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The quality of quantitative structure-activity relationship (QSAR) models depends on the quality of their
constitutive elements including the biological activity, statistical procedure applied, and the physicochemical
and structural descriptors. The aim of this study was to assess the comparative use of ab initio and
semiempirical quantum chemical calculations for the development of toxicological QSARs applied to a
large and chemically diverse data set. A heterogeneous collection of 568 organic compounds with 96 h
acute toxicity measured to the fish fathead minnow (Pimephales promelas) was utilized. A total of 162
descriptors were calculated using the semiempirical AM1 Hamiltonian, and 121 descriptors were compiled
using an ab initio (B3LYP/6-31G**) method. The QSARs were derived using multiple linear regression
(MLR) and partial least squares (PLS) analyses. Statistically similar models were obtained using AM1 and
B3LYP calculated descriptors supported by the use of the logarithm of the octanol-water partition coefficient
(log Kow). The main difference between the models derived by both MLR and PLS with the two sets of
quantum chemical descriptors was concentrated on the type of descriptors selected. It was concluded that
for large-scale predictions, irrespective of the mechanism of toxic action, the use of precise but time-consuming
ab initio methods does not offer considerable advantage compared to the semiempirical calculations and
could be avoided.

INTRODUCTION

Under the European Commission’s proposal for new
legislation relating to the registration of new and existing
chemical substances (http://europa.eu.int/comm/enterprise/
chemicals/chempol/whitepaper/reach.htm) it is foreseen that
quantitative structure-activity relationships (QSARs) for
toxicity and fate will be used more extensively. Potential
applications of the QSARs include priority setting and
triggering of in vitro and/or in vivo testing, waiving of testing
for hazard classification and for providing dose-response,
environmental fate, and mechanistic information.1,2 The
development of reliable QSARs that can respond to the
increased regulatory need requires critical scientific approach
to all the three constitutive elements of the modeling process,
i.e., the toxicological data, the chemical descriptors, and the
statistical procedure for QSAR formulation.3 In addition

approaches are required for the assessment, evaluation, and
validation of QSARs.4,5

It has been recently recognized that there are acceptably
good resources for the development of QSARs for acute
toxicity to fish.6 Among the available databases, the acute
toxicity database to fathead minnow (Pimephales promelas)
is considered a “gold standard” for quality of toxicity
measurement.7 The chemicals were selected for testing from
the Toxic Substances Control Act (TSCA) inventory of
chemicals to represent a cross-section of industrial organic
chemicals.8 Thus, the fathead minnow database is chemically
heterogeneous, and the substances in it represent a large
spectrum of mechanisms of toxic action.

A fundamental assumption in the current study was that
any nonspecific acute toxicity to aquatic organisms is a result
of penetration of the molecules into the cells and their
reactivity toward vital cellular components.9 The transport
process in QSAR analysis is most frequently modeled by
the logarithm of the octanol-water partition coefficient (log
Kow), and the quality of its calculation has been the subject
of numerous discussions.10,11 An assessment of chemical
reactivity (i.e. to the readiness of the molecule to react
covalently with the biomacromolecules) is also essential for
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the prediction of toxicological hazard. Reactivity is related
to the electronic structure and can be modeled with quantum
chemical descriptors.12

The emphasis in the present study was placed on the
quality of the electronic indices for the development of
toxicological QSARs and, more specifically, on the level of
theory required for general (i.e. across many classes and
mechanisms) prediction of acute aquatic toxicity from
hydrophobicity and quantum chemical descriptors. Previous
studies have analyzed the sources of variability in the
toxicological QSARs,13 the variability of the electronic
indices (particularly the energy of the lowest unoccupied
molecular orbital (ELUMO)) both between selected Hamilto-
nians and selected software package,14 and the possible ways
to parametrize electrophilicity in terms of descriptors within
the same Hamiltonian and software package.15

The aim of this study, therefore, was to assess the use of
ab initio and semiempirical quantum chemical calculations
for the development of toxicological QSARs applied to a
large and chemically diverse data set, irrespective of the
mechanism of toxic action. To achieve this aim, the B3LYP/
6-31G** ab initio method was used to calculate descriptors
for 568 compounds with acute toxicity data to fathead
minnow. B3LYP was preferred as a hybrid functional of the
density functional theory (DFT), which has become a
standard method to include the dynamic electron correla-
tion.16 B3LYP has proved superior to several other DFT
functions and is often considered competitive to high level
ab initio schemes as regards the computation of molecular
geometries, energies, and ionization potentials.17 It was
compared to the semiempirical method AM1,18 which is
much faster than the ab initio schemes and reproduces
experimental data (heat of formation, dipole moment, and
ionization potential) with reasonable accuracy. It also
performs reasonably well in the calculation of the hydrogen-
bond energies and charge distribution associated with
electrostatic potentials,19 which is important predominantly
for charge-controlled (hard-hard) interactions.16 However,
the semiempirical quantum chemical methods have been
developed to reproduce only a few (mainly gas-phase)
properties and geometries, and the performance of these
methods for calculation of descriptors related to charge
distribution and site-specific molecular reactivity is not clear
a priori. The suitability of the descriptors calculated by
B3LYP/6-31G** and AM1 was investigated by the develop-
ment of QSARs for acute fish toxicity utilizing these
descriptors following the application of multiple linear
regression (MLR) and partial least squares (PLS) analyses.
These two techniques are recognized as the most established
methods for the development of QSARs.20 Both MLR and
PLS used robust procedures for the selection of variables to
ensure the unprejudiced achievement of the goal of this study.

