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Human-like reflex control for an artificial hand
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Abstract

In this paper, we illustrate the low level reflex control used to govern an anthropomorphic artificial hand. The paper develops the
position and stiffness control strategy based on dynamic artificial neurons able to simulate the neurons acting in the human reflex
control. The controller has a hierarchical structure. At the lowest level there are the receptors able to convert the analogical signal
into a neural impulsive signal appropriate to govern the reflex control neurons. Immediately upon it, the artificial motoneurons
set the actuators inner pressure to control the finger joint position and moment. Other auxiliary neurons in combination with the
motoneurons are able to set the finger stiffness and emulate the inverse myotatic reflex control. Stiffness modulation is important
both to save energy during task execution, and to manage objects made of different materials. The inverse myotatic reflex is
able to protect the hand from possible harmful external actions. The paper also presents the dynamic model of the joints and
of the artificial muscles actuating Blackfingers, our artificial hand. This new type of neural control has been simulated on the
Blackfingers model; the results indicate that the developed control is very flexible and efficient for all kind of joints present in
the humanoid hand.
© 2003 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The aim of this work is the experimentation of a
“human-like” control system for an artificial hand.
Very few projects have so far investigated the prob-
lem of controlling a humanoid hand so as to mimic
the human control system.

At MIT, Matsuoka (1995)has developed different
learning strategies for the Cog robot. However, the
Cog hand is not human-like, but much simpler, with
three fingers and a thumb. It is self-contained hav-
ing four motors and 36 exteroceptor and propriocep-
tor sensors controlled by an on-palm microcontroller.
Primitive manipulation is learned from sensory in-
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puts using competitive learning, back-propagation al-
gorithm and reinforcement learning strategies. Inter-
esting in the work of Matsuoka is the implementation
of a reflex control. The curling reflex allows the fin-
gers to curl when the inner surface palm is touched,
and a releasing reflex is triggered when an intolerable
amount of stimulus is applied. In the implementation,
a simple threshold is used for both.

Also Hannaford et al., at University of Washington
have experimented for a long time the control of an
anthropomorphic artificial arm using a system capable
of emulating the human neuro-muscolo-skeletal mo-
tion control. These kind of works are useful, not only
to design and control a human-like artificial limb, but
also to better understand the biological paradigm, as
in Hannaford and Chou (1997).

Another interesting project is under development by
Kawamura et al. (2000). Their robotic system, ISAC,
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is targeted to aid elderly or disabled people in their
homes. ISAC’s 6DOF arms thus require anthropomor-
phic hands. The current implementation utilizes a Watt
6-Bar Linkage for coupling actuator motion for both
the distal and proximal joints of a single finger. This
allows one actuator to emulate the joint ranges of the
proximal and distal joints of the human phalanx. The
hand has five force sensitive resistors (FSRs). Each
finger’s inside distal pad contains an FSR that varies
its resistance based on the force exerted on its surface.
Additionally, one FSR resides in the palm. The back-
side of the palm contains the circuitry for the FSRs.
A grasping behavior based on the first grasping pat-
terns of the neonates, as seen before, is implemented.
Force-Based Grasping is a high level behavior used to
grasp objects based on a priori knowledge. A grasp-
ing force and a simple Boolean command are given to
this behavior. If the fingers close at the given grasp-
ing force without registering any forces, this behavior
issues an error message for the upper control level.

Other relevant work is underway in Neural Com-
putation, which attempts to combine knowledge from
biology with knowledge from physics and engineer-
ing, with the goal of discovering new technologies by
studying the principles of natural behavior. Movement
coordination requires some form of planning: every
degree of freedom needs to be supplied with appropri-
ate motor commands at every moment in time. Due to
the numerous degrees of freedom in humanoids, and
the almost infinite number of possibilities to use them
over time, there exists an infinite number of possible
movement plans for any given task, making learning
quite intractable. Thus, research in trajectory planning
has been focusing on an alternative method by requir-
ing that movements be built from movement primi-
tives defined by speed and amplitude parameters, then
fine tunes through learning to improve the movement
(Shaal, 1999).

Inspiration from biology motivates another project.
A common feature in the brain is to employ to-
pographic maps as basic representation of sensory
signals. Such maps can be built with various neural
network approaches, and learning motor control with
topographic maps can followKawamura et al. (1999).

