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The validation of quantitative structure–property/activity relationships (QSPR/QSAR) is an important
challenge of modern theoretical chemistry. Analysis of QSPRs which are obtained with various distribu-
tion into sub-systems of training and of testing can be a useful approach to estimate reliability of QSPR
predictions. The balance of correlation is an approach for the building up of QSPR with using three
components of available data: (a) sub-training set (developer), (b) calibration set (critic), and (c) test
set (estimator). Computational experiments have shown that the probabilistic interdependence between
the distribution of available data into sub-training set, calibration set, and test set and the average
numbers of outliers in the test set exists.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Water solubility is an important physicochemical property that
plays a significant role in various physical and biological processes
[1]. It is not surprisingly, that a large number of quantitative struc-
ture–property relationships (QSPR) were dedicated to water solu-
bility. The systematization of these works may be carried out
with different emphasis, e.g., according to classes of organic com-
pounds, such as esters [2,3], alcohols [4], polychlorinated biphenyl
[5], and compounds with a large structural diversity [6]. The sys-
tematization of researches on QSPR for water solubility can be
based on different approaches such as multiple regression analysis
(MRA) [7], partial least squares method (PLS) and artificial neural
networks (ANN) [8]. Other important aspect of the QSPR models
for solubility is functionality of substances, e.g., drug-like [9–11],
or environmentally important ones [12].

The distribution of substances into training and test sets has
influence upon the predictive potential of a QSPR/QSAR and
consequently the algorithm of the splitting data into the training
and test set is an important component of a QSPR/QSAR analyses
[12]. There are various algorithms to split available data into the
training and test sets [13–15], however random splits are prefera-
ble approach to detect probabilistic interdependence between
statistical characteristics of the training and test sub-systems.
ll rights reserved.
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The aim of this Letter is the analysis of influence of various dis-
tributions (splits) of the set of available substances into training
and test sub-systems upon statistical quality of the solubility
models.

2. Method

2.1. Data

The numerical values for water solubility were taken from the
US National Library of Medicine [16]. The negative decimal loga-
rithm of the solubility expressed in mg/L has been examined as
the endpoint. The total number of substances is 488. Table 1 shows
random distributions of these substances into the sub-training, cal-
ibration, and test sets which we analyzed. Supplementary materi-
als section contains random splits of 488 organic compounds
characterized by various distributions (Table 1) of substances in
the sub-training set, calibration set, and test set.

2.2. Optimal descriptor

We have used the following version of the optimal descriptor
calculated with the CORAL software [17]:

DCWðThreshold;NepochÞ ¼
X

WðSkÞ þ
X

WðVDkÞ þWðNOSPÞ þWðHALOÞ
ð1Þ

where Threshold is integer value to classify molecular features
extracted from simplified molecular entry system (SMILES) [18,19]
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Table 1
The denoting (ID) of distributions into sub-training, calibration, and test sets which
were examined. The distributions were prepared with random number generator.

ID for distribution Sub-training set
(%)

Calibration set
(%)

Test set
(%)

101080 10 10 80
105040 10 50 40
501040 50 10 40
303040 30 30 40
206020 20 60 20
602020 60 20 20
404020 40 40 20
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or from hydrogen suppressed molecular graph as rare or not rare.
Correlation weight of each rare molecular feature is fixed equal to
zero, i.e., the rare feature is not taken into account for the building
up of model; Nepoch is the number of cycles of the Monte Carlo opti-
mization aimed to build up the model; Sk is SMILES element, i.e., one
or two symbols which cannot be examined separately (e.g., ‘Cl’, ‘Br’,
etc.); VDk is vertex degree in hydrogen suppressed graph; NOSP and
HALO are global SMILES attributes [20] which are mathematical
functions of presence of nitrogen, oxygen, sulfur, phosphorus, fluo-
rine, chlorine, and bromine; W(x) is the correlation weight for a
molecular feature ‘x’ [20–28].