METHODS

Biological Data. A total of 568 organic chemicals
representing several chemical classes and mechanisms of
toxic action were considered in this study. Their acute
toxicity to the fishPimephales promelas(fathead minnow)
was published elsewhere21 and is provided electronically as
Supporting Information.

The data set is chemically heterogeneous and includes
compounds acting by different modes and mechanisms such

as narcosis (type I, II and III), uncouplers of the oxidative
phosphorylation, reactive electrophiles/ proelectrophiles, ace-
tylcholinesterase inhibitors, and central nervous system
(seizure) agents.

As noted above, all toxicity data were retrieved from
Russom et al.21 Tests were conducted using Lake Superior
water at 25( 1 °C. Aqueous toxicant concentrations were
measured in all tests with quality assurance criteria requiring
80% agreement between duplicate samples and 90-100%
spike recovery. Flow-though exposures were conducted using
cycling proportional, modified Benoit or electronic diluters.
Median lethal concentrations (LC50, in mg/L) were calculated
using the Trimmed Spearman-Karber method, with 95%
confidence intervals being calculated when possible. For the
purposes of this study the LC50 values were converted to
mmol/L, and the logarithm of their reciprocal values (log-
(1/LC50)) was used for QSAR modeling.

Molecular Descriptors. The molecular descriptor set
contained the logarithm of the octanol-water partition
coefficient (logKow), and two sets of electronic descriptors
were obtained using the semiempirical AM1 Hamiltonian
and the ab initio method B3LYP/6-31G**. The two sets of
electronic descriptors were considered separately from each
other, both in combination with logKow. Log Kow was
calculated by PALLAS software (PALLAS version 3.0,
CompuDrug International Inc., South San Francisco, CA).

Two methods were employed for the calculation of
quantum chemical descriptors. These were the semiempirical
method AM118 as implemented in MOPAC93 (Software
release 2002, Stewart, J. J. P.) and the ab initio method
B3LYP/6-31G** as provided by the Gaussian 98 (Gaussian
98 revision A.7, Gaussian Inc., Pittsburgh, PA) package. All
calculations included geometry optimization, employing
CORINA 200122,23 to generate initial 3D structures from
Simplified Molecular Input Line Entry Specification (SMILES)
strings, followed by SYBYL force field geometry optimiza-
tions (SYBYL version 6.8, Tripos Associates, St. Louis, MO)
before starting quantum chemical calculations.16 Because no
conformational search routines were employed it may well
be that, in individual cases, the finally achieved geometry
does not represent the energy minimum of the conformational
space. Thus, the geometries can be considered as optimized
on a screening level which, however, is considered sufficient
for the purposes of the present analyses.

A total of 162 chemical descriptors were calculated using
the AM1 method and 121 descriptors using the B3LYP/6-
31G** method. These included the energies of the highest
occupied (EHOMO) and the lowest unoccupied (ELUMO) mo-
lecular orbitals, their derivatives electronegativity (EN) and
molecular hardness (HD), dipole moment (µ), series of
atomic partial charges (Q), charged partial surface area
(CPSA) descriptors, a set of delocalizability indices (D)
available only from the semiempirical AM1 method, and
geometrical descriptors. A summary of the calculated
descriptors is provided in Table 1. A more detailed discussion
of their calculation and mechanistic meaning is available in
the literature.16

Statistical Analyses.Multiple Linear Regression Analysis.
An in-house algorithm written in C code for DOS (developed
at the European Centre for the Validation of Alternative
Methods, Institute for Health and Consumer Protection, Joint
Research Centre, Ispra, Italy) was utilized for variable
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Table 1. Descriptors Calculated for QSAR Analysis and Their Definitiond

symbol
no. of

descriptors definition

Descriptors Based on Molecular Orbital Energies
EHOMO 1 energy of the highest occupied molecular orbital
ELUMO 1 energy of the lowest unoccupied molecular orbital
EN 1 molecular electronegativity
HD 1 molecular hardness

Descriptors Based on Charge Distribution
µ 1 molecular dipole moment
QYp_mx 4 maximum positive atomic charge considering particular atom of type Y (Y) C, H, N, X: halogen)
QYp_avp 4 average positive partial charge considering particular atom of type Y and normalized with respect

to the number of atoms of this type charged positively (Y) C, H, N, X: halogen)
QYp_av 4 average positive partial charge considering particular atom of type Y and normalized with respect

to the total number of atoms of this type in the molecule (Y) C, H, N, X: halogen)
QYn_mx 4 maximum negative atomic charge considering particular atom of type Y (Y) C, N, O, X: halogen)
QYn_avn 4 average negative partial charge considering particular atom of type Y and normalized with respect

to the number of atoms of this type charged negatively (Y) C, N, O, X: halogen)
QYn_av 4 average negative partial charge considering particular atom of type Y and normalized with respect

to the total number of atoms of this type in the molecule (Y) C, N, O, X: halogen)
Qp_mx 1 maximum positive atomic charge in a molecule considering all non-hydrogen atoms
Qp_avp 1 average positive partial charge considering all non-hydrogen atoms and normalized with respect

