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Life sciences, and toxicology in particular, are heavily impacted by the development of
methods for data collection and data analysis; they are moving from an analytical approach
to a modelling approach. The scarce availability of experimental data is a known bottleneck
in assessing the properties of new chemicals. Even when a model is available, the resulting
predictions have to be assessed by close scrutiny of the chemicals and the biological prop-
erties of the compounds concerned. To avoid unnecessary testing, a read across strategy is
often suggested and used. In this paper we discuss how to improve and standardize read
across activity using ad hoc visualization and data search methods which use similarity
measures and fragment search to organize in a chart a picture of all the relevant informa-
tion that the expert needs to make an assessment. We show in particular how to apply our
system to the case of mutagenicity.

Keywords: read across; mutagenicity; REACH; similarity; VEGA; SAR; QSAR

1. Introduction

According to recent legislation, such as the Registration, Evaluation, Authorisation & restric-
tion of CHemicals (REACH) regulation of the European Union, in silico methods are allowed
in various situations to derive the properties of new chemicals from all available knowledge.
In silico methods are different in their role and use [1,2]. They do not require experimental
testing in the laboratory, but exploit knowledge obtained from existing in vivo or in vitro
tests.

The most used in silico methods are structure–activity relationship (SAR) and quantitative
structure–activity relationship (QSAR) which build a model of the phenomenon and give a
result in terms of dose or toxicity class. There is a continuous search for good models, for
instance, to perform prioritization or screening of large data sets [3]. Good models should:

(1) explain patterns in data;
(2) correctly predict the results of new experiments or observations;
(3) be consistent with previous theories.

*Corresponding author. Email: benfenati@marionegri.it
£Presented at the 16th International Workshop on Quantitative Structure-Activity Relationships in Environmental and
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Certainly the third requirement is a critical one. When research is guided by broad general
principles, as in many areas of science and engineering, the models often embody these prin-
ciples. In several biological and toxicological processes the theory behind the biological inter-
actions is not clearly determined. Therefore, models derived from mathematical techniques
have been proposed without cause–effect relationships. These models are, however, subject to
criticism of the lack of ‘deep knowledge’ among scientists.

In order to make an assumption on the output of a model, the experts usually take similar
cases and reason on the possible result of the required property as a weighted average of
them; this method is a kind of read across. This is done after molecules of interest for the
case of study have been collected and organized on the basis of both their chemical structure
and their known activity; this is called profiling and it is effective only when supported by a
good database. The expert attempts to identify the most similar cases with respect to chemical
structure, presence of functional groups, applicability of specific alerts, reasons for consider-
ing the parent compounds or its metabolites, and many more. This process is time-consuming
and not easy to replicate.

To improve this, some automatic systems have been developed. For instance, the Organi-
sation for Economic Co-operation and Development (OECD) QSAR toolbox provides differ-
ent ways for profiling; however, they all require the user to interact intensively [4]. Other
tools, such as Ambit, provide specific methods to help the expert to accept or rule out the
answer of predictive models [5]. However, Ambit is not specifically designed for read across
but for assessing the applicability domain of a QSAR model.

To describe the main goal of the presented work, we start from the result of a recent
workshop [6] which evaluated the read across method used in the REACH registration pro-
cess. This workshop concluded that several problems are common with QSAR methods, in
particular the applicability domain definition and the categorization. For this purpose, it is
useful to refer to structural elements such as functional groups, to evaluate if there are com-
mon biomodifications, and to consider the regularity in the way the property changes in the
category. Therefore, a well-defined measure of similarity should take into account not only
the structure but also common chemical reactions and exclusion rules.

The workshop indicated at least two problems encountered when filling data gaps with
read across. The first one is the difficulty in assessing the absence of toxicity, which seems to
require a greater burden of proof for justification; this drawback indeed is not a problem of
the read across method, but refers to regulators who are more sceptical about accepting a neg-
ative result. The second one is how to deal with uncertainty and to what extent results are to
be considered reliable. Different elements contribute to reliability: the quality and number of
the experimental data used to perform read across; the chemical similarity measures used;
knowledge about how chemicals interact with biological systems; and supplementary data
from other properties or in vitro assays. Naturally, this information is not always available,
but each element may contribute in a weight of evidence approach. Uncertainty should be
considered in a more systematic way even when read across is used.

