity, the complexity of SARpy fragmentation is polyno-
mial too. Thus the problem of processing a two-dimensional molecular graph is reduced to
fast processing of ASCII strings. Breaking a ring bond requires some ‘workarounds’ to cor-
rectly rearrange the SMILES structure. Breaking a ring bond does not mean splitting the
structure, which should remain connected, with just the ring ‘unrolled’. For simplicity, it was
decided to consider rings as single entities during the fragmentation phase (i.e. ring bonds are
not broken), the idea being that the same substructures contained in a ring might be found as
an open skeleton in other compounds in the training data; otherwise, if always embedded in a
ring, then only the whole ring itself has to be taken into account. However, fragments identi-
fied in other parts of the molecule in the fragmentation phase are anyhow identified in the
evaluation phase, even in the ring, because more extensive analysis is done in this phase.

A further consideration concerns the length of relevant fragments in terms of number of
atoms. If we are interested in general SAs, capable of identifying wide classes of chemicals,
the largest substructures could be omitted without noticeable information loss, drastically
reducing the time necessary to extract fragments. This is supported by several experiments
carried out with the final implementation, where there is evidence that fragments longer than
a certain length have no significant effect on the final model. The increase of the upper limit
of atoms per fragment extends the required computational time, but over a certain threshold
(18 atoms), the outcome of the computation remains the same. With the proposed approach it
has been experimentally observed that, even on datasets containing thousands of molecules,
the number of new fragments monotonically decreases after the first few fragmentation steps,
dropping to zero in a reasonable time. This is because in large datasets, after processing the
first thousands chemicals, the other remaining thousands chemicals contain in most of the
cases fragments previously found.

2.1.2 Evaluation

Once all the existing substructures have been collected, the next phase consists in their
individual evaluation as potential SAs on the training set of chemicals. For clarity, the binary
case of a ‘positive’ or ‘negative’ experimental activity label associated with each structure is
considered, with the focus on the search for SAs for positive activity.

Figure 1. SMILES fragmentation. Duplicates are omitted. The SMILES of the starting structure is at
the top.

SAR and QSAR in Environmental Research 5
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First of all, each substructure is matched against every molecular structure in the training
data; this huge task can be properly optimized, and time demand for this step is not an issue
(see the section on implementation for details). Having the experimental labels, fragment
matches can be divided: either against positive structures, called ‘true positives’ (TP), or
against negative structures, called ‘false positives’ (FP). From these two, several indicators can
be computed to assess the precision of each potential SA to predict the target activity label.

The likelihood ratio, which is a measure of precision intrinsic to the test (not depending
on the prevalence of activity labels in the training set), is used:

Likelihood ratio = (TP / FP) � (negatives/positives)

Obviously the same procedure can be repeated for different labels, even not binary ones,
just considering the target label ‘positive’ and the union of all the others ‘negative’.

The evaluation is aimed at identifying the substructures that best generalize the concept of
biophores, with high precision and good sensitivity in the prediction of active chemicals.

We used the likelihood ratio in the next phase to dynamically extract the best set of SAs.

2.1.3 Rule set extraction

The final goal is to obtain a reduced set of rules from the huge list of potential alerts, with
limited interferences, able to predict the target class with the best precision. This is done as
follows:

(1) Order the list of potential alerts by likelihood ratio.
(2) Select the top ranked one, add it to the rule set and remove it from the list of potential

alerts.
(3) Remove the TPs and FPs containing the alert just selected.
(4) Update TP and FP values of the remaining potential alerts.
(5) Update the likelihood ratios of potential alerts.
(6) Return to point 1.

With this procedure, which is partially similar to MCASE [32], we can select the next
SA, keeping account of the effect of the SAs already in the rule set to minimize interferences
and maximize efficiency. The definition of a termination condition markedly affects the
behaviour of the rule set, making it more sensitive or more specific. Two basic approaches
are described in the Implementation section.

The output can be presented to the user as an ordered set of rules in the form: ‘IF con-
tains <SA> THEN <apply label>’.