to the number of non-hydrogen atoms charged positively
Qp_av 1 average positive partial charge considering all non-hydrogen atoms and normalized with respect

to the total number of non-hydrogen atoms in the molecule
Qn_mx 1 maximum negative atomic charge in a molecule considering all non-hydrogen atoms
Qn_avn 1 average negative partial charge considering all non-hydrogen atoms and normalized with respect

to the number of non-hydrogen atoms charged negatively
Qn_av 1 average negative partial charge considering all non-hydrogen atoms and normalized with respect

to the total number of non-hydrogen atoms in the molecule

Descriptors Based on Molecular Surface Area and Net Atomic Chargesa

PPSA_YY 14 partial positive surface area) Σ (+SAr) (YY ) 1, 1H, 1Z, 2, 2H, 2Z, 3, 3H, 3Z, 4, 4Z, 5, 5H, 5Z)
PNSA_YY 10 partial negative surface area) Σ (-SAs) (YY ) 1, 1Z, 2, 2Z, 3, 3Z, 4, 4Z, 5, 5Z)
DPSA_YY 6 difference in charged partial surface area) PPSA_YY- PNSA_YY (YY ) 1, 1Z, 2, 2Z, 3, 3Z)
FPSA_YY 9 fractional positive surface area) PPSA/SA (YY) 1, 1H, 1Z, 2, 2H, 2Z, 3, 3H, 3Z)
FNSA_YY 6 fractional negative surface area) PNSA/SA (YY ) 1, 1Z, 2, 2Z, 3, 3Z)
WPSA_YY 9 weighted positive surface area) (PPSA * SA)/1000 (YY) 1, 1H, 1Z, 2, 2H, 2Z, 3, 3H, 3Z)
WNSA_YY 6 weighted negative surface area) (PNSA * SA)/1000 (YY) 1, 1Z, 2, 2Z, 3, 3Z)
RPCG 3 relative positive charge) Qp_mx/(sum total positive charge) (RPCG, RPCG_H, and RPCG_Z)
RNCG 2 relative positive charge) Qn_mx/(sum total negative charge) (RNCG and RNCG_Z)
SPMX 3 maximum positive charge weighted by associated surface area) Qp_mx * (its respective surface area)

(SPMX, SPMX_H, and SPMX_Z)
SNMX 2 maximum negative charge weighted by associated surface area) Qn_mx * (its respective surface area)

(SNMX and SNMX_Z)
RPCS 3 relative maximum positive charge weighted by associated surface area) SAMPOS(SA of most positively

charged atom) * RPCG (RPCS, RPCS_H, and RPCS_Z)
RNCS 2 relative maximum negative charge weighted by associated surface area) SAMNEG * RNCG

(RNCS and RNCS_Z)

Descriptors Based on Molecular Orbital Wave Functions and Energiesb (AM1 only)
DNY 4 sum of the acceptor delocalizabilities of all atomic sites of type Y in a molecule (Y) C, H, N, O)
DNYav 4 average acceptor delocalizability of all atomic sites of type Y in a molecule (Y) C, H, N, O)
DNYaomx 4 maximum acceptor delocalizability of all atomic orbitals (AOs) of all atoms of type Y (Y) C, H, N, O)
DNYmx 4 maximum acceptor delocalizability of all atomic sites of type Y in a molecule (Y) C, H, N, O)
DEY 4 sum of the donor delocalizabilities of all atomic sites of type Y in a molecule (Y) C, H, N, O)
DEYav 4 average donor delocalizability of all atomic sites of type Y in a molecule (Y) C, H, N, O)
DEYaomx 4 maximum donor delocalizability of all atomic orbitals (AOs) of all atoms of type Y (Y) C, H, N, O)
DEYmx 4 maximum donor delocalizability considering particular atom type (Y) C, H, N, O)
DN 1 sum of the acceptor delocalizabilities of all atomic sites in a molecule
DNav 1 average acceptor delocalizability of all atomic sites in a molecule
DNmx 1 maximum acceptor delocalizability of all atomic sites in a molecule
DE 1 sum of the donor delocalizabilities of all atomic sites in a molecule
DEav 1 average donor delocalizability of all atomic sites in a molecule
DEmx 1 maximum donor delocalizability of all atomic sites in a molecule
PIrr 1 sum of self-polarizabilities of all atomic sites r in a molecule (cf. Schu¨ürmann 1998)
PIrrav 1 average self-polarizability of all atomic sites r in a molecule
PIrrmx 1 maximum self-polarizability considering all atomic sites r in a molecule

Geometrical Descriptorsc

SA 1 molecular surface area
V 1 molecular volume
SA_Y 7 molecular surface area encoded by particular atoms (Y) C, H, O, N, X: halogen, S: sulfur, Z: heavy atom)
Rad 1 radius of sphere with volume identical to the van der Waals volume of the molecule
Oval 1 ovality) ratio of molecular surface area over surface area of sphere with identical volume