Considering the above issues we have developed a system called ToxRead. This aims to
be:

• an easy way to obtain and integrate the available knowledge;

• a systematic way to indicate the uncertainty of the result;

• a reproducible way to categorize the substances.

2 G. Gini et al.
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This paper discusses the problem of assessing the mutagenicity property of chemical com-
pounds. This can be achieved by a quick overview of the selected molecule in a space
defined by similar molecules.

There is a common accepted theory expressing that the presence of specific functional
substructures determines the toxicity of a compound; literature on this abounds in the case of
mutagenicity. However, often such structural alerts overestimate mutagenicity, because typi-
cally the percentage of experimentally mutagenic compounds having a given structural alert
is not 100%, and for some alerts, many of the chemicals possessing the feature are not muta-
genic [7]. In these cases it is important to examine both the mutagenic and non-mutagenic
cases to make a judgement. Our tool, ToxRead aims to assist the user in making this
judgment.

2. Assessing mutagenicity

Human experts usually estimate toxicity on the basis of the detection of structural fragments
already known to be responsible for the toxic property under investigation. Such fragments
are referred to as structural alerts [8], toxicophores [9] or biophores [10]. These can be deter-
mined by human experts from knowledge of the biochemical mechanism of action, such as
the activation of an enzyme cascade or the opening of an ion channel.

Mutagenicity, carcinogenicity and reproductive toxicity are some of the most important
endpoints to evaluate toxicity towards humans; indeed, they are part of the CMR (Carcino-
genic, Mutagenic, Reprotox) regulatory assessment. In particular, mutagenic toxicity is the
ability of a substance to cause genetic mutations and it is of considerable public concern due
to its close relationship with carcinogenicity [11,12]. An important application is drug and
pesticide discovery where the development of candidate compounds, which are potentially
mutagens or carcinogens, should be detected as soon as possible during the process.

Mutagenic toxicity can be experimentally assessed by various test systems; the most com-
mon is the Ames test [13], which makes use of a genetically engineered Salmonella typhimu-
rium and E. coli bacterial strains. This test is an in vitro model of chemical mutagenicity and
consists of a range of bacterial strains sensitive to a large array of DNA-damaging agents
[14]. The estimated inter-laboratory reproducibility of Ames test data is 85% [15].

Besides in vitro testing, there are also in silico methods for mutagenicity such as QSAR
and SAR. These make use of a wide variety of statistical methods and a large range of
molecular descriptors. One of the first attempts to model mutagenicity for nitro-aromatic com-
pounds [16] used only four descriptors, namely the energy level of the lowest unoccupied
molecular orbital (LUMO), the partition coefficient between octanol and water (log P), a
structural indicator and a descriptor to exclude molecules considered outliers.

The SAR approach involves the discovery of particular structural fragments in molecules
already known to be responsible for the toxic property under investigation. In the mutagenicity/
carcinogenicity domain, the most significant innovation in the definition of such toxicophores
has been the use of both the formal link between the chemical and toxicological processes, and
the extension of the list of moieties covered [14]; this innovative view has been extended by
following studies and has inspired many researchers. Starting from the electrophilicity theory of
chemical carcinogenesis [17], which correlates the presence of electrophiles (like halogenated
aliphatic or aromatic nitro substructures) to genotoxic carcinogenicity, Ashby and Tennant
compiled a list of structural alerts for DNA reactivity [18]. In a this study, a few hundred
compounds from the US National Toxicology Program (NTP) were mined manually to confirm
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the role of structural alerts in the mutagenicity processes; however, the authors did not present
numerical correlations between individual substructures and mutagenicity.

Every subsequent effort has started from the knowledge collected by Ashby to derive
more specific rules. A more recent study combined an understanding of the mechanism of
mutagenesis with statistical criteria [9]. The data set includes more than 4000 molecules with
the respective Ames test binary results. A drawback is that molecules tested with different
methods (with and without metabolic activation with S9) were mixed; however, it is widely
accepted and used in the scientific community. From these core data, several other papers
were published which introduced different data mining techniques and extended the collec-
tions of rules [19–21].

