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Abstract: The analysis of influence of molecular features which can be extracted from the simplified molecular input line entry system 

(SMILES) and involved in the process of the building up of a series of QSAR models (with different splits into training and test sets) by 
means of the CORAL software for mutagenicity and anticancer activity has been performed. The presence of nitrogen (sp3) is favorable 

for decrease of the both endpoints; the presence of only one cycle is also promotor for decrease of the both endpoints; however the 
presence of two or three cycles is favorable for increase of mutagenicity and decrease of anticancer activity. These findings provide 

useful criteria for further experimental and computational studies in the search for new anticancer agents. 
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1. INTRODUCTION 

 There is a need for efficient computational approaches that 
provide characteristics of various molecular systems. Among the 
applied methods the techniques which use initial information 
obtained from experiments and then link them to structural 
characteristics are gaining noteworthy recognition. Simplified 
molecular input line entry system (SMILES) is a representation of 
the molecular structure [1-4]. This representation can be used for 
calculation of molecular descriptors for the building up of 
quantitative structure - property / activity relationships (QSPR/ 
QSAR) [5-18].  

 There is a complex correlation between mutagenicity and 
carcinogenicity [19-32] as well as between mutagenicity and 
anticancer activity [33,34]. Rigorous research activities are 
necessary to establish details of such correlations. QSAR methods 
are capable to accomplish such tasks. 

 By means of the CORAL software [35] one can calculate so-
called correlation weights for different molecular attributes 
extracted from SMILES. The correlation weights are calculated by 
the Monte Carlo method. These calculations provide coefficients 
applied for calculation of the molecular descriptor that is correlated 
with an endpoint used for the training set. There is a probability that 
this descriptor is also linked to the endpoint for external test set. 

 If the process of the Monte Carlo optimization is repeated 
several times one can obtain three kinds of molecular attributes: 1. 
attributes with solely positive values of the correlation weights; 2. 
attributes with solely negative values of the correlation weights; and 
3. attributes with both positive and negative values of the 
correlation weights. In the case 1 one can classify the attribute as a 
promoter of increase for the endpoint. In the case 2 one can classify 
the attribute as a promoter of decrease for the endpoint. In the case 
3 the role of attribute is undefined. 

 There are a number of task which can be solved via 
QSPR/QSAR analysis [36-41]. The first task is the building up of  
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QSPR/QSAR models which can be the reliable predictors for 
various endpoints [42-48]. The CORAL software gives a possibility 
to compare the correlation weights of molecular attributes for two 
endpoints related to their prevalence for two sets of compounds (for 
the first, and the second endpoints, respectively), and according to 
their correlation weights evaluate them as components of these 
QSPR/QSAR models.  

 Using the same method (i.e. applying the same SMILES 
attributes) one can build up models for anticancer activity and 
mutagenicity. Establishing a series of such models for different 
splits (into the training and test sets) one can extract molecular 
attributes divided into three groups: (1) positive for both anticancer 
activity and for mutagenicity; (2) negative for both the above-
mentioned endpoints; (3) positive for anticancer activity and 
negative for mutagenicity or vice versa - negative for anticancer 

activity and positive for mutagenicity. Apparently, this analysis can 
be useful if (and only if) the models for the both endpoints are 
characterized by the satisfactory statistical quality. If the prevalence 
of molecular feature is significant for these two sets one can 
compare impact of the molecular feature upon the first endpoint and 
second endpoint [49]. Data on the impact of different molecular 
features upon the both anticancer activity and mutagenicity can be 
useful for the search of anti-cancer agents. 

 The present study was aimed to solve two tasks: (1) To answer 
the question whether molecular attributes with stable impact for two 
above-mentioned endpoints do exist? (2) If the answer is yes, to 
define the list of those molecular attributes. 

