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h i g h l i g h t s

� QSAR analysis of cellular uptake in PaCa2 cancer cells of nanoparticles is carried out.
� The concept of QSAR as a random event is suggested.
� Five distributions 109 nanoparticles into the training and test sets are studied.
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Quantitative structure–property/activity relationships (QSPRs/QSARs) are a tool to predict various end-
points for various substances. The ‘‘classic’’ QSPR/QSAR analysis is based on the representation of the
molecular structure by the molecular graph. However, simplified molecular input-line entry system
(SMILES) gradually becomes most popular representation of the molecular structure in the databases
available on the Internet. Under such circumstances, the development of molecular descriptors calculated
directly from SMILES becomes attractive alternative to ‘‘classic’’ descriptors. The CORAL software (http://
www.insilico.eu/coral) is provider of SMILES-based optimal molecular descriptors which are aimed to
correlate with various endpoints. We analyzed data set on nanoparticles uptake in PaCa2 pancreatic can-
cer cells. The data set includes 109 nanoparticles with the same core but different surface modifiers
(small organic molecules). The concept of a QSAR as a random event is suggested in opposition to ‘‘clas-
sic’’ QSARs which are based on the only one distribution of available data into the training and the val-
idation sets. In other words, five random splits into the ‘‘visible’’ training set and the ‘‘invisible’’ validation
set were examined. The SMILES-based optimal descriptors (obtained by the Monte Carlo technique) for
these splits are calculated with the CORAL software. The statistical quality of all these models is good.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction Quantitative structure–property/activity relationships (QSPR/
During the last 20 years, there has been considerable increase of
interest in nanostructures. It obviously facilitates surge of new
directions in the basic research and generates many novel experi-
mental projects. New materials have been developed, tested, and
fast forwarded into production lines. Nanomanufacturing becomes
a substantial part of the 21st Century industry. However, this also
might create adverse effects. In particular, some of nanomaterials
can be harmful to the environment and humans.
QSAR) are a tool for prediction of various endpoints (García et al.,
2011; Garro Martinez et al., 2011; Ojha et al., 2011; Mullen et al.,
2011; Ibezim et al., 2012) using molecular descriptors (Furtula
and Gutman, 2011; Afantitis et al., 2011) calculated with molecular
graph (Toropov and Roy, 2004; Castillo-Garit et al., 2007), quan-
tum-chemical descriptors (Petrova et al., 2011) as well as with sim-
plified molecular input-line entry system (SMILES) (Toropov et al.,
2008, 2012).

The understanding and predicting of the biological effects of the
manufactured nanoparticles represents an important task of mod-
ern natural sciences. The experimental analysis of these substances
is expensive. Theoretical investigations of such phenomena could
provide an efficient approach to evaluation of nano-bio interac-
tions (Leszczynski, 2010). Consequently, the development of the
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QSPR/QSAR for nanoparticles is useful from point of view the both
praxis and theory. The recent review provides discussion of such
challenges in developing Nano-QSAR methods (Puzyn et al., 2009).

The aim of the present study is the evaluation of the CORAL
software as a possible tool of the QSAR analysis for cellular uptake
of nanoparticles in PaCa2 cancer cells. This study was carried out
for the nanoparticles involving the same metal core but various
surfaces modified by different small molecules.
2. Method

2.1. Data

We have examined 109 nanoparticles. They have the same
nano-core, but various surfaces modifiers (small organic mole-
cules). The cellular uptake in PaCa2 cancer cells of above-men-
tioned nanoparticles was studied. The selected endpoint (cellular
uptake) is defined as minus decimal logarithm of the concentration
(pM) of nanoparticles per cell (Fourches et al., 2010). The data for
these 109 nanoparticles were randomly split into the sub-training,
calibration, test, and validation sets. The roles of these sets are dif-
ferent: sub-training set is the ‘‘developer’’ of the model since cor-
relation weights of compounds from the set are used to build up
the model; calibration set is the ‘‘critic’’ of the model since data
from this set are used to check whether model is working for com-
pounds which are absent in the sub-training set; the test set is
‘‘estimator’’ of the model in cases of various threshold values; final-
ly, the ‘‘invisible’’ validation set is used for the final estimation of
the model with threshold value which gives the best statistical
quality for the test set. These splits are random and various. In fact,
the sub-training set, the calibration set, and test set are ‘‘visible’’
during of building up the model; hence, they should be qualified
as a structured training set. The validation set is ‘‘invisible’’ during
building up a model; hence, statistical characteristics of this set are
true measure of predictability of this approach. The distribution
into the structured training set and validation set as rule has
apparent influence upon statistical characteristics of the model.
Consequently, one should examine several distributions into the
training and validation in order to obtain realistic estimation of
ability of this approach. The QSAR for each distribution is a random
event and statistical characteristics of each model are random coef-
ficients. We deem that average values of these coefficients (e.g.
correlation coefficient, root-mean-square error, mean absolute er-
ror (MAE), and others) as well as their ranges should be qualified as
more robust information than data on these coefficients for only
one distribution into the training and validation sets.
Table 1
Calculation of the NOSP index according to presence (absence) of nitrogen (N), oxygen (O