None of the above mentioned methods are so far
used for the hand control. In the followingSection
2, we illustrate our prototype of an artificial hand. In
Section 3, we discuss the functional aspects of the

Fig. 1. Blackfingers.

muscle control in natural systems, while inSection
4, we present the control strategy based on emulating
the reflexes.Section 5discusses the model description
for the artificial hand, whileSection 6develops the
models of neurons. InSection 7, we present and dis-
cuss the simulation results of a single joint actuated
by two artificial muscles.Section 8gives conclusions
and proposes further research.

2. Our artificial hand

In this paper, we describe the low level control strat-
egy for our prototype of an artificial hand Blackfingers
(Fig. 1). As already underlined, the first step of our
design was a good understanding of the human hand.
After the study of the natural hand, both in bones and
muscles organization, we recall here the construction
of the artificial hand as inFolgheraiter and Gini (2000).

As in the human hand, the joints of Blackfingers are
of two kinds: the spherical ones connect metacarpi to
the first phalanxes (and provide 2 d.f.), the cylindrical
ones provide rotation. In our hand all the joints have
been made from Nyloil (a particular kind of nylon) us-
ing a special cutting technique that replicates the nat-
ural shapes of of the bone structures. The ligaments
were obtained from elastic bands that connect joints,
thus allowing them limited movement. The tendons
are obtained with iron cables covered with 0.5 mm of
Teflon. To connect tendons with the artificial bones
plastic bands have been applied. In our prototype each
finger is moved by the combined action of six tendons.
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Fig. 2. Actuator release-contraction.

In the first version of the prototype we built a hybrid
hydraulic-pneumatic system using six cylinders as ac-
tuators for each finger. The precision of the system
was good as well as its strength. Nevertheless, for ac-
tuating the total of 18◦ of freedom of the hand (three
in each finger and three in the wrist), we needed 36
actuators that we were not able to insert in the fore-
arm. Recently, we have studied and experimented a
new version of McKibben actuators, that we have built
using light and resistant materials, as inFig. 2. All the
components have been constructed using a polymeric
material and aluminum alloy, as we can see inFig. 2.
The actuator’s weight is only 20 g, with a good reduc-
tion with respect to the 170 g of a traditional pneu-
matic cylinder.

Also the dimensions are half with respect to the
classical actuators, the advantage is that we can main-
tain the same force and dynamic performance. With
this new system we can pack about 40 actuators in a
space of only 60 mm× 60 mm× 200 mm, and give
the full motion to every hand’s joint. Currently, we
are working on implementing the position and force
sensors directly inside the actuator, to save space and
to reduce the wire connections with the control sys-
tem. This aspect is very important because the electric
wires in the joints deteriorate with use due to joint
movement and friction. After this short presentation
of the hand structure and actuation we are able to in-
troduce the control problem.

3. Natural reflex control

The most important human interoceptive reflex
is the myotatic reflex, which originates from the
neuro-muscular fibers. This reflex is characterized by
two phases: a rapid contraction followed by a lower
and longer contraction that stabilizes the muscle to a
given length. Its principal function is maintaining the
joint position fixed and compensating external noise

Fig. 3. Schema of a joint with the principal neurons involved in
the reflex control.

forces. The other reflex, present in the human beings,
is the myotatic inverse reflex; it starts from the Golgi
tendon organs and has the main function to inhibit the
motoneurons of the given muscle when the strength
exceeds dangerous values, as discussed inAtsushi
et al. (1991).

In most cases muscles work in opposing pairs: one
muscle opens a joint and the other closes it. This con-
figuration is necessary because muscles exert force in
one direction only. We can see inFig. 3, the model
of a typical joint with the two antagonist muscles, the
spindle inside, the LMN neurons, the gamma neuron,
and the interaction between them.

The principal neuron of this system is called the
lower motor neuron (LMN). All the neurons illustrated
are in the spinal cord, and there are LMN for each
muscle fiber. InFig. 3, we see only one LMN for a
muscle. An LMN system must accept commands from
many other systems which desire to control the mus-
cle. The degree of contraction of a muscle is propor-
tional to the output pulse frequency of the LMN. The
part on the right inFig. 3 illustrates the simplest type
of spinal reflex: a pain receptor in the skin fires a neu-
ron in the LMN system, which in turn fires the LMN
driving the flexor muscle. This operation removes the
limb from danger. Inhibitory cross connections be-
tween the LMNs driving the two muscles insure that
they act in concert. This reciprocal synergistic circuitry
is generally active in all LMN operations. Higher level
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inputs to the LMN system may request such actions
as holding a particular position or moving to a spe-
cific position. Suppose that the higher nervous center
wishes the LMN to maintain a joint at a particular an-
gle. This command reaches a set of constant inputs to
the LMN and to the gamma neuron. Now suppose that
a load is applied to the finger. This will tend to flex
the joint, causing the extensor muscle to be stretched,
causing the spindle to be stretched too. Finally, this
will increase the output of neuron I, which increases
the output of LMN. The resulting increase in the con-
tractive force of the muscle will compensate for the
increased load. This kind of local feedback allows the
higher system to ignore the fluctuation in contraction
required to maintain a certain joint extension.