2. METHOD 

Data  

 The endpoint considered as the anticancer activity of a series  
of 7- and 3-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-
naphthyridines, which are novel antitumor quinolone agents is 
represented by pIC50 [i.e. log(1/IC50)], where IC50 symbolizes the 
concentration of the agent necessary to reduce cell viability by 50% 
against Murine P388 Leukemia (in vitro cytotoxic activity). 
Numerical data related to this endpoint were taken from Ref. [50]. 
Data on mutagenic potentials of the set of 95 aromatic and 
heteroaromatic amines were taken from Ref. [51]. The mutagenic 
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activity in Salmonella typhimurium TA98+S9 microsomal 
reparation is expressed as the natural logarithm of R (lnR), where R 
is the number of revertants per nanomole. SMILES notations for all 
considered compounds were generated with ACD/ChemSketch 
software [4]. For both endpoints three splits were examined. These 
splits are random, but the distribution of compounds for sub-
training, calibration, and test sets is done by the manner which 
gives maximally identical ranges of endpoints in the above-
mentioned sets (Supplementary materials Table S1 and S2). 

Descriptors 

 The CORAL model represents one-variable model of an 
endpoint Y, calculated as 

 Y = C0 + C1 * DCW( Threshold, Nepoch )          (1) 

 where DCW(Threshold,Nepoch) is the optimal SMILES-based 
descriptor; C0 and C1 are regression coefficients.  

 The DCW(Threshold, Nepoch ) is calculated as 

 DCW(Threshold, Nepochs )= CW(Sk)+ CW(SSk)+CW(BOND)+ 
CW(ATOMPAIR)             (2) 

where Sk, SSk, ATOMPAIR, and BOND are SMILES attributes 
(i.e. molecular features) described in the literature [9, 49]. CW(Sk), 
CW(SSk), CW(BOND), and CW(ATOMPAIR) are correlation 
weights of the attributes. The correlation weights are coefficients 
which are used in Eq.2. They must give maximum of correlation 
coefficient between experimental and calculated with Eq. 1 values 
of an endpoint Y for the training set. The threshold defines a 
coefficient for classification of attributes into two classes: rare  
and not rare. Correlation weights for rare attributes are fixed equal 
to zero (blocked). The correlation weights are calculated with  
the Monte Carlo technique. The number of epochs Nepoch of the 
optimization as well as the threshold have considerable influence on 
the statistical quality of models [9,49] and their predictability [52]. 
Fig. (1) illustrates the scheme for definition of the preferable 
threshold and the preferable number of epochs of the Monte Carlo 
optimization which give a model characterized by the maximal 
predictive potential.  

 There are three approaches of the Monte Carlo optimization 
aimed to build up a QSPR/QSAR model. The first type represents the 
“classic” scheme [5-15], i.e. searching for maximum of correlation 

 

Fig. (1). The general scheme of the building up a model with the CORAL software. 
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coefficient for the training set hoping that the descriptor will be 
well correlated for test set. The second type is the distribution of 
compounds of the training set into sub-training set and calibration 
set. The role of the calibration set is to form a preliminary test set 
(the checking up of the identity of the correlation coefficients for 
the sub-training and calibration sets). This approach is called the 
balance of correlations [53-60]. The third type is the balance of 
correlations with ideal slopes, i.e. with checking up the identity of 
slopes and intercepts for model calculated with the sub-training and 
calibration sets [16,61]. Models used in this study were built up 
with CORAL software [35] by means of balance of correlations 
with ideal slopes [16,61]. 

3. RESULTS AND DISCUSSION 

 In order to establish a usefulness of the applied approaches the 
statistical quality of the model has to be evaluated. The statistical 
quality of the CORAL models for anticancer activity (pIC50) and 
mutagencity (lnR) is the following: 

Anticancer Activity 

Split 1 

 pIC50 = -0.2206(±0.0109) + 0.2248(±0.0023) * DCW(6,69)   (3) 

 n=50, r
2
=0.7778, q

2
=0.7604, s=0.469, F=168 (sub-training set); 

 n=25, r
2
=0.8684, R

2
pred=0.8482, s=0.481, F=152 (calibration set); 

 n=25, r
2
=0.8581, R

2
pred=0.8342, s=0.425, F=139, Rm

2
=0.7829 

(test set) 

Split 2 

 pIC50 = -0.0203(±0.0124) + 0.1149(±0.0013) * DCW(5,28)   (4) 

 n=50, r
2
=0.7136, q

2
=0.6931, s=0.555, F=120 (sub-training set); 

 n=25, r
2
=0.7256, R

2
pred=0.6891, s=0.586, F=61 (calibration set); 

 n=25, r
2
=0.7307, R

2
pred=0.6842, s=0.517, F=62, Rm

2
=0.7137 

(test set) 