The correlation coefficient between water solubility (or arbitrary
other endpoint) and descriptor that is calculated with Eq. (1) is a
mathematical function of correlation weights. One can calculate
(by the Monte Carlo method) numerical values of the W(x) which
give maximum of the above-mentioned correlation coefficient for
the training set hoping that the descriptors calculated with those
weights also will be correlated with the endpoint for external test
set [29–31]. The Monte Carlo optimization can be carried out with
improved target functions with taking into account the possibility
of overtraining [20,27,28]. The models were built up with the CORAL

software [17] with the following parameterization: threshold = 1, 3,
Figure 1. Flowchart of the building up and application of a CORAL model.
and 5; Dstart = 0.1; dprecision = 0.01; and Nepoch = 50. Figure 1 shows
the flowchart for building the CORAL models.
3. Results and discussion

Table 2 contains the statistical quality of the prediction of solu-
bility for models calculated with various distribution of substances
into the sub-training, calibration, and test sets (Table 1). For each
distribution average values obtained in three runs of the Monte
Carlo optimization are represented.

Having a completed quantitative structure–property relation-
ship (QSPR), one can remove one substance from the test set. It
can lead to a change of the mean square error for the test set.
We classify as ‘leader of outliers’, the substance that gives the max-
imal decrease of the mean square error for the test set. The reduced
test set can contain a next ‘leader of outliers’. If the QSPR model is
satisfactory, the removing of several ‘leaders of outliers’ can lead to
situation where mean square error of the training set becomes lar-
ger than mean square error of the test set. We denoted this situa-
tion as ‘ideal split’. The average number of ‘leaders of outliers’ (for
several runs of the Monte Carlo optimization) which must be re-
moved to obtain ‘ideal split’ NL can be considered a measure of reli-
ability for a QSPR model. One can see (Table 2) that distribution
101080 gives the maximal number of ‘leaders of outliers’ in com-
parison with others. Vice versa, distribution 404020 gives the min-
imal value of ‘leaders of outliers’. It is to be noted, Table 2 contains
average numerical values of the correlation coefficient and mean
square error for various splits and for three starts of the Monte Car-
lo optimization with the threshold [17,20] that is equal to 1, 3, and
5. Thus, the numerical data can be a basis for significant statistical
conclusions. Functions of sets which are involved in the building
up of the model may be formulated as the following: sub-training
set is the developer of a model; the calibration set is the critic for
tuning the model; the test set is an estimator of a model (Figure 1).

In fact, QSPR analysis of one split into training and test sets is an
analogy of a measurement that is carried out one time only: conse-
quently, no information about the dispersion of the statistical crite-
ria becomes available after this action. However, the experience
shows that the dispersion exists and the numerical value of this dis-
persion is important for the estimation of the true reliability of var-
ious approaches. One cannot argue that the cross-validation
technique gives an adequate estimation of the dispersion of statis-
tical criteria, because the list of descriptors (in the case of multiple
regression analysis) or the list of molecular fragments (in the case of
optimal descriptors) which are involved in the building up of a
model can be various for various splits into the training and test
sets.

The domain of applicability is a component of the modern
QSPR/QSAR. We have suggested the alternative to the applicability
domain. The definition of the domain of applicability is list of sub-
stances for which a model gives determinist prediction with given
accuracy. We have suggested the empirical technique in order to
estimate the probability of outliers. This task is simpler than the
definition of the domain of applicability, however, the solution of
this task can be the useful for comparisons of various models. In
addition, we have noticed apparent influence of a split into the
sub-training, calibration, and test upon the statistical quality of
the QSPR model for the water solubility: (i) the majority of
substances (�80%) should be placed in the sub-training and cali-
bration sets; and (ii) the numbers of substances in the sub-training
set and in the calibration set should be approximately equivalent
(Table 2, Figure 2). According to this rationale one should expect
the most reliable model in the case of 404020 distribution.
Average values of the numbers of ‘leaders of outliers’ and of
standard error of estimation related to examined distributions into



Table 2
Statistical quality of predictions for various distributions substances into sub-training,
calibration and test sets. NL is the average number of ‘leaders of outliers’ which should
be removed in order to obtain the average root mean square error of test set (Stest) less
than (Ssub-training + Scalibration)/2; Ntest is the number of compounds in the test set; the
correct prediction is the percentage of substances, in the test set, which are not
outliers.