If the aim is to use mutagenicity as an indicator of carcinogenic substances, the correla-
tion between mutagenicity and rat carcinogenicity is minimal [22]. However, most of the
structural alerts are the same on both endpoints.

Practically, structural alerts are rules which state the condition of mutagenicity depending
on the presence of a specific chemical substructure. The mutagenicity structural alerts are
hypotheses derived from chemical properties and have some degree of mechanistic interpreta-
tion. Nevertheless, their presence itself does not give a definitive method to prove the mutage-
nicity of a compound towards bacterial cells, since other substituents may change the
classification. For instance, Snyder et al. [23] reported the results of checking the main com-
mercial rule-based systems for predicting the mutagenicity of pharmaceutical compounds and
found that the sensitivity of all systems was low. Moreover, in many cases compounds were
found to be mutagenic in the absence of structural alerts. Within another exercise, a number
of programs have compared predicting a set of chemicals composed of more than 6000
compounds [24] and, more recently, using the chemicals registered for REACH [25]. The
results obtained with some models, like VEGA, have reported accuracy very similar to the
reproducibility of the Ames test, indicating that it is possible to predict mutagenicity in many
cases [25].

ToxRead is aimed at providing evidence on the evaluation of the relevance of the different
structural alerts for the specific chemical of interest, indicating at the same time the most
similar compounds which contain these structural alerts.

3. Principles and basis of the proposed software

The developed tool is based on an application supported by libraries of fragments which
visualize the substances and the structural alerts.

3.1 Structural alert libraries

The ToxRead software is designed to manage multiple libraries. Currently the program
includes the mutagenicity libraries present in the VEGA QSAR software [26,27]. These
are the libraries taken from the Toxtree software (version 1.60), with the addition of
Benigni–Bossa [7] and SARpy rules [28]. The former are derived from human experts and
originated from the Ashby set of rules, both extending their number and introducing
exclusion rules for some structural alerts.

Given a training set of molecular structures, with their experimental activity binary labels,
SARpy generates every substructure in the set and mines correlations between the incidence

4 G. Gini et al.
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of a particular molecular substructure and the activity of the molecules that contain it. This is
done in three steps starting from the structural SMILES notation:

(1) Fragmentation. This recursive algorithm considers every combination of bond break-
ages working directly on the SMILES string. This fast procedure is capable of com-
puting every substructure of the molecular input set;

(2) Evaluation. Each substructure is validated as potential structural alert on the training
set. It performs a complete match against the training structures for assessing the pre-
dictive power of each fragment;

(3) Rule set extraction. From the huge set of substructures collected, a reduced set of rules
is extracted in the form: ‘IF contains <structural alert> THEN <apply activity label>’.

The main difference between the Benigni–Bossa and the SARpy rules is that SARpy also
generates rules associated with non-mutagenicity. These are conceptually similar to the exclu-
sion rules present in the Benigni-Bossa rules, but the exclusion rules within Toxtree are
always associated with a positive toxic rule, while the rules for ‘non-toxicity’ listed by
SARpy are more general and apply to all chemicals.

3.2 Database of experimental values

ToxRead makes available the most similar compounds with a certain structural alert. Cur-
rently, the experimental values are those extracted from the ANTARES project [29], which
refers to the data from Hansen et al. [30], checked and pruned for the chemical structures.

3.3 Implementation

The ToxRead tool has been developed as a Java standalone application. This programming
language has been chosen because it provides the possibility of running the application on
different operating systems without deploying different versions of the application. Further-
more, some libraries of particular relevance were already available in Java.

The application relies on the VEGA core library, which already implements the similarity
index. Additionally, the library provides useful features for chemo-informatics purposes such
as parsing of SMILES string, SMARTS matching and molecule depiction. This VEGA library
itself relies on the CDK (Chemistry Development Kit) libraries [31]. The application uses also
the JUNG (Java Universal Network/Graph) framework [32] for the creation and visualization
of the chart. The database containing the available compounds and their experimental values
was implemented as a local database with the HyperSQL [33] libraries.