Split 3 

 pIC50 = -0.1734(±0.0095) + 0.1914(±0.0012) * DCW(3,71)   (5) 

 n=50, r
2
=0.7774, q

2
=0.7626, s=0.445, F=168 (sub-training set); 

 n=25, r
2
=0.9103, R

2
pred=0.9003, s=0.355, F=233 (calibration 

set); 

 n=25, r
2
=0.7054, R

2
pred=0.6559, s=0.714, F=55, Rm

2
=0.6993 

(test set) 

Mutagenicity  

Split 1 

 lnR = -4.8389 (± 0.058) + 0.1142 (± 0.0013) * DCW(3,11)   (6) 

 n=42, r
2
=0.7506, q

2
=0.7297, s=1.10, F=120 (sub-training set); 

 n=25, r
2
=0.7828, R

2
pred=0.7293, s=0.811, F=83 (calibration set); 

 n=28, r
2
=0.8361, R

2
pred=0.8048, s=0.782, F=133, Rm

2
=0.7076 

(test set) 

Split 2 

 lnR = -2.5951(±0.0395) + 0.1506(±0.0022) * DCW(5,25)     (7) 

 n=42, r
2
=0.7441, q

2
=0.7177, s=0.945, F=116 (sub-training set); 

 n=25, r
2
=0.7936, R

2
pred=0.7642, s=0.884, F=88 (calibration set); 

 n=28, r
2
=0.8052, R

2
pred=0.7621, s=0.925, F=107, Rm

2
=0.7359 

(test set) 

Split 3 

 lnR = -0.0928(±0.0217) + 0.2604(±0.0033) * DCW(3,58)     (8) 

 n=43, r
2
=0.7791, q

2
=0.7578, s=0.890, F=145 (sub-training set); 

 n=25, r
2
=0.8970, R

2
pred=0.8812, s=0.599, F=200 (calibration set); 

 n=27, r
2
=0.8870, R

2
pred=0.8692, s=0.704, F=196, Rm

2
=0.8194 

(test set) 

 In Eqs. 3-8, n is the number of compounds in a set; r  
is correlation coefficient; q

2
 is leave-one-out cross-validated 

correlation coefficient; R
2

pred is external predictive correlation 
coefficient; s is standard error of estimation (root mean square 
error); Rm

2 
is novel validation metric [52] calculated according to 

Eq. 9  

Rm
2

= r2 (1 r2 r0
2 )             (9) 

where r0
2

is correlation coefficient between observed and predicted 

values without intercept [52]. Fig. (2) contains graphical 
representations of models calculated with Eq. 3 and Eq. 6. 

 The number of attributes which are involved in the building up 
of CORAL model depends upon the assumed threshold. The typical 
situation is the following. The increase of threshold is accompanied 
by decrease of correlation coefficient for the sub-training and test 
sets, but there is maximum of the correlation coefficient for test set. 
This maximum occurs for a specific threshold value which is 

denoted as T* (Fig. 1). The increase of the number of epochs of the 
Monte Carlo optimization is accompanied by increase of the 
correlation coefficients between experimental and calculated values 
of an endpoint for sub-training and calibration set. For the test set 
there are two phases. Phase 1: the increase of correlation coefficient 
till a maximum is reached (the number of epochs is equal to N*); 
and phase 2: decrease of the correlation coefficient (Fig. 1). The T* 
and N* are represented for Eqs. 3-8, e.g. in the case of Eq. 3 T*=6 
and N*=69. 

 The balance of correlations [53-60] with ideal slopes [16,61] 
has been used to build up the models for anticancer activity (Eqs. 3-
5) and mutagenicity (Eqs. 6-8). The statistical quality of models for 
anticancer activity calculated with Eqs 3-5 is approximately 
identical for three splits. The same results are obtained for models 
of mutagenicity calculated with Eqs. 6-8. Consequently, the 
comparison of molecular features which are involved in these 
models and which have considerable prevalence provides an 

interesting and useful way of the investigation of the 
aforementioned endpoints. 