() measure of deviation from spherical shape)
Log Kow 1 octanol-water partition coefficient (PALLAS software)

a In the group of descriptors based on molecular surface area and net atomic charges: 1) CPSA itself (i.e. PPSA and PNSA); 2) total charged
weighted CPSA. Equals to CPSA, multiplied by the sum of the positive or negative atomic charges; 3) atomic charge weighted CPSA. Sum of
the products of positively (negatively) charged atomic surface areas and associated atomic charges; 4) average net atomic positive (negative)
charge, weighted by associated surface area. Equals to CPSA, multiplied by the average positive or negative charge (Qp_av or Qn_av); 5) average
net atomic positive (negative) charge considering only positively (negatively) charged atoms, weighted by associated surface area. Equals to CPSA,
multiplied by the average positive or negative charge when referring to positively or negatively charged atoms only (Qp_avp or Qn_avn); H)
hydrogen atom; Z) heavy atom.b In the group of descriptors based on molecular orbital wave functions and energies: index N (nucleophilic)
indicates acceptor delocalizability toward attack from nucleophile; index E (electrophilic) indicates donor delocalizability toward attack from
electrophile.c For all geometric descriptors, MST radii were employed as listed in ref 42.d For more details cf. refs 16 and 34.
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selection with MLR as the fitting function. The program
allows the user to derivek-variable regression equations
combining all possible combinations ofk descriptors with a
specified level of intercorrelation between them (r ) 0.7 in
this study). This procedure is referred to as “all subsets
analysis” further in the text. For best subsets identification,
the maximumr2 criterion was used. To reduce the compu-
tational time for the development of all possible subsets, an
initial reduction in the number of the variables was per-
formed. It was based on the generation of all one-parameter
equations between the descriptors and the dependent variable
(log(1/LC50)). The statistical significance (p) of the descrip-
tors in the one-parameter equations was recorded, and
descriptors withp > 0.05 were discarded. As a result of this
procedure, logKow, together with 126 descriptors calculated
by AM1, and 101 descriptors calculated by B3LYP/6-31G**
entered the all subset analyses.

Further model evaluation and leave-one-out cross-valida-
tion were performed using the MINITAB ver. 13.1 (Minitab
Inc., State College, PA) software. The first 10k-descriptor
models (scored byr2) were considered. They were checked
in MINITAB for the significance of the descriptors (p values
> 0.05 were not allowed), and their statistics (regression
coefficient (r2), cross-validated regression coefficient (r2

CV),
standard error of the estimate (s), and the Fisher’s criterion
(F)) were recorded. The error of the coefficients is shown
in parentheses in the QSARs. Outliers were not excluded
from the MLR models.

Partial Least-Squares Analysis.PLS was applied using
the SIMCA-P ver. 9.0 (Umetrics AB, Umeå, Sweden)
software. Variable importance in the projection (VIP) was
used as the criterion for initial variable reduction with PLS.
VIP is defined as the influence of every descriptor in the
model (Dk) on the dependent variable Y (SIMCA-P User
Guide).24 Descriptors with high VIP values are more relevant
to explain Y than descriptors with low VIP values. Initially,
descriptors with VIP> 1 were excluded. The remaining
variables were screened in an iterative procedure in parallel
with outlier exclusion until only important (with relatively
high coefficients after centring and scaling of the variables)
and significant (the value of the coefficient is higher than
its error) descriptors remain in the model.

The statistical performance of PLS models was assessed
by the cumulative sum of squares (SS) of all descriptors
participating in the model explained by all components (r2-
(X)), cumulative SS of the toxicity explained by the model
(r2(Y)), cumulativeq2(Y) for all components, and the root-
mean-square error of the fit (RMSEE). The number of
significant principal components was determined by the
cross-validatedq2(Y). A negative contribution of a compo-
nent to the cumulativeq2(Y) was used as an indication that
the component is not significant.

RESULTS

The fathead minnow acute toxicity database, which is
considered of the highest quality for the development of
aquatic toxicology QSARs,25 was evaluated by octanol-
water partition coefficient and two sets of electronic descrip-
tors. The methods utilized for calculation of the electronic
indices reflected different levels of theory in the description
of the electronic structure. To compare the relevance of the

semiempirical and the ab initio methods for the development
of acute aquatic toxicity QSARs, two statistical methods for
analysis were employed.

The octanol-water partition coefficient was inevitably
included in the QSAR analysis because this is the only single
descriptor which is able to model a large portion of the
variability in any acute aquatic toxicity database.26 This fact
was confirmed once again in the present study by develop-
ment of a statistically significant, hydrophobicity-dependent
model:

The relationship between the log(1/LC50) and log Kow is
illustrated in Figure 1. The inclusion of a quadratic term in
eq 1 did not improve the statistics of the model (n ) 568,r2

) 0.610,r2
CV ) 0.601,s ) 0.866,F ) 442, T(log Kow)∧2 )

-0.05, whereT is the coefficient-to-error ratio).
Six outliers to eq 1, all with positive standardized residuals

greater than 3, were identified. These were strychnine,
rotenone, acrolein, allyl alcohol, malononitrile, and N-
vinylcarbazole. Two outliers with considerable negative
residuals (4,4′-isopropylidenebis(2,6-dichlorophenol) and tet-
rabutyltin) were visually identified from Figure 1. All eight
outliers were excluded, and the model was redeveloped:

Further outliers with significant standardized residuals
appeared, but they were not removed because the appearance
of outliers is iterative in nature and no-efficient cutoff could
be applied to stop this process. Moreover, from Figure 1 it
can be seen that further exclusion of outliers will be a
statistical artifact, and there are no single compounds that
can influence significantly the slope and the intercept in eq
2.