To develop a neural control for the myotatic reflex
we started the construction of a simulator to set the
parameters of the reflex control.

4. Structure and strategy for our controller

In Fig. 4, we can see the general control structure for
a single finger. We can recognize four main blocks: the
hand control planner, the low-level control system, the
reflex control, and the dynamic model for the finger
and for the actuation system.

The finger low-level control receives an high level
command from the hand control planner and converts

Fig. 4. Low level control general schema.

it into a sequence of joint position and force specifi-
cations. This control is able also to set the finger stiff-
ness; in this manner it is possible to save energy to
maintain a determinate joint position and at the same
time execute a specific task. The reflex control block
is able to simulate two reflexes that we observe in the
human body. In particular, we have simulated the my-
otatic reflex control and the inverse myotatic reflex
control. The last block inFig. 4 (bottom-right) rep-
resents the dynamic model for the finger and for the
actuation system.

4.1. Reflex control

In this control block we can find all the compo-
nents necessary for the position and moment control
of the joint (Fig. 5). The real position is subtracted
from the reference position supplied by the finger dy-
namic model (Fig. 4); in this manner the position error
is obtained. This value is sent to the position recep-
tors for the extensor and flexor actuators, details are in
Folgheraiter and Gini (2001). Artificial receptor con-
verts the analog value into a neural impulse signal ap-
propriate for the motoneurons. Another motoneuron’s
input comes from an auxiliary neuron whose task is to
set the joint stiffness. Even if the position error is null,
this motoneuron fires with a frequency proportional to
the stiffness value that comes from the Low Level Task
Control. Another task done by the auxiliary neurons is
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Fig. 5. Artificial miotatic and inverse miotatic reflex control.

to emulate the inverse myotatic reflex, which is based
on the two artificial force receptors. As long as the
force developed by the actuators is under a threshold,
the force-receptor potential is at a low level and con-
sequently it does not fire. However, when the force
exceeds the threshold, its potential increases, and so
does its firing frequency. The force receptor output, in
its turn, feeds an inhibitory input of the auxiliary neu-
ron, so when it starts firing at a high frequency, the
auxiliary neuron potential decreases together with its
firing frequency. This action inhibits the motoneuron
and in turn diminishes the actuator force and the ten-
sions in the flexor and extensor tendons. At this point
the joint is free to move under the external action (the
joint stiffness is reduced).

This behavior avoids the possibility of damaging
the tendons, the actuators and the finger’s mechanical
structure. It is important to note also the partial mo-
toneuron inhibition due to the output of the antagonist
motoneuron (Fig. 5); this circuit ensures that when an
actuator is contracted, the other is automatically re-
leased.

5. Model of the artificial finger

The model has been configured to replicate the
finger’s joint dynamic, including the actuation sys-
tem. First, we have empirically obtained the dynamic
constants that characterize the dynamics of the real
system: elastic constants, friction, inertia, mass, etc.

Then we have built the dynamic mathematical model
and represented it with the Math works (Matlab)
library. Finally after simulations we have set the pa-
rameters that characterize the dynamic behavior of
the reflex control.

5.1. Model of the artificial muscle

This system reproduces the dynamics of the actua-
tion system that is utilized in our artificial hand Black-
finger.Tondu and Lopez (2000)have proposed a good
dynamic model for this type of actuators, as in the
Eqs. (1) and (2).

Fi = πr2
0Pi[a(1 − Kεi)

2 − b]

− [fk + (fs + fk)] e−i/is] 1
n
Sco· Pi sign(ẋ) (1)

Sco= 2πr0l0
sin α0

(1 − kε)
√

1 − cos2 α0(1 − kεi)2
(2)

whereFi is the force generated from the artificial mus-
cle; Pi the pressure that feeds the actuator,r0 and l0
are the initial radius and length of the muscle,x the
muscle position, anda, b, ε, fk, fs are other parame-
ters that characterize the muscle structure and the dy-
namic friction.