 Table 1 shows the results of the analysis of influence of 
molecular attributes which are extracted from SMILES on the 
anticancer activity and the mutagenicity. The selection of the 
attributes has been done by the following scheme. Firstly, only 
apparent promoters of increase or decrease of endpoints were 
involved in the analysis i.e. attributes which have only positive  
or only negative values of the correlation weights in three runs  
of the Monte Carlo optimization (Supplementary Materials  
Table S3 and S4). Secondly, only attributes with considerable 
prevalence were extracted from the above-mentioned apparent 
promoters of increase or decrease of endpoints. The impact of  
the apparent promoters with considerable prevalence has been 
studied for nine combinations of three models for anti-cancer 
activity and three models for mutagenicity (Supplementary 
materials Table S5). 

 There are three SMILES attributes which have clear function 
for the nine considered combinations of the models. These are ‘c(‘, 
‘1’, and ‘N’. The interpretation for ‘c(‘ can be formulated as 
presence of branching which starts from carbon (sp

2
) in an aromatic 

system. The attribute ‘1’ means presence of a cycle. The attribute 
‘N’ means presence of nitrogen (sp

3
). The impact of attributes ‘c(‘ 

and ‘1’ is increase for the both endpoints, whereas presence of ‘N’ 
should lead to decrease of both endpoints.  

 There is attribute ‘c2’ which occurs in eight of nine examined 
combinations of three anticancer models and three mutagenicity 
models. The attribute can be interpreted as presence of cycle which 
contains aromatic carbon (sp

2
). The presence of this molecular 

feature should lead to decrease of the both endpoints. 
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 Finally, there are two SMILES attributes which occur in six of 
nine examined combinations of models for two above-mentioned 

endpoints. These are ‘(‘ and ‘2’. The attribute ‘(‘ means presence of 
any branching. It is to be noted ‘c(‘ and ‘(‘ are not the same. The 

attribute ‘2’ means presence of any two cycles. It is also to be noted 
that ‘2’ and ‘c2’ are not the same. We deem that 6/9 occurrences 

hardly can be classified as absolutely random result. Consequently, 
presence of these two molecular features can be interpreted as quite 

probable decrease of anticancer activity together with quite 
probable increase of mutagenicity. The lack of influence of these 

two attributes for the two endpoints is observed for the three 
combinations which involve models of mutagenicity obtained for 

split 2. Therefore, possibly this split is not 'typical' in respect of 
distribution of these SMILES attributes in the sub-training, the 

calibration, and the test sets. Supplementary materials section 
contains the technical details of the described analysis. 

 Table 2 shows possible ways to construct anticancer agents 
with using model (the split 1, Eq. 3) based on the molecular 
features with stable positive or negative influence on the pIC50. We 
have attempted to carry out modifications of five arbitrary 

molecular structures according to data from Table 1. In fact Table 2 
contains a group of hypotheses, which need confirmation by the 
experiment, however good quality of the model calculated with Eq. 
3 is argument to estimate these predictions as quite reliable. 
Modifications for #1, #24, #59, and #74 illustrate the influence of 
presence of fragment "c(". Modification for #89 illustrates influence 
of presence of fragment "N".  

 We believe that the results of this study are useful for 
investigations the links between mutagenicity and carcinogenicity 
since the list of attributes with clear influence on the endpoints is 
not empty and the influence is statistically significant. This 
approach is general and can provide useful tools for analysis of 
other types of endpoints. It is very probable that using similar or 
even identical substances in described analysis can be more 
beneficial. However, the comparison of very different molecular 
structures of mutagens and anti-cancer agents is attractive from 
heuristic point of view. 

 It is to be noted the number of SMILES attributes can be 
increased [35]. In this case the statistical quality of a model for training  
set (or sub-training and calibration sets) will be improved, but it is 

 

Fig. (2). Graphical representation of models which are calculated with the CORAL software: (i) Eq. 3 for anti-cancer activity pIC50, the concentration of the 

agent necessary to reduce cell viability by 50% against Murine P388 Leukemia; and (ii) Eq. 6 for mutagenic activity in Salmonella typhimurium TA98+S9 
lnR, where R is the number of revertants per nanomole. 