In the first beta version of the tool, the database contained 6062 molecules together with
the experimental data for mutagenicity. In addition other experimental data have been added:
octanol–water partition coefficient (available for 1384 molecules); bioconcentration factor in
fish (for 373 molecules); and carcinogenicity (for 531 molecules). This database is stored as a
HyperSQL database file of about 16 MB. Access to the database has acceptable performance;
for instance, less than 5 seconds are required on a PC with an i3 3.30 GHz core and 8 GB
RAM for the main calculation. This consists of accessing the database, calculating the simi-
larity of the target molecule with the available compounds in the database, and extracting the
needed molecules to build the chart. The reason why we chose to use a local database is to
avoid information exchange through the Internet; we found from our experience that users
often work with highly confidential data and are not willing to send any information on
external servers for elaboration.

SAR and QSAR in Environmental Research 5
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4. Use of ToxRead

4.1 General features

ToxRead has been designed to be user-friendly. Colors and shapes represent easily under-
standable information, with the meaning explained below.

The target chemical is drawn in the center of the visualization panel; it is represented by
a circle (see the example given in Figure 1), with several outgoing links to various similar
chemicals. The user can choose the maximum number of similar compounds up to six; in
fact, from our experience usually three similar chemicals are sufficient. These chemicals are
identified using the algorithm implemented in VEGA and the similarity value is calculated as
the weighted combination of a fingerprint, three structural keys based on molecular descrip-
tors, and a series of other descriptors (constitutional, hetero-atoms and specific functional
groups considering the number of some features or functional groups and not only their pres-
ence/absence). The description of the similarity algorithms is presented by Floris et al. [34].

The size of the circle is proportional to the similarity in order to make the user aware of
the relevance of each chemical. Clicking on a chemical, the user can see its structure, the
similarity value and the experimental values associated with it. The color of the circle indi-
cates whether the chemical is mutagenic (red) or not (green). This color-coding refers only to
the experimental value contained in the internal database; the circle is split into green and red
when the result is equivocal. Moreover, all the available experimental values such as carcino-
genicity are shown and more robust evaluations can be accomplished by the user.

However, these N similar chemicals are not the core of the ToxRead tool; indeed the same
information is already available within the VEGA software. These N chemicals are identified
on the basis of a generic, similarity function, without any use of a structural alert.

Figure 1. ToxRead screen showing the similar compounds and the rules found in the analysis of the
molecule O=CC=C(Cl)Cl.

6 G. Gini et al.
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The innovative idea of ToxRead is that the target chemical is also linked to several struc-
tural alerts, giving the user significant additional information. The structural alerts linked to
the target chemical are represented by triangles; those pointing upward are non-mutagenic
and those pointing downward are mutagenic. In addition, mutagenic alerts are red while non-
mutagenic are green. It is important to note that non-mutagenic alerts are not just the absence
of mutagenic alerts; we discuss this concept in the following examples.

Another immediate visual detail about the ‘validity’ of a certain alert is that the saturation
of the color is proportional to the percentage of toxic or non-toxic chemicals. It may occur
that a mutagenic structural alert refers to a number of chemicals which are mainly non-toxic,
and there are examples among the Benigni–Bossa rules that we will see below, but the color
of the structural alert is still red because this rule is formally a rule of toxicity; in this way
the user is informed about the presence of false positives. This does not apply to SARpy
rules, since all of them are by definition positive only if there is a prevalence of toxic
chemicals.

By clicking on a structural alert, the user can visualize its chemical structure, its explana-
tion, and the p-value relative to the toxicity; by clicking on a specific button it is also possi-
ble to visualize up to 100 similar chemicals presenting that structural alert.

ToxRead takes into account the fact that the same similar chemical may appear more than
once, linked to different rules. For instance, a nitro-aniline compound will be linked to both
the structural alerts of aniline and nitro-aromatic compounds; in these cases the circles are
drawn with dashed line. Thus, the overall evaluation is easy when the information presented
by the structural alert and by the similar compounds is the same; otherwise users should
apply their knowledge to read the ToxRead results and to take the final decision.