5.2. Model of the finger joint

The model inEq. (3) represents the dynamics of
the Blackfinger phalanx joint. We have defined the
model using the Newton–Euler formulation of dynam-
ics. Like the actuator model, the joint model isn’t lin-
ear, making it difficult to apply the classic control the-
ories. Instead of working to transform the system into
a linear formulation, as inAtsushi et al. (1991), we
keep the nonlinear system and develop a neural con-
trol as illustrated in the following section.

Jθ̈ = −Keθ − Fdl + 1
2mlgcosθ + (F1 − F2)R (3)

whereF1, F2 are the artificial muscles forces;J the
phalanx inertia moment;Ke the ligament elastic con-
stant;m the phalanx mass;Fd the noise force;l the
phalanx length;R the joint radius.
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6. Model of the artificial neuron

The dynamic neuron model will reproduce the spik-
ing behavior of a natural neuron and is partially based
on theHodgkin and Huxley (1952)andScholles et al.
(1993)models.Eq. (4)gives the general model of our
dynamic neuron.

Ṗ = G1(w1x1 − w2x2 + w3x3 − fP − G2Th(P))

Y = G3Th(P) (4)

Th(P) = 1, if P > l1

Th(P) = 0, if P < l2

In the above equation,P represents the action potential
of the artificial neuron; its variation is proportional
to the inputs frequencies and the inputs weights. The
threshold function has a relay behavior: it assumes the
value ‘one’ when the potential exceeds the upper limit
l1 and the value ‘zero’ when the potential is lower
than the limitl2; betweenl1 andl2 the value is equal
to the previous state.X1 and x1 are the excitatory
inputs, whereasx2 is an inhibitory input; their values
are weighted byw1, w2 andw3. The parameterG1
is a loop gain, and its value can modify the dynamic
neuron’s response.

Fig. 6. Neuron response.

Like the natural one, the artificial neuron has a
short-term memory, and the decay term−fP in Eq. (4)
determines the rate of “forgetting”. Similar to the in-
put, the output is a sequence of impulses that have the
same duration but variable frequency which is a func-
tion of the inputs and of the weights values.

In Fig. 6, we can see the simulation of an artificial
neuron implementing a motoneuron. Starting from the
top the first three signals are neuron inputs, and the
last one is the output.

6.1. Dynamic weights

The reflex neural network must be able to adapt to
the dynamic characteristics of the system that needs
to be controlled. In order to perform this behavior,
neuron weights have to be changed during the system
operation. Their values will change until they reach
the optimal solution for the control. This means that
the error must decrease as fast as possible, and no
overshoot can be present in the system response.

In supervised learning, the adjustment of neu-
ron weights happens in concomitance with func-
tion minimization; that is significant for the control
problem in question. Instead, in unsupervised learn-
ing, the neural network improves its performance
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using a task-independent measure of the control
quality.

However, this process usually is difficult to perform
in real time, especially if the network has to learn and
control the system at the same time. What we have
tried to do in our neuron model is to use dynamic input
weighting. In this specific case, the weight is also a
dynamic system, and the model in the Laplace domain
is presented by theEq. (5).

wi = Lim

(
1

s
[K1xi − K2wi]

)

Lim(V) = V, if Vmin ≤ V ≤ Vmax (5)

Lim(V) = 0, if V < Vmin

Lim(V) = 1, if V > Vmax

whereK1 andK2 are opportunely chosen to set the
“correct” learning rate. In fact, ifK1 is too big, the
weight saturates rapidly at the maximum value per-
mitted.

It is possible to set these two values empirically;
let’s suppose that the weight inputxi (spiking signal)
has the maximum frequency, we want that, in these
initial conditions, the weight increases and reaches
the maximum value admissible (one) in about 1 s.
This specification is sufficient to set theK1 value.
In the same mode we can set theK2 value, but
this time we have to consider a nullxi input signal
and choose the period of time that the weight needs
to pass from the high value to the low admissible
value (zero). InEq. (5) the function Lim is an output
limitation, and it regulates the internal status of the
weight.