Table 1. The analysis of Influences of Various Molecular Features on the Anti-cancer Activity and the Mutagenicity 

Mutagenicity  

Split1 Split2 Split3 

Split1 c( , 1 , N , 

c2 , 

( , 2   

c( , 1 , N , 

c2  

 

c( , 1 , N , 

c2 , 

( , 2   

Split2 c( , 1 , N , 

c2 , 

( , 2   

c( , 1 , N , 

c2  

 

c( , 1 , N , 

( , 2   Anti-cancer activity 

Split3 c( , 1 , N , 

c2 , 

( , 2   

c( , 1 , N , 

c2  

 

c( , 1 , N , 

c2 , 

( , 2   

 is an indicator of increase;  is an indicator of decrease; each molecular feature is accompanied by two indicators, the first is related to anti-cancer activity, the second is related to 
mutagenicity. 
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Table 2. Analysis of Influence of Various Modifications of Structures Upon the pIC50 Values (Anticancer Activity) 

ID Structure and SMILES pIC50 

Experiment 

pIC50 

Calculated with Eq. 3 

1 

ClH

O

OH

N N

F

O

N
NH2

 

Cl.O=C(O)C2=CN(c1nc(c(F)cc1C2=O)N3CCC(N)C3)c4ccccc4 

-0,8139  -1.013 

 

ClH

O

OH

N N

O

N
NH2

F

CH3

 

Cl.O=C(O)C2=CN(c1nc(c(F)c(C)c1C2=O)N3CCC(N)C3)c4ccccc4 

 -0,414 

 

ClH

O

OH

N N

O

N
NH2

F

CH3

CH3  

Cl.O=C(O)C2=CN(c1nc(c(F)c(C)c1C2=O)N3CCC(N)C3)c4ccc(C)cc4 

 0,185 

 

ClH

O

OH

N N

O

N
NH2

F

CH3

CH3

CH3

 

Cl.NC1CCN(C1)c4nc2c(C(=O)C(=C(C)N2c3ccc(C)cc3)C(=O)O)c(C)c4F 

 1,203 

 

ClH

O

OH

N N

O

N
NH2

F

CH3

CH3

CH3

 

Cl.NC1CCN(C1)c4nc2c(C(=O)C(=C(CC)N2c3ccc(C)cc3)C(=O)O)c(C)c4F 

 1,502 
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Table 2. contd…. 

ID Structure and SMILES pIC50 

Experiment 

pIC50 

Calculated with Eq. 3 

 

ClH

O

OH

N N

O

N
NH2

F

CH3

CH3

CH3  

Cl.NC1CCN(C1)c4nc2c(C(=O)C(=C(CC)N2c3ccc(CC)cc3)C(=O)O)c(C)c4F 

 1,801 

24 

ClH

NH2

N

F

O

N

NS

F

O

OH

 

Cl.NC1CCN(C1)c3c(F)cc4C(=O)C(=CN(c2nccs2)c4c3F)C(=O)O 

-2,1467 -1,281 

 

ClH

NH2

N

F

O

N

NS

F

O

OH

 

Cl.NC1CCN(C1)c4c(F)c(c2ccccc2)c5C(=O)C(=CN(c3nccs3)c5c4F)C(=O)O 

 0,674 

 

ClH

NH2

N

F

O

N

NS

F

O

OH

CH3

  

Cl.NC1CCN(C1)c4c(F)c(c2ccccc2)c5C(=O)C(=C(C)N(c3nccs3)c5c4F)C(=O)O 

 0,845 

 

ClH

NH2

N

F

O

N

NS

F

O

OH

CH3

 

Cl.NC1CCN(C1)c4c(F)c(c2ccccc2)c5C(=O)C(=C(CC)N(c3nccs3)c5c4F)C(=O)O 

 1,143 
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Table 2. contd…. 

ID Structure and SMILES pIC50 

Experiment 

pIC50 

Calculated with Eq. 3 

59 

ClH

NH2

N N N

O

Cl

O

OH

N S

 

Cl.NC1CCN(C1)c2nc3N(C=C(C(=O)c3cc2Cl)C(=O)O)c4nccs4 

0,2371 -0,139 

 

ClH

NH2

N N N

O

Cl

O

OH

N S

CH3  

Cl.NC1CCN(C1)c2nc3N(C=C(C(=O)c3cc2Cl)C(=O)O)c4nc(C)cs4 

 0,460 

 

ClH

NH2

N N N

O

Cl

O

OH

N S

CH3

CH3

 

Cl.NC1CCN(C1)c2nc3N(C=C(C(=O)c3c(C)c2Cl)C(=O)O)c4nc(C)cs4 

 1,059 

 