In this last case of conflicting results, we expect the user to be conservative, giving
emphasis to toxicity alerts. Although we see below how this may not always be the case and
the software may help gain a more realistic evaluation.

4.2 Examples of assessing the mutagenicity property

Figure 1 illustrates the ToxRead screen for assessing the mutagenicity of the target com-
pound, whose structure is illustrated in the right-hand panel. The figure shows a graph with
the three most similar molecules represented as circles, linked to the target compound, which
is in the center; the four rules are represented by triangles, each one connected to three other
circles. The CAS number of each chemical is shown next to its circle. On the right side of
the figure, just below the structure of the target chemical, the list of the associated rules is
indicated.

In this case all rules are related to toxic effects. Though, rule R0 is quite generic with a
lower percentage of mutagenic compounds (49%; thus most of the chemicals with this frag-
ment are non-mutagenic), while rule R3 is more saturated because it is associated with a
higher number of mutagenic compounds. Indeed, rule R3 has an accuracy equal to 1, mean-
ing that all chemicals containing this fragment are mutagenic; looking at the structure of this
rule, we can see that it is more specific for the chemical under evaluation, as it contains chlo-
rine or bromine linked to the double bond. In this example all the similar chemicals linked to
rules R0 and R3 are those already identified simply considering the similarity according to
VEGA. The overall evaluation is quite simple. There are four rules all indicating mutagenicity
and all the similar chemicals are mutagenic; the experimental data on the target compound
indicates that it is a mutagen.

SAR and QSAR in Environmental Research 7
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The second example is given in Figure 2; in this case there are many more rules, with all
but rule R0 indicating non-mutagenicity. Observing the graph, however, rule R0 has a high
number of false positives, so the user can proceed beyond the generic statistics of this rule
and look at the specific similar chemicals containing the structural alert of interest (the unsat-
urated oxo group). Figure 3 shows these three chemicals linked to rule R0: they are all non-
mutagenic. Considering the other similar compounds in Figure 2, it is evident that all of them
are non-mutagenic and so there is a broad consensus on the fact that all are non-mutagenic.

In Figure 3 the only critical issue is related to rule R0, but the user can easily rule out this
issue in this particular case because rule R0 is generic, and in our case, refers to non-
mutagenic chemicals even if they present the mutagenic rule R0. Thus, the user is informed
of the possible presence of rules of concern and can decide on the basis of a weight of
evidence approach. The elements for the evaluation are the combination of the rules and of
the mutagenicity status of the similar chemicals.

The third example (Figure 4) depicts a more complex case. The target chemical is associ-
ated with two conflicting rules: the first is the Benigni–Bossa of the aromatic amines and the
second derives from the evidence of a group of chemicals sharing the heteroaromatic bicyclic
structure. Rule R1 is shown in Figure 5.

This last rule has been defined by us within an ongoing exercise that aims to derive a
large set of rules by manual evaluation of chemical classes (in particular aromatic amines)
and sub-classes which do not belong to the majority of the class. This approach is the same
adopted by Benigni and Bossa for the definition of the exception rules. Figure 5 shows the
most similar chemicals found by the software with respect to rule R1; one of them, CAS
703-83-3, is almost the same as the target chemical with the only difference in the methyl
group linked to the aromatic ring. In this case ToxRead identifies a toxicity rule, R0, and an
exclusion rule, R1, which may be sufficient to overrule the mutagenicity one. Moreover, the

Figure 2. ToxRead screen for assessing the mutagenicity property of the molecule shown on the right.
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evaluation of the three most similar chemicals to the target compound shows that they are all
non-mutagenic. These exercises suggest that ToxRead can assist the user in the evaluation of

Figure 3. The three most similar chemicals to the target compound containing rule R0, referring to
Figure 2.

Figure 4. ToxRead applied to a controversial chemical.
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conflicting rules for read across, providing a simplified visualization of different pieces of
information.

In order to have a sort of validation of our work, we have also applied the mutagenicity
models of VEGA to the three molecules used in the above examples. VEGA has three mod-
els for mutagenicity: CAESAR, SARpy and Toxtree.

For the first chemical all three models gave the same result as we had obtained from
ToxRead; moreover, looking at the most similar chemicals shown by VEGA there was con-
sensus about the mutagenicity of the target compound. The QSAR models and the read across
approach supported each other.