The weighting differs from the Hebbian learn-
ing rule (Hebb, 1949), because it does not take
into account the correlation between the presynap-
tic and postsynaptic neuron activity. In fact, we
can think at this learning rule as a local observer:
the weight is reinforced if the input of the neu-
ron is stimulated, and weakened otherwise. In a
certain manner each neuron is an independent con-
troller and it realizes the control strategy taking in
account only his own inputs. This simplify the net-
work configuration and avoids the weight satura-
tion.

6.2. Artificial receptor

This function is able to convert an analog signal
into impulse signals that are appropriate to feeds the
neurons. Its formula is expressed by the differential
Eq. (6).

Y = Th(R)

Ṙ = x

[
1 −

(
Th(R)

1

x
+ Th(R)

)]
(6)

R(0) = 0

R is an internal state,x the input signal, and the thresh-
old function is the same as inEq. (4). When the state
R is lower than a preset valuel2, R gets the value of
the integration of the input signalx, andY remains
at zero value. IfS overcomes thel1 limit, the thresh-
old function assumes the value of one, and so does
the outputY . The impulse duration is a constant inde-
pendent from the input signal; the impulse frequency
instead is proportional to the input intensity. In this
manner, we are able to have an impulse signal that has
a frequency directly proportional to the analog input
value.

6.3. Neural to analog function

With this function it is possible to convert an im-
pulse neural signal into a continuous analog signal.
The formula that describes this function is expressed
by Eq. (7) in the Laplace transform domain.

Y(s) = G
1

0.08s + 1
(7)

In this function, the choice of the pole frequency is
very critical; if it is too high, there is no integration of
the input signal, while if it is too low, the output will
not be continuous but will have an impulse behavior.

7. Model simulation

To test our control system we have used the
Simulink software. Simulation is performed on AMD
Athlon 1GHz computer, equipped with 256 Mbytes of
RAM. To integrate the differential equations we chose
the Euler method with an integration step of 0.1 ms.
We have simulated two types of control behavior: the
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Fig. 7. Myotatic reflex test.

tracking of a reference position for a finger joint and
the response to a harmful force.

We can see the results of our first experiment in
Fig. 7. In the figure, at the bottom, we can see the
reference position (radians) that changes like a square
wave whose amplitude is 1 rad and period is 0.5 s.
At the top there is the real joint finger position that
follows the reference position with appreciable preci-
sion. This result is good considering the global system
characteristics, in particular recalling that the finger
joint model and the actuators model are non linear.
The other quantities represented in the graphic output
are the forces and the inner pressures of the actuators.

The actuator inner pressure is set by the output of
the neural to analog function.

The other experiment, illustrated inFig. 8, was to
test the artificial inverse myotatic reflex. To do that, we

have fixed the position of the medial and distal finger
joints, then we have flexed the first phalanx of 0.5 rad.

In this condition we have applied at the fingertip
a noise force of 80 N, that generated a moment dan-
gerous for the hand, especially for the tendons that
are designed to support only fixed maximum loads.
For the first 1.5 s of the test, the joint settled at a po-
sition of 1 rad (57.2◦), then the noise force acted at
the fingertip. As a consequence, the force of the ac-
tuator connected to the flexor tendon increased until
the max value of 800 N. In this condition the artificial
force receptor connected to the actuators starts firing
at high frequency. This action inhibits the auxiliary
neuron and the motoneuron that controls the force in
this actuator. After the effect of the artificial inverse
myotatic reflex, the force is lowered to 600 N, which
is acceptable for the flexor tendon.
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Fig. 8. Inverse myotatic reflex test.

8. Conclusion

In conclusion, in this paper, we presented the con-
trol system architecture for an artificial hand and the
simulation results of its low level controller. In our
model we tried to reproduce the structure and the dy-
namic behavior of the human reflex. We show that the
artificial myotatic and inverse myotatic reflexes are re-
producible artificially and that their models present a
human-like behavior. We demonstrated that in compar-
ison with a classical control system, the reflex control
is more easily configurable. This is very important
especially if the system that we want to control is
non-linear. It is also important to note that the neural
network that control the joint stiffness and position of
Blackfingers are suitable also for other humanoid robot
joints. In comparison withYong et al. (1996)work,
we showed that the myotatic reflex control is applica-

ble to McKibben actuation system, and in the specific
case to our prototype of artificial hand. Moreover, in
our research, we have developed a specific type of dy-
namic artificial neuron that has a more human-like re-
sponse. The next step of our work is to test our control
system on the real prototype and compare the experi-
mentation results with the simulation.
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