The statistical performance of eq 2 demonstrated that
although considerable, the contribution of logKow to model
the acute toxicity to fathead minnow in this large and
heterogeneous data set is not enough for development of a

Figure 1. A plot of toxicity (log(1/LC50)) versus hydrophobicity
(log Kow) for the fathead minnow database. The outliers are
indicated with an empty circle.

log(1/LC50) ) 0.670 (0.022) logKow - 0.631 (0.061)
(1)

n ) 568,r2 ) 0.610,r2
CV ) 0.606,s ) 0.865,F ) 885

log(1/LC50) ) 0.700 (0.022) logKow - 0.720 (0.058)
(2)

n ) 560,r2 ) 0.650,r2
CV ) 0.647,s ) 0.803,F ) 1034
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robust, predictive model. An improvement was sought by
the respective inclusion of electronic descriptors from the
two calculated pools (using AM1 and B3LYP/6-31G**
methods) without mixing of descriptors from the two sources.

Multiple Linear Regression Analysis.The best 10 two-,
three-, and four-descriptor models obtained with logKow and
descriptors calculated by the AM1 and B3LYP/6-31G**
methods are listed in Tables 2 and 3, respectively. Models
with higher dimensionality were not developed due to lack
of the further improvement of the statistical performance of
the models when more descriptors were added. It is evident
from Table 2 that the most preferred second (in addition to
log Kow) descriptors when calculated by the semiempirical
AM1 Hamiltonian were the energy of the lowest unoccupied
molecular orbital (ELUMO) and the molecular hardness (HD).
Indiscriminately better models with respect to ther2 were
obtained with the same two descriptors, calculated using the
ab initio B3LYP/6-31G** function (Table 3). It is interesting
to note that the correlation between ELUMO and HD calculated
by the two selected methods (ELUMO (AM1)/ELUMO (B3LYP),
r2 ) 0.85; HD (AM1)/HD (B3LYP), r2 ) 0.84) is better
than the correlation between the two descriptors calculated
by the either of methods (ELUMO (AM1)/HD (AM1), r2 )
0.74; ELUMO (B3LYP)/HD (B3LYP), r2 ) 0.72), which

reflects the difference in information between ELUMO and HD.
Further common trends in the best two-parameter models
could not be observed. Among the semiempirically calculated
descriptors the choice went further to the delocalizability
indices (which are not available from the ab initio methods)
and different (between Tables 2 and 3, two-parameter
models) partial charged surface area descriptors.

The comparison of the statistical criteria in Tables 2 and
3 indicates that there is not a substantial difference between
r2, r2

CV, s, andF when comparing the best two-, three-, and
four parameter models. Thus, for the 10 best two-parameter
models in Table 2, ther2 changes from 0.663 to 0.642, while
in Table 3 it changes from 0.667 to 646. Conversely, ther2

decreases from 0.698 to 0.692 in the best 10 four-parameter
models in Table 2, while in Table 3 it is slightly worse and
decreases from 0.693 to 0.689. Bearing in mind the imminent
uncertainty associated with the measurement of the biological
endpoint and the calculation of the logKow, the observed
differences in the statistical criteria between Tables 2 and 3
can be considered insignificant.

Although the use of electronic indices calculated at
different levels of theory resulted in equations with similar
statistical quality, the type of the parameters that entered the
analyses significantly affected the choice of the descriptors

Table 2. Descriptors Used in, and Statistics of, the MLR Models
Obtained from logKow and AM1 Calculated Quantum Chemical
Descriptors (n ) 568)

r2 r2
CV s F

Two-Parameter Models
Log Kow, ELUMO

a 0.663 0.658 0.805 555
Log Kow, HD 0.656 0.652 0.813 539
Log Kow, DNav 0.654 0.650 0.815 534
Log Kow, PIrrav 0.650 0.645 0.820 524
Log Kow, PIrrmx 0.650 0.645 0.821 524
Log Kow, DNCav 0.645 0.641 0.826 514
Log Kow, FPSA_1H 0.644 0.640 0.827 511
Log Kow, DNCmx 0.642 0.638 0.829 507
Log Kow, PNSA_1Z 0.642 0.637 0.830 506
Log Kow, PNSA_1 0.642 0.637 0.830 506

Three-Parameter Models
Log Kow, FPSA_1H, PIrrb 0.676 0.671 0.790 392
Log Kow, FPSA_1H, DN 0.676 0.670 0.790 392
Log Kow, ELUMO, DE 0.675 0.669 0.792 390
Log Kow, PIrrmx, DNO 0.675 0.669 0.792 390
Log Kow, ELUMO, V 0.674 0.668 0.792 389
Log Kow, PIrrmx, SA_O 0.673 0.668 0.793 387
Log Kow, ELUMO, SA 0.673 0.667 0.793 387
Log Kow, FPSA_1H, DE 0.673 0.667 0.793 387
Log Kow, DNav, SA 0.673 0.667 0.794 387
Log Kow, DNav, V 0.673 0.667 0.794 386