For the second chemical both CAESAR and SARpy agreed that the chemical was not muta-
genic and the applicability domain index (ADI) was high. Conversely, Toxtree labeled the
chemical as mutagenic, but with a very low ADI. The similar compounds were experimentally
not mutagenic and thus the overall assessment based on the QSAR models was that the chemi-
cal was not mutagenic, but the degree of reliability of the three models was different.

The third chemical was complex also for the QSAR models. CAESAR predicted the
chemical as mutagenic with a high ADI value, SARpy predicted it as non-mutagenic with a
low ADI and Toxtree predicted it as mutagenic with a low ADI. There were conflicting
results and care should be applied in the overall evaluation, especially due to the low ADI
for two models. CAESAR appeared to be more reliable. VEGA allowed the visualization of
the similar compounds, which should always be evaluated: all the most similar chemicals are
mutagenic and contain the 1,2-benzothiazole structure as the target compound does. However,
all these similar mutagenic chemicals also contain an amino group on the benzene ring, which
is absent in the target compound but is probably responsible for the mutagenicity. Thus, the
evaluation of toxicity given by the model is only apparently supported by the similar com-
pounds, because they seem to be mutagenic for the presence of an aniline moiety absent in
the target compound. Thus, no solid conclusion can be obtained from the QSAR results. For
this third chemical the evaluation based on the ToxRead seems more reasonable, probably
because ToxRead is based on a larger database.

5. Conclusions

There is a need for more tools to improve predictions based on read across. Read across is
gaining popularity since the introduction of more stringent regulations, such as the European
REACH regulation.

Figure 5. The structure of rule R1 and the three most similar chemicals to the target compound,
referring to Figure 4.
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Read across has been used more intensively than QSAR for registration, as reported by
the European Chemicals Agency (ECHA) [35]. However, read across is typically performed
by individual experts according to their own experience, usually on highly confidential data.
No exercise has been conducted to check the reproducibility and the accuracy of this kind of
read across, while for QSAR, some evaluations comparing the different programs have been
made [24,25].

Read across requires experts in toxicology, chemistry, biology, environmental sciences
and other fields. However, this kind of expert reasoning is rare, expensive and may also be
subjective. Furthermore, experts may use different sets of rules and they may over-rely on
past experience and miss new evidence. That is why expert reasoning may be irreproducible.

ToxRead aims to improve this current situation by providing a clear and objective basis
which can be exploited by human experts in their analysis of the chemicals to be used for
read across. The tool offers two basic resources: a set of rules/structural alerts which may
explain the toxicity; and a similarity tool associated with a large database of chemicals with
their properties. In this way the user is assisted in the navigation for the identification of the
similar compounds through a set of pathways which represent the known toxicity processes.

Of course this kind of tool has to be flexible and should accept new sets of rules; cur-
rently we are increasing them for mutagenicity and we are also extending the tool towards
other endpoints such as the bioconcentration factor and fish acute toxicity.

An open issue, as mentioned in the Introduction, is how to deal with uncertainty while
making a read across prediction. Read across is not a probabilistic method and as such we
cannot mathematically assign a measure of uncertainty. Nevertheless, some elements of uncer-
tainty are indicated by ToxRead, as the accuracy of the structural alert (number of toxic
chemicals) and also the similarity of the related chemicals, which is measured in a quantita-
tive way. We have shown in our case studies how different structural alerts with different
accuracy can be present in the same target molecule. Moreover, we have shown that exclu-
sion rules are often stronger than toxicity rules. Combining all this together it is possible to
attach to the result taken by the expert both the accuracy of the structural alert found and the
similarity value of the most similar molecule considered to obtain numerical values express-
ing a sort of uncertainty.

For the similar chemicals, the highest similarity should drive the choice. Although, if the
similarity of the chemical is lower than 0.75 its contribution may be questionable. Regarding
the structural alert, the alert with a higher accuracy should be considered more useful; if the
accuracy of the structural alert is close to 0.5, its relevance is modest. ToxRead is freely
available and can be downloaded from its website [36].
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