2.2 SARpy implementation

The implementation is a Python script (about 500 lines of code) employing the open source
OpenBabel 2.2.3 library via a set of bindings to the C++ code. The application is easily avail-
able through a graphic interface.

The input training structures and their experimental activity label can be submitted either
as Structure Data File (SDF) or in a Comma Separated Values (CSV) table with structures
expressed in SMILES notation. SARpy handles the molecular data by using Pybel [33], a set
of convenience Python functions and classes that simplifies access to the OpenBabel module,
converted into SMILES disregarding chirality information.

6 T. Ferrari et al.
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Figure 2 shows a flow chart of the model construction.
The fragmentation works directly on the SMILES strings, starting from the original

training structures and recursively iterating on every resulting new SMILES fragment.
The fragments collected are uniquely identified by their canonical SMILES notation to

prevent duplicates and are stored preserving the hierarchical relationships between structures
and their substructures. The only parameterization required is the minimum and maximum
number of atoms of fragments, set by default respectively at 2 and 18.

Figure 2. Flow chart of the model construction.

SAR and QSAR in Environmental Research 7
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The evaluation phase matches each substructure against all the structures in the training
data. The structural comparison is carried out by the OpenBabel SMARTS [13] matching
function after being optimized, reducing the number of comparison to compute, by the use of
fingerprints [21] and using the hierarchical organization of the fragmentation process. The
search for structures potentially containing a given fragment can be restricted to the ones that
contain a substructure of the fragment itself. Therefore, the evaluation is done backwards in
the hierarchy of fragments; a given fragment is compared only with the structures already
matched by one of its descendants. Fingerprints of training structures and potential alerts can
be quickly computed and compared in order to discard obvious mismatches. After this step
every fragment is paired with its TP and FP matches.

All the potential SAs are ranked according to their likelihood ratios; sensitivity is used as
a secondary sorting key in case of equality. To avoid rules with irrelevant or unforeseeable
behaviour, a lowest bound on the TP value is considered to exclude SAs with only limited
information on their positive prediction ability, even if precise. Rules with a precision worse
than the prevalence of the target class in the training set (i.e. likelihood ratio <1) are
removed, since they predict worse than a ‘random rule’. Such rules are dynamically pruned
again before the extraction of every rule, using the actual TP values and likelihood ratios.

The rule set extraction is driven by the ranking scheme based on likelihood ratios,
explained in the previous section, and the termination condition of such extraction determines
the behaviour of the model: an early stop could mean a specific but poorly sensitive rule set,
with just a few but precise rules; the opposite is true for a late stop. Both the approaches have
been explored and implemented to build flexible tools.

The resulting set of rules can be checked on an external test set or cross-validated many
times.

2.3 Experimental data processing

The dataset employed [7] was retrieved from the European Commission funded CAESAR
project [34] in which a mutagenicity model has been implemented [31]. The dataset in [7]
originally contained 4337 molecular structures, but after a careful check of each chemical
structure, some of them were corrected or removed to avoid inaccuracies. The resulting
CAESAR mutagenicity dataset consists of 4204 compounds, 2348 classified as mutagenic
and 1856 classified as non-mutagenic by the Ames test.

We used the original split into a training and a test set carried out for the CAESAR
model, which was performed following a stratification criterion to make sure each subset
approximately covered all major functional groups as well as all major features of the chemi-
cal domain of the total compound set. The training set consists of 80% of the data (3367
compounds); the other 20% (837 compounds) was left out for testing. The parameterisation is
the default one, from 2 to 18 atoms per fragment. Using the training set, 112 rules were gen-
erated.

3. Results

Using SARpy we predicted the test set and obtained the statistics provided in Table 1. A
five-fold cross-validation on the training set gave very similar statistics for accuracy. As a fur-
ther check, we repeated the process on three other splits of the dataset, extracting randomly
20% of the chemicals as test set. As shown in Table 2, the resulting statistical values were
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very similar. Accuracy was good on both the training and test sets, with balanced sensitivity
and specificity, as illustrated in the confusion matrix of the predictions on the test set as in
Table 1 and Table 3. In this case, the molecules not containing any SA are considered as
non-toxic.