Four-Parameter Models
Log Kow, PIrrmx, FPSA_3H, DNc 0.698 0.692 0.763 325
Log Kow, PIrrmx, FPSA_3H, PIrr 0.697 0.691 0.765 324
Log Kow, PIrrmx, SE, FPSA_3H 0.696 0.690 0.766 322
Log Kow, PIrrmx, DNCav, SA 0.693 0.686 0.769 318
Log Kow, PIrrmx, FPSA_3H, SA 0.692 0.686 0.770 317
Log Kow, PIrrmx, FPSA_1H, Oval 0.692 0.686 0.770 317
Log Kow, PIrrmx, DNCav, DE 0.692 0.686 0.770 317
Log Kow, PIrrmx, FPSA_3H, DNC 0.692 0.685 0.771 316
Log Kow, PIrrmx, DNCav, V 0.692 0.685 0.771 316
Log Kow, PIrrmx, DNCav, Oval 0.692 0.685 0.771 316

a log(1/LC50) ) 0.614 (0.022) logKow - 0.240 (0.026) ELUMO -
0.392 (0.062).b log(1/LC50) ) 0.533 (0.026) logKow - 1.746 (0.177)
FPSA_1H- 0.482 (0.065) PIrr- 0.131 (0.115).c log(1/LC50) ) 0.452
(0.028) logKow - 95.29 (12.19) PIrrmx- 19.89 (2.49) FPSA_3H+
0.228 (0.029) DN - 12.20 (1.59).

Table 3. Descriptors Used in, and Statistics of, the MLR Models
Obtained from logKow and B3LYP Calculated Quantum Chemical
Descriptors (n ) 568)

r2 r2
CV s F

Two-Parameter Models
Log Kow, ELUMO

a 0.667 0.663 0.800 565
Log Kow, HD 0.664 0.660 0.803 559
Log Kow, PPSA_2Z 0.658 0.653 0.810 545
Log Kow, FPSA_2Z 0.657 0.653 0.812 541
Log Kow, PPSA_4Z 0.651 0.646 0.820 526
Log Kow, WPSA_2Z 0.648 0.643 0.822 521
Log Kow, PPSA_5Z 0.647 0.642 0.823 519
Log Kow, DPSA_2Z 0.647 0.643 0.823 518
Log Kow, PNSA_4 0.646 0.642 0.824 516
Log Kow, DPSA_3Z 0.646 0.641 0.825 515

Three-Parameter Models
Log Kow, ELUMO, WPSA_2Zb 0.685 0.679 0.778 409
Log Kow, HD, PPSA_2Z 0.685 0.679 0.779 408
Log Kow, HD, WPSA_2Z 0.684 0.678 0.780 407
Log Kow, ELUMO, PPSA_2Z 0.683 0.677 0.781 405
Log Kow, ELUMO, DPSA_2Z 0.682 0.677 0.782 404
Log Kow, ELUMO, V 0.682 0.677 0.782 404
Log Kow, ELUMO, WNSA_2Z 0.681 0.676 0.783 402
Log Kow, ELUMO, WNSA_2 0.681 0.676 0.783 402
Log Kow, ELUMO, SA 0.681 0.676 0.784 402
Log Kow, ELUMO, WNSA_1Z 0.680 0.675 0.785 400

Four-Parameter Models
Log Kow, ELUMO, DPSA_2Z, Qp_mxc 0.693 0.686 0.770 317
Log Kow, ELUMO, WPSA_2Z, RPCG 0.691 0.684 0.773 314
Log Kow, ELUMO, WNSA_3Z, Qp_mx 0.689 0.682 0.775 312
Log Kow, ELUMO, WNSA_3, Qp_mx 0.689 0.682 0.775 312
Log Kow, ELUMO, WPSA_2Z, Qn_avn 0.689 0.682 0.775 312
Log Kow, ELUMO, PPSA_2Z, RPCG 0.689 0.682 0.775 311
Log Kow, ELUMO, WPSA_2Z, Qp_mx 0.689 0.682 0.775 311
Log Kow, ELUMO, WPSA_2Z, V 0.689 0.681 0.775 311
Log Kow, HD, WNSA_1Z, FPSA_2Z 0.689 0.682 0.775 311
Log Kow, HD, FPSA_2Z, WNSA_1 0.689 0.682 0.775 311

a log(1/LC50) ) 0.630 (0.021) logKow - 0.242 (0.025) ELUMO -
0.603 (0.057).b log(1/LC50) ) 0.589 (0.022) logKow - 0.203 (0.025)
ELUMO + 0.0237 (0.0041) WPSA_2Z- 0.614 (0.055).c log(1/LC50)
) 0.563 (0.023) logKow - 0.227 (0.026) ELUMO + 0.00223 (0.0003)
DPSA_2Z- 0.778 (0.181) Qp_mx- 0.535 (0.072).
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in the best models. To illustrate this point, a count of the
descriptors that appeared more than once in Tables 2 and 3
was performed. The frequency of the appearance of the
descriptors (with exception of logKow which appeared in
all models) is shown in Figures 2 (from Table 2) and 3 (from
Table 3).

Partial Least-Squares Analysis.Following the procedure
for the selection of variables described in the materials and
methods, two final PLS models were developed. They are
summarized in Table 4. The outliers in the PLS model with
AM1 descriptors included the following: acrolein, allyl

alcohol, 2-propyn-1-ol, malononitrile, N-vinylcarbazole, 1,1-
dimethylhydrazine, all of them with positive residuals. The
final PLS model with B3LYP/6-31G** descriptors was
derived without acrolein, allyl alcohol, 2-propyn-1-ol, malo-
nonitrile, N-vinylcarbazole (with positive residuals), and 4,4′-
isopropylidenebis(2,6-dichlorophenol) (with negative residu-
als).