N O S P Comments

0 0 0 0 Nitrogen, oxygen, sulfur, and phosph
0 0 0 1 The molecule only contains phospho
0 0 1 0 The molecule only contains sulfur
0 0 1 1 The molecule contains sulfur and ph
0 1 0 0 The molecule only contains oxygen
0 1 0 1 The molecule contains oxygen and p
0 1 1 0 The molecule contains oxygen and su
0 1 1 1 The molecule contains oxygen, sulfur
1 0 0 0 The molecule only contains nitrogen
1 0 0 1 The molecule contains nitrogen and
1 0 1 0 The molecule contains nitrogen and
1 0 1 1 The molecule contains nitrogen, sulfu
1 1 0 0 The molecule contains nitrogen and
1 1 0 1 The molecule contains nitrogen, oxyg
1 1 1 0 The molecule contains nitrogen, oxyg
1 1 1 1 The molecule contains nitrogen, oxyg
2.2. Descriptors

We have formulated the following principles of building up a
model of an endpoint with the CORAL software (Benfenati et al.,
2008):

(a) Molecular structure of each compound can be represented
by molecular features which are extracted from SMILES.

(b) There are local and global molecular features which can be
extracted from SMILES. The local features are some frag-
ments (or individual atoms). The global features are some
indices which characterized molecules in whole.

(c) Building up of QSPR/QSAR model for an arbitrary split into
the training and validation sets can be examined as a ran-
dom event.

(d) The statistical quality of each QSPR/QSAR model is a mathe-
matical function of split into the sub-training, calibration,
test, and validation sets.

(e) The average statistical quality of QSPR/QSAR models that is
obtained for several splits into training and test sets is more
robust criterion for the estimation of an approach than sta-
tistical quality for solely one split.

(f) The average statistical quality of a model for external ‘‘invis-
ible’’ validation sets is more significant data than the average
statistical quality for ‘‘visible’’ (i.e. substances involved in
building up model) sub-training and calibration sets.

The SMILES-based optimal descriptors are calculated as the
following:

DCWðThreshold;NepochÞ ¼
X

CWðSkÞ þ
X

CWðSSkÞ þ CWðNOSPÞ
ð1Þ

where Sk, SSk are local SMILES attributes which are extracted from
the SMILES; the extraction of Sk and SSk can be represented as (Toro-
pov et al., 2012):

\ABCDE" : \A"; \B"; \C"; \D"; \E"ðSkÞ;
\ABCDE" : \AB"; \BC"; \CD"; \DE"ðSSkÞ; ð2Þ

NOSP are global (Toropov and Toropova, 2002, 2003) SMILES
attributes which are extracted from the SMILES (Benfenati et al.,
2008; Toropov et al., 2011; Toropova et al., 2011a,b). The NOSP is
an indicator of presence (absence) of four chemical elements:
nitrogen, oxygen, sulfur, and phosphorus (Toropov et al., 2011).
Table 1 contains the definition of the NOSP according to presence
), sulfur (S), and phosphorus (P).

Representation for the CORAL calculations

orus are absent NOSP00000000

rus NOSP00010000

NOSP00100000

osphorus NOSP00110000

NOSP01000000

hosphorus NOSP01010000

lfur NOSP01100000

, and phosphorus NOSP01110000

NOSP10000000

phosphorus NOSP10010000

sulfur NOSP10100000

r, and phosphorus NOSP10110000

oxygen NOSP11000000

en and phosphorus NOSP11010000

en, and sulfur NOSP11100000

en, sulfur, and phosphorus NOSP11110000



Table 2
Example of calculation DCW(2,48) with Eq. (1) in the case of split 1.