As a benchmark for the SARpy performance, we considered the collection of 33 SAs for
mutagenicity obtained manually from literature sources and implemented in Toxtree 2.5.0
[35]. Table 4 reports the performance of this model on the same dataset.

In classification, the two approaches reach very similar accuracy. However, the specificity
of the SARpy model is even better.

SARpy automatically identified most of the SAs listed in expert systems based on human
knowledge, such as the Toxtree rule base.

Table 1. SARpy: statistical evaluation on the test set.

SARpy

CAESAR mutagenicity dataset

Training set Test set

Accuracy 83% 82%
Sensitivity 85% 85%
Specificity 80% 78%

Table 2. SARpy: statistical evaluation on three random test sets.

First split Training set Test set

rules: 114
Accuracy 0.83 0.80
Sensitivity 0.84 0.79
Specificity 0.82 0.81

Second split Training set Test set
rules: 114
Accuracy 0.83 0.81
Sensitivity 0.87 0.86
Specificity 0.77 0.74

Third split Training set Test set
rules: 115
Accuracy 0.84 0.79
Sensitivity 0.86 0.83
Specificity 0.81 0.74

Table 3. SARpy: confusion matrix on test set.

Test set

Predictions

Active Inactive

Actual mutagens 393 72
Actual non-mutagens 82 290

SAR and QSAR in Environmental Research 9
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In this study SARpy extracted 112 SAs from the training set (see below). Comparison of
these alerts with the ones from Toxtree led to the conclusion that most of the Toxtree alerts
had been detected. A few Toxtree fragments were not covered by SARpy. These include
non-genotoxic carcinogens and SAs not occurring in the molecules of the dataset.

More interestingly, SARpy proved able to identify new fragments, not codified in
well-known collections of SAs and not even present in the broad list of potentially genotoxic
fragments recently defined by Marchant et al. [36].

4. Discussion

When comparing the SAs from SARpy with Toxtree we should bear in mind their different
definition and that there are fragments which are more general or more specific. SARpy pref-
erably identifies specific fragments which are more accurate than general ones. For instance,
while Toxtree has one single fragment with the epoxide group, SARpy has five epoxide frag-
ments, each containing additional features. Table 5 shows these fragments and the number of
false positives. These fragments are more accurate than the Toxtree epoxide fragment. For
this reason SARpy lists 89 fragments, which correspond to most of the Toxtree SAs. Table 6
shows the full list of fragments and the correspondence between the SARpy and Toxtree
SAs.

The Toxtree fragments not covered by SARpy can be split into two categories. First the
fragments associated with non-genotoxic carcinogenicity; the Toxtree list refers to SAs for
carcinogenicity with genotoxic and non-genotoxic mechanisms of action. SARpy correctly
did not identify the SAs for non-genotoxic carcinogenicity. Some of the compounds do not
have genotoxic mechanisms so SARpy does not identify them because they are not muta-
genic. This is the case of: SA17, thiocarbonyl; SA20, (poly) halogenated cycloalkanes (PAH);
SA31a, halogenated benzene; SA31b, halogenated PAH (naphthalenes, biphenyls, diphenyls);
and SA31c, halogenated dibenzodioxins.

Secondly, a few fragments of Toxtree are not found by SARpy: SA9, alkyl nitrite; SA15,
isocyanate and isothiocyanate groups; SA23, aliphatic N-nitro; SA26, N-oxide; and SA30,
coumarins and curocoumarins. This might be because there are not enough molecules with
those fragments in the training set. In our case we set as threshold that at least three
compounds had to contain a given fragment. If a chemical already has a certain fragment, it
is excluded from further search. This reduces the importance of fragments that appear only in
few cases.

Conversely, there are 23 SARpy fragments not present in Toxtree. Some are found in
chemicals which anyway have another fragment listed by Toxtree. Thus, the finding of a
certain fragment may not necessarily be related to the mutagenic effect. We checked all these
23 SARpy fragments and the related chemicals, and deleted the chemicals that could be

Table 4. Toxtree: statistical evaluation.