The two PLS models listed in Table 4 were derived using
the same number of descriptors (thirteen) and without the
same number of outliers (six). The outliers are almost the
same (with one exception) between the two PLS models and
agree with the outliers from eq 1. The statistical performance
of the PLS models with AM1 and B3LYP/6-31G** descrip-
tors is almost equivalent with respect to all statistical criteria
that have been assessed.

To visualize the relative importance of the descriptors, their
standardized and centered coefficients were plotted in Figures
4 (from the PLS model with AM1 descriptors) and 5 (from
the PLS model with B3LYP/6-31G** descriptors). Note, that
the PLS model with AM1 descriptors included four indices
(DNC, DEC, DEN, and PIrrmx) which were not available from
the B3LYP/6-31G** calculations. The score plots of the
descriptors in the two PLS models (Table 4) are shown in
Figures 6 (from the PLS model with AM1 descriptors) and
7 (from the PLS model with B3LYP/6-31G** descriptors).

Figure 2. Frequency of occurrence (number of models) of the
quantum chemical descriptors obtained in AM1 calculation which
were selected in the best 10 two-, three-, and four-descriptor models.
Only descriptors that appear more than once are shown on the plot.

Figure 3. Frequency of occurrence (number of models) of the
quantum chemical descriptors obtained from the B3LYP calculation
which were selected in the best 10 two-, three-, and four-descriptor
models. Only descriptors that appear more than once are shown
on the plot.

Table 4. Descriptors, Their Raw Coefficients, and the Associated
Statistics in the PLS Models Obtained from logKow and Electronic
Parameters

model with AM1
descriptors

model with B3LYP/6-31G**
descriptors

descriptor coefficient descriptor coefficient

constant -10.5 constant -1.01
Log Kow 0.214 LogKow 0.338
Rad 0.378 Qn_avn 3.13
V 0.00258 SA 0.00312
QOn_avn 0.766 Oval 1.02
QOn_av 0.766 PPSA_2Z 0.00452
DNC 0.115 PPSA_4Z 0.0673
DEN 0.528 PNSA_3 0.0116
SA 0.00151 PNSA_3Z 0.0116
WPSA_1 0.00264 FPSA_2Z 0.876
DEC -0.107 PNSA_1 0.00203
PIrrmx -76.2 PNSA_1Z 0.00203
ELUMO -0.159 HD -0.227
FPSA_3H -17.2 ELUMO -0.0905
n ) 562, PC) 2, r2(X) ) 0.625,

r2(Y) ) 0.726,q2(Y) ) 0.719,
RMSEE) 0.721

n ) 562, PC) 3, r2(X) ) 0.754,
r2(Y) ) 0.724,q2(Y) ) 0.711,

RMSEE) 0.723

Figure 4. PLS coefficients, obtained after centering and scaling
of log Kow and quantum chemical descriptors calculated using the
AM1 method.

Figure 5. PLS coefficients, obtained after centering and scaling
of log Kow and quantum chemical descriptors calculated using the
B3LYP method.

MO PROPERTIES FORQSARS J. Chem. Inf. Model., Vol. 45, No. 1, 2005111



DISCUSSION

This study describes the comparative development of
QSARs for the toxicity to the fathead minnow of a
heterogeneous group of organic chemicals utilizing the
octanol-water partition coefficient and two sets of quantum
chemical descriptors. The latter were generated by the AM1
and B3LYP/6-31G** methods that reflect different levels
of theory in the calculation of the electronic structure. Similar
sized data sets with acute toxicity data to fathead minnow
have been analyzed previously by other workers.27-30 The
descriptors in this study were calculated deliberately to enable
the comparison and assessment of the need of ab initio
calculations for the development of toxicological QSARs in
a large and chemically heterogeneous data sets. The choice
of the statistical tools (MLR and PLS) was motivated by
the requirement for development of transparent and easily
reproducible QSARs. The methods utilized for the selection
of variables allowed objective judgment on the use of high-
level but computationally demanding quantum chemical
calculations for the development of acute aquatic toxicity
QSARs.

In the QSAR analysis, the first descriptor (logKow) was
selected empirically as a result of extensive experience in
modeling of acute aquatic toxicity.26,31-33 A strong trend of
increasing toxicity with increasing hydrophobicity underpins
the data set. Indeed, logKow alone accounts for approximately
65% of the variance in the toxicity data (eq 2). This result
implicitly makes the improving of the model difficult. The

observed general trend in the modeling of acute aquatic
toxicity data is a consequence of the fact that to exhibit a
toxic effect any chemical must be absorbed from the
environment and that uptake is hydrophobicity dependent.
It should be noted, however, that eqs 1 and 2 in this study
are not baseline QSAR models for narcosis. Instead eqs 1
and 2 were developed to illustrate the portion of the
variability in the fathead minnow toxicity values that can
be explained by hydrophobicity.

The generation of all possiblek-descriptor models is
considered the most robust selection procedure that can be
combined with any statistical method for analysis. It enables
the best QSAR model to be found according to a predefined
criterion. This procedure was chosen to ensure that no
appropriate descriptor was omitted due to limitations of the
statistical approach. As a result, populations of statistically
similar k-descriptor MLR models were generated and
subsequently analyzed.