Structure

F

F
F

O

O

O

F

F

F

SMILES FC(F)(F)C(=O)OC(=O)C(F)(F)F

DCW(2,48) 11.64175

Structural attribute
(SA)

Correlation weight of SA, CW
(SA)

The number of SA in sub-training
set

The number of SA in calibration set The number of SA in test set

Sk

F. . .. . . 1.0000 2 2 0
C. . .. . . �1.2158 34 42 18
(. . .. . . �1.8085 29 39 15
F. . .. . . 1.0000 2 2 0
(. . .. . . �1.8085 29 39 15
(. . .. . . �1.8085 29 39 15
F. . .. . . 1.0000 2 2 0
(. . .. . . �1.8085 29 39 15
C. . .. . . �1.2158 34 42 18
(. . .. . . �1.8085 29 39 15
=. . .. . . 0.2138 23 33 14
O. . .. . . �0.4728 25 34 14
(. . .. . . �1.8085 29 39 15
O. . .. . . �0.4728 25 34 14
C. . .. . . �1.2158 34 42 18
(. . .. . . �1.8085 29 39 15
=. . .. . . 0.2138 23 33 14
O. . .. . . �0.4728 25 34 14
(. . .. . . �1.8085 29 39 15
C. . .. . . �1.2158 34 42 18
(. . .. . . �1.8085 29 39 15
F. . .. . . 1.0000 2 2 0
(. . .. . . �1.8085 29 39 15
(. . .. . . �1.8085 29 39 15
F. . .. . . 1.0000 2 2 0
(. . .. . . �1.8085 29 39 15
F. . .. . . 1.0000 2 2 0

SSk

F. . .C. . .. . . 1.8710 2 0 0
C. . .(. . .. . . 1.7550 28 37 15
F. . .(. . .. . . 0.8428 2 2 0
F. . .(. . .. . . 0.8428 2 2 0
(. . .(. . .. . . 1.1230 3 2 0
F. . .(. . .. . . 0.8428 2 2 0
F. . .(. . .. . . 0.8428 2 2 0
C. . .(. . .. . . 1.7550 28 37 15
C. . .(. . .. . . 1.7550 28 37 15
=. . .(. . .. . . 2.0968 23 33 14
O. . .=. . .. . . 0.6240 23 33 14
O. . .(. . .. . . 0.9355 25 34 14
O. . .(. . .. . . 0.9355 25 34 14
O. . .C. . .. . . 1.0888 19 25 8
C. . .(. . .. . . 1.7550 28 37 15
=. . .(. . .. . . 2.0968 23 33 14
O. . .=. . .. . . 0.6240 23 33 14
O. . .(. . .. . . 0.9355 25 34 14
C. . .(. . .. . . 1.7550 28 37 15
C. . .(. . .. . . 1.7550 28 37 15
F. . .(. . .. . . 0.8428 2 2 0
F. . .(. . .. . . 0.8428 2 2 0
(. . .(. . .. . . 1.1230 3 2 0
F. . .(. . .. . . 0.8428 2 2 0
F. . .(. . .. . . 0.8428 2 2 0
F. . .(. . .. . . 0.8428 2 2 0

NOSP
NOSP01000000 1.6290 17 22 7

A.A. Toropov et al. / Chemosphere 92 (2013) 31–37 33



Fig. 1. The flowchart of one epoch of the Monte Carlo optimization of correlation weights (n is the number of correlation weights involved in building up model).
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(absence) of nitrogen, oxygen, sulfur, and phosphorus. Table 2 con-
tains an example of the SMILES attributes with their correlation
weights which were obtained in the case of the split 1.

The threshold and Nepoch are parameters of the Monte Carlo
optimization. The threshold is a tool to define two classes of molec-
ular features: rare (noise) and not rare, i.e. active. The optimal
descriptors are calculated with the correlation weights of active
molecular features (attributes). Correlation weights for rare attri-
butes are fixed equal to zero, i.e. these are not involved in building
up model. For example, the threshold is defined as three. In this
case, all SMILES attributes (Sk, SSk, NOSP) which have presence les-
ser than in four SMILES from the sub-training set will be classified
as rare.