Split Threshold NL Ntest r2
test Stest Correct prediction

(%)

101080-1 1 82.3 388 0.9197 0.5118 78.9
101080-2 1 66.7 393 0.8642 0.6177 83.0
101080-3 1 40.0 373 0.8592 0.6465 89.3
101080-1 3 65.0 388 0.8961 0.5678 83.2
101080-2 3 40.0 393 0.8544 0.6448 89.8
101080-3 3 21.7 373 0.8331 0.6949 94.2
101080-1 5 62.0 388 0.8943 0.5841 84.0
101080-2 5 35.3 393 0.8450 0.6722 91.0
101080-3 5 22.7 373 0.8186 0.7256 93.9
105040-1 1 14.0 195 0.8805 0.6606 92.8
105040-2 1 18.0 198 0.8672 0.6276 90.9
105040-3 1 38.0 216 0.8940 0.5926 82.4
105040-1 3 9.0 195 0.8657 0.6886 95.4
105040-2 3 13.7 198 0.8481 0.6665 93.1
105040-3 3 18.7 216 0.8616 0.6738 91.4
105040-1 5 7.7 195 0.8529 0.7096 96.1
105040-2 5 10.0 198 0.8096 0.7452 94.9
105040-3 5 16.3 216 0.8477 0.6990 92.4
501040-1 1 39.3 181 0.8969 0.5615 78.3
501040-2 1 20.3 214 0.8733 0.5960 90.5
501040-3 1 29.3 200 0.8906 0.5768 85.3
501040-1 3 41.7 181 0.8864 0.5635 77.0
501040-2 3 11.7 214 0.8658 0.6213 94.5
501040-3 3 24.3 200 0.8880 0.5853 87.8
501040-1 5 37.7 181 0.8822 0.5792 79.2
501040-2 5 9.3 214 0.8655 0.6298 95.6
501040-3 5 20.0 200 0.8840 0.6002 90.0
303040-1 1 5.0 181 0.8547 0.6602 97.2
303040-2 1 13.0 189 0.8599 0.6411 93.1
303040-3 1 9.0 184 0.8872 0.6476 95.1
303040-1 3 2.3 181 0.8416 0.6867 98.7
303040-2 3 11.0 189 0.8552 0.6600 94.2
303040-3 3 6.7 184 0.8787 0.6685 96.4
303040-1 5 1.0 181 0.8357 0.6972 99.4
303040-2 5 12.0 189 0.8442 0.6873 93.6
303040-3 5 7.0 184 0.8723 0.6841 96.2
206020-1 1 6.0 103 0.8697 0.6508 94.2
206020-2 1 7.0 109 0.8248 0.6523 93.6
206020-3 1 11.3 99 0.8746 0.6358 88.5
206020-1 3 6.0 103 0.8630 0.6740 94.1
206020-2 3 2.3 109 0.8087 0.6878 97.8
206020-3 3 9.0 99 0.8634 0.6636 90.9
206020-1 5 5.0 103 0.8459 0.7059 95.1
206020-2 5 1.0 109 0.8116 0.6905 99.0
206020-3 5 4.0 99 0.8370 0.7160 95.9
602020-1 1 7.0 100 0.8778 0.6532 93.0
602020-2 1 2.7 98 0.8543 0.6601 97.2
602020-3 1 8.0 94 0.8917 0.6266 91.4
602020-1 3 6.7 100 0.8768 0.6560 93.3
602020-2 3 1.3 98 0.8463 0.6772 98.6
602020-3 3 7.0 94 0.8883 0.6408 92.5
602020-1 5 6.0 100 0.8693 0.6694 94.0
602020-2 5 1.0 98 0.8509 0.6816 98.9
602020-3 5 7.0 94 0.8844 0.6517 92.5
404020-1 1 1.3 99 0.8685 0.6598 98.6
404020-2 1 5.3 101 0.8851 0.6477 94.7
404020-3 1 3.0 117 0.8752 0.6517 97.4
404020-1 3 1.0 99 0.8676 0.6618 98.9
404020-2 3 5.0 101 0.8814 0.6562 95.0
404020-3 3 2.0 117 0.8697 0.6663 98.2
404020-1 5 1.0 99 0.8582 0.6836 98.9
404020-2 5 4.0 101 0.8792 0.6702 96.0
404020-3 5 2.0 117 0.8700 0.6659 98.2