The best two-parameter equations using logKow and
electronic indices calculated by the AM1 and B3LYP/6-
31G** methods were developed with ELUMO and HD.
Following the definition of frontier orbital energies, these
parameters quantifyswithin the limits of Hartree-Fock
theorysthe energy associated with the acceptance (ELUMO)
or donation (EHOMO) of an electron, corresponding to a full
one-electron reduction and oxidation, respectively (cf. ref
16). As such, ELUMO and EHOMO are expected to correlate
with the global readiness of the molecule to accept or donate
electron charge, the latter of which appears to make them
useful as global descriptors for electrophilicity and nucleo-
philicity in the context of computational toxicology. Note
that the molecular electronegativity, EN) 1/2(EHOMO +
ELUMO), is an alternative global measure for the tendency of
molecules to attract electrons.16,34 It was originally defined
considering the electron transfer between two reaction
partners, with EN being equal for two chemical species A
and B when the energies associated with the one-electron
transfer from A to B and from B to A are equal.

Molecular hardness (HD) is another descriptor to charac-
terize the readiness of a molecule to gain or lose electrons
and can be defined as the resistance of the electronic structure
to undergo changes.16 Low HD indicates a greater readiness
of the molecule to accept or donate electron charge and the
high HD signifies considerable resistance to changes.

Comparison of Tables 2 and 3 (MLR results) as well as
of Figures 4 and 5 (PLS results) shows that the charged
partial surface area (CPSA) descriptors are generally more
significant with B3LYP than with AM1. Keeping in mind
that CPSA parameters characterize the potential of molecular
surfaces to undergo Coulomb interactions, the differences
between AM1 and B3LYP are likely to reflect respective
differences in the quantification of net atomic charges.
Indeed, a recent study revealed significant and systematic
differences in the calculation of atomic charges between
semiempirical and ab initio quantum chemical schemes.16

Another difference between Tables 2 and 3 concerns the
use of wave function-based descriptors such as acceptor and
donor delocalizabilities and the molecular self-polarizability,
PIrr. It should be noted that these parameters were not
available from the B3LYP level of quantum chemistry. As
can be seen from Table 2, as well as from Figure 2, the
maximum value of the self-polarizability within a given

Figure 6. A score plot of the two principal components derived
from log Kow and quantum chemical descriptors calculated using
the AM1 method.

Figure 7. A score plot of the first two principal components derived
from log Kow and quantum chemical descriptors calculated using
the B3LYP method.
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molecule (Pirrmx) is frequently selected (and often the major)
electronic parameter besides hydrophobicity when employing
the semiempirical AM1 calculations. PIrr was originally
introduced in a perturbational treatment of intermolecular
interactions as a measure for the readiness of individual
atomic sites to accommodate local changes in the energy of
site-specific electrons34 and can be understood as a quantity
related to the molecular softness. As such, PIrr probably
encodes information related to HD, the latter of which has
proven particularly useful as a B3LYP descriptor for model-
ing fish toxicity (cf. Table 3 and Figure 3). Similar
differences also hold true for the PLS results as can be seen
from Figures 4 and 5.

Finally, Figures 6 and 7 reveal the grouping of the
descriptors used in the development of PLS models with
AM1 and B3LYP descriptors (Table 4). It is evident from
the plots that the logKow serves as a single descriptor highly
loaded in the first two principal components of the models
as shown in Table 4. Figure 6 demonstrates a logical
grouping of molecular size descriptors such as molecular
volume (V), surface area (SA), and the radius of a sphere
with a volume identical to the van der Waals volume of the
molecule (Rad). However, the appearance of the sum of the
acceptor delocalizabilities over all carbon atoms in the
molecule (DNC) in the same cluster of descriptors is more
difficult to explain. At a similar position in Figure 7, a large
cluster formed by charge partial surface area descriptors
(PNSA_1, PNSA_1Z, FPSA_2Z, PPSA_2Z, and PPSA_4Z)
can be seen. It is interesting to highlight the close relationship
between ELUMO and PIrrmx in Figure 6 and between ELUMO

and HD in Figure 7. This observation concurs well with the
theoretical considerations regarding about the relationship
between ELUMO and HD, ELUMO and PIrrmx, and, indirectly,
between HD and PIrrmx.

CONCLUSIONS

The need of ab initio quantum chemical calculations for
the development of toxicological structure-activity relation-
ships was assessed. The results demonstrated that for a large
and chemically diverse data set the choice of the precise but
time-consuming calculations at high level of theory does not
contribute noticeably to the quality of the derived QSARs.
Statistically similar models were obtained using semiem-
pirical (AM1) and ab initio (B3LYP) calculated descriptors
supported by the use of the octanol-water partition coef-
ficient (log Kow). The considerable difference between the
models concerned the choice of descriptor for QSAR,
independent of the statistical technique applied (MLR or
PLS). Thus, with B3LYP the charged partial surface area
(CPSA) descriptors were generally significant, while with
AM1 the preference was given to size descriptors and
delocalizability indices (the latter not being available from
the ab initio calculations). However, the specific interpreta-
tion of the multivariate models for large and structurally
diverse data sets is clouded by the apparent or hidden
relationships between the quantum chemical descriptors and
lack of mechanistic uniformity within the chemical series.
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