ClH

NH2

N N N

O

Cl

O

OH

N S

CH3

CH3

CH3

 

Cl.CC1CN(CC1N)c2nc3N(C=C(C(=O)c3c(C)c2Cl)C(=O)O)c4nc(C)cs4 

 1,459 

 

ClH

NH2

N N N

O

Cl

O

OH

N S

CH3

CH3

CH3

 

Cl.CC1CN(CC1N)c2nc3N(C=C(C(=O)c3c(CC)c2Cl)C(=O)O)c4nc(C)cs4 

 1,758 

74 

ClH
CH3

NH

H

N

H
O

CH3

O

N

NS

N

O

OH

 

Cl.CN[C@@H]1CN(C[C@H]1OC)c3ccc4C(=O)C(=CN(c2nccs2)c4n3)C(=O)O 

1,7282 1,355 
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Table 2. contd…. 

ID Structure and SMILES pIC50 

Experiment 

pIC50 

Calculated with Eq. 3 

 

ClH
CH3

NH

H

N

H
O

CH3

O

N

NS

N

O

OH

 

Cl.CN[C@@H]1CN(C[C@H]1OC)c4cc(c2ccccc2)c5C(=O)C(=CN(c3nccs3)c5n4)C(=O)O 

 1,611 

 

ClH
CH3

NH

H

N

H
O

CH3

O

N

NS

N

O

OH

CH3

 

Cl.CN[C@@H]1CN(C[C@H]1OC)c4cc(c2ccccc2)c5C(=O)C(=C(C)N(c3nccs3)c5n4)C(=
O)O 

 1,781 

 

ClH
CH3

NH

H

N

H
O

CH3

O

N

NS

N

O

OH

CH3

CH3

 
Cl.CN[C@@H]1CN(C[C@H]1OC)c4cc(c2ccccc2)c5C(=O)C(=C(C)N(c3nc(C)cs3)c5n4)C
(=O)O 

 2,381 

89 

ClH

O

OH

N

N S

N

CH

O

 

Cl.O=C(O)C2=CN(c1nccs1)c3nc(C#C)ccc3C2=O 

-0,8886 -0,874 

 

ClH

O

OH

N

S

N

CH

O

 

Cl.O=C(O)C2=CN(c1cccs1)c3nc(C#C)ccc3C2=O 

 -0,089 
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Table 2. contd…. 

ID Structure and SMILES pIC50 

Experiment 

pIC50 

Calculated with Eq. 3 

 

ClH

O

OH

S

N

CH

O

 

Cl.O=C(O)C2=CC(c1cccs1)c3nc(C#C)ccc3C2=O 

 0,228 

 

ClH

O

OH

S

N

CH

O CH3

 

Cl.O=C(O)C2=CC(c1cccs1)c3nc(C#C)cc(C)c3C2=O 

 0,828 

 

ClH

O

CH3

S

N

CH

O CH3

 

Cl.CC(=O)C2=CC(c1cccs1)c3nc(C#C)cc(C)c3C2=O 

 1,563 

 

not clear whether it will be accompanied by the improving of the 
statistical quality of this model for the external test set. 

4. CONCLUSIONS 

 This study revealed interesting and useful information related to 
link between anti-cancer activity and mutagenicity of series of 
compounds. In spite of the considerable differences in molecular 
architecture of substances used for QSAR modeling of these two 
properties, there are molecular features (which can be extracted 
from SMILES) with considerable prevalence in examined data sets 
with apparent influence on the endpoints. 

 The presence of branching in an aromatic system (it is encoded 
in SMILES by 'c(' ) and presence of a cycle ( it is encoded in 
SMILES by '1' ) represent promoters of increase for both anti-
cancer activity and mutagenicity. The presence of nitrogen (sp

3
) is 

an indicator of decrease for the both endpoints. With high 
probability (it occurs for eight of nine comparisons of models) one 
can conclude that the presence of two cycles together with aromatic 
system (this is indicated in SMILES by 'c2' ) is an indicator of 
increase of both endpoints. 

 Finally, it is quite probably (this occurs in six of nine 
comparisons), that the presence of a branching (it is encoded in 
SMILES by '(' ) as well as presence of two cycles (it is encoded in 
SMILES by '2' ) are promoters of decrease of anti-cancer activity 
and promoters of increase of mutagenicity. 
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