Figure 2. The plot of the number of outliers in the test set vs. percentage of poor
predictions (in the test set) for different distributions (Table 1) into the sub-training
set, the calibration set, and test set.

Figure 3. The average number of outliers NL and average standard error of
estimation Stest for various distributions (Table 1) of available data into sub-training
set, calibration set, and test set.
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the sub-training set, calibration set, and test set (Figure 3) confirm
this hypothesis. The situation can be interpreted as the following:
(i) the increase of the number of substances in the test set leads to
increase of the number of outliers; (ii) in the case of equivalent
numbers of substances in the sub-training set and in the calibra-
tion set (e.g., 404020 and 303040) the number of outliers is
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minimal in comparison with splits where percentage of substances
in the test set is equivalent, but the percentage of substances in the
sub-training set and in the calibration set, are different (e.g.,
602020, 206020, 501040, and 105040); and (iii) it should be noted
that there are no correlations between the number of substances in
the test set and the standard error of estimation calculated in the
above-mentioned ‘ideal splits’.

Statistical characteristics of QSPR model for solubility of 193
acyclic compounds [7] (n = 193, r2 = 0.946) are better than statisti-
cal quality of CORAL models for 404020-splits (n = 105.7, r2 = 0.87,
Table 2). However, one should take into account, (i) the above-
mentioned model [7] has been calculated for all 193 compounds,
without external checking up; (ii) only acyclic compounds were
studied in this Letter [7]. QSPR that was built up with Artificial
Neural Networks [8] is characterized by n = 879, r2 = 0.95 (training
set), n = 412 r2 = 0.92 (validation set), and n = 21, r2 = 0.90 (test set).
Unfortunately, there are no data on statistical quality of such mod-
el for other splits. Statistical quality of model of water solubility of
drug-like compounds [11] is the following: n = 100, r2 = 0.774
(training set) and n = 48, r2 = 0.598 (test set). Thus, comparison of
the CORAL model with above-mentioned [7,8,11] indicates that sta-
tistical quality of suggested model (Table 2) is reasonably good.

The reliability of a model often conflicts with the precision of
the model. Apparently, the reliable model should be classified as
more useful than model with high precision, but not reliable. Thus,
the search for criteria to estimate the reliability of a model is an
important task. The solutions of this task can be found by means
of involving the Gaussian principle [32] and with using of the PRE-

CLAV software [33].
The suggested analysis of models obtained with groups of vari-

ous splits and groups of various distributions (i.e., splits with var-
ious percentage of data in the training set and in the test set) is an
approach that can improve the theoretical tools for the building up
of models of different endpoints in general and for water solubility
in particular, because, it gives possibility to obtain a measure of the
reliability of QSPR/QSAR: the average value of outliers in the exter-
nal test set.

4. Conclusions

The average number of ‘leader of outliers’ NL can be used as a
measure of reliability of a model, instead of the definition of the
domain of applicability. The NL decreases with increase of the
number of substances distributed in the sub-training and calibra-
tion sets. Distributions into sub-training set (developer of the mod-
el) and into calibration set (critic of the model) should be
equivalent: the preference for the ‘developer’ as well as the prefer-
ence for ‘critic’ decrease the predictive potential of the model, be-
cause the number of outliers will increase in both these cases
(Table 2, Figure 3). The distribution (40% in the sub-training set;
40% in the calibration set; and 20% in the test set) that gives most
reliable model of water solubility has been defined by means of the
computational experiment.
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