Toxtree v 2.5.0

CAESAR mutagenicity dataset

Training set Test set

Accuracy 80.8% 78%
Sensitivity 87.0% 86%
Specificity 72.5% 69%

10 T. Ferrari et al.
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labelled as mutagenic because of the presence of a Toxtree fragment. In this way we
identified some fragments associated with mutagenicity but that do not show SAs listed by
Toxtree. This was the case of the acenaphthylene fragment, associated with mutagenicity by
SARpy, which indeed can be related to mutagenicity [37].

Another interesting fragment indentified by SARpy is 1,2-dichloroethene-sulphide, which is
an S-halo alkenyl sulphide; the mutagenicity of these sulphides is supported in the literature [38].

Table 5. Epoxide fragment and its variants found by SARpy.

ID SA SMARTS Variant TP FP ⁄TM ⁄FM

14 O1C(C1)COc1ccccc1 [92,97] 18 0 18 0

22 O1C(C1)CCc1ccc(cc1) [97] 11 0 16 0

27 C1(OC1)(C(=O))C [97] 9 0 9 0

58 O1C(C1)Cc1ccc(cc1) [97] 13 2 16 2

92 O1C(C1)CO [97] 18 9 56 9

97 O1C(C1) [] 24 17 123 28

⁄TM: true matches are all compounds in the training set containing the fragment. TP and FP refer to the
presence of compounds in the remaining chemicals, not identified by a previous fragment. The opposite
is true for FM (false matches).

SAR and QSAR in Environmental Research 11
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N-hydroxyacetamide [39], quinoxaline [40] and quinoline [41] are other fragments found
by SARpy that are not detected as mutagens by Toxtree, although their mutagenicity is shown
in the literature. We checked whether these fragments were included in the Derek Nexus [36]
list of mutagenic fragments; Derek detects fragment 1,2-dichloroethene-sulphide and quinoline
as mutagens but has nothing to report for the others.

Table 7. Some SAs found by SARpy.

SA_ID Name Fragments
Literature supporting

mutagenicity

21 Acenaphthylene (35)

31 1,2-Dichloroethene-sulphide (36)

89 N-Hydroxyacetamide (37)

90 Quinoxaline (38)

26 and 100 Quinoline (39)
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Let us remember here that there are several lists of genotoxic fragments defined by human
experts, but they overlap only partially [42].

Thus, this study clearly shows that it is possible to mimic human knowledge with good
results and identify new rules that were not detected by human experts. Table 7 summarizes the
comparison of some of the alerts extracted by SARpy with similar evidence in the literature.

Other results on the dataset used by Kazius and colleagues [7] have been published. In [25]
a classifier using support vector machine (SVM) with radial basic function kernel obtained high
accuracy in the training (92%) and test (83%) sets, but used 27 calculated molecular descriptors,
thus increasing the risk of random correlations and making interpretation very difficult.

Alongside classical methods such as in vivo and in vitro experiments, computational tools
are attracting more and more interest in the scientific community and in the industrial world
to accompany or replace existing techniques.

For regulatory purposes it is important to obtain satisfactory classification accuracy on
new chemical families that have not been fully studied. In this area models are needed that
use statistical analysis on large numbers and can be further refined using cooperative methods
to improve or confirm the results and give more information.

We have developed SARpy, a system focusing on the important structural features hidden
in the database. SARpy differs from other (Q)SAR approaches in its ability to extract relevant
knowledge in the form of SAs during the learning stage. Other approaches rely on pre-calcu-
lated descriptors or fingerprints, calculated by specialized software. Another advantage of
SARpy over most of the similar data mining systems lies in the small set of rules produced.
While approaches such as those described by Inokuchi et al. [2] and Deshpande et al. [3]
typically find a large set of patterns satisfying a minimum frequency threshold which are not
necessarily predictive, SARpy builds a small set of predictive rules. This rule set can be used
to make expert predictions, or can be read by human experts, finding support in literature, or
detecting new clues in the domain.

The model here obtained is implemented in the Virtual Models for Evaluating the
Properties of Chemicals within a Global Architecture (VEGA) platform and freely available
at the website, http://www.insilico.eu/use-qsar.html.
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