The Nepoch is the number of epochs of the Monte Carlo optimi-
zation. The target function (TF) of the optimization is defined as
the following:

TF ¼ Rþ R0 �WR � jR� R0j �WC � ðjC0j þ jC 00j þ jC1 � C01jÞ ð3Þ

where R and R0 are correlation coefficient between the optimal
descriptor and an endpoint (EP) for sub-training and calibration
sets, respectively; C0; C1; C00; and C01 are coefficients from equa-
tions obtained by the Least squares method:

EP ¼ C0 þ C1 � DCWðThreshold;NepochÞ for sub-training set; ð4Þ

EP ¼ C 00 þ C 01 � DCWðThreshold;NepochÞ for calibration set; ð5Þ

WR = 0.1 and WC = 0.01 are empirical parameters. Fig. 1 shows the
flowchart of one epoch of the Monte Carlo optimization.

The increase in the threshold leads to decrease of correlation
coefficient (between experimental and calculated values of end-
point) for the sub-training and calibration sets, but as the rule,
there is a maximum of the correlation coefficient for the test set.
The increase in the number of epochs of the Monte Carlo optimiza-
tion leads to increase in the correlation coefficient for sub-training
and calibration sets, but again, as the rule, there is the maximum of
the correlation coefficient for the test set. Thus, it is necessary to
define preferable values of the threshold (T�) and the number of
epochs (N�) which are providing maximum of correlation coeffi-
cient for the test set (Fig. 2). Finally, the model should be checked
up with data on the validation set (substances which were not in-
volved in the modeling process). However, even this checking up
can be improved if these actions will be carried out for several dis-
tributions into the training and validation sets.

3. Results and discussion

Table 3 contains the statistical quality of models which were
built up with the CORAL software. The data were obtained accord-
ing to the above-mentioned scheme (Fig. 2). Fig. 3 shows the mod-
els for five random splits graphically. One can see (Table 3) that all
these models are statistically satisfactory, but each model contains
good predictions i.e. dots near diagonal together with poor predic-
tions i.e. groups of dots remote from the diagonal (Fig. 3).

If one carried out several runs of the Monte Carlo optimization,
the molecular features of three kinds will be obtained. The first,
molecular features with positive correlation weights for all runs
(these are promoters of endpoint increase). The second, molecular
features with negative correlation weights for all runs (these are
promoters of endpoint decrease). The third, molecular features
with mixed correlation weights: there are both positive and nega-
tive values of the correlation weights in several runs of the Monte
Carlo optimization. The role of these features is undefined. We
have detected that for all five splits: (i) branching of carbon skele-
ton and presence of oxygen atoms are promoters of pM increase;
and (ii) –N–C– fragments and branching of the aromatic carbon
skeleton are promoters of pM decay. Lists of stable promoters of



Fig. 2. Scheme of definition of the preferable CORAL model. T is threshold; N is the number of epochs of the Monte Carlo optimization; T� and N� are values which give
maximum for the correlation coefficient between experimental and calculated endpoint values for the test set.

Table 3
The statistical characteristics for QSAR models of pM calculated with T� and N� values (Fig. 2).

Training Validation

Sub-training set Calibration set Test set Validation set

Split T� N� n r2 MAE n r2 MAE n r2
R2

m
MAE n r2 MAE

1 2 20 34 0.6913 0.186 42 0.6886 0.259 18 0.9280 0.7011 0.149 15 0.9341 0.129
2 2 28 32 0.6972 0.185 37 0.6444 0.300 23 0.8431 0.8360 0.133 17 0.8043 0.143
3 1 26 40 0.7287 0.173 34 0.9032 0.228 15 0.8379 0.7358 0.160 20 0.8723 0.148
4 1 25 37 0.7557 0.173 38 0.7555 0.204 15 0.7642 0.6275 0.150 19 0.8232 0.112
5 3 15 32 0.6504 0.215 39 0.6389 0.237 21 0.8859 0.8683 0.097 18 0.8429 0.153

T� and N� are preferable threshold and the number of epochs of the Monte Carlo method optimization (i.e. values of threshold and number of epochs which give best statistics
for the test set); n, r2, and MAE are the number of compounds in the set, the square correlation coefficient, and mean absolute error, respectively; R2

m is metric of predictability
(Roy et al., 2012; Ojha et al., 2011), R2

m ¼ r2 � ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

0

q
Þ: a model has predictability if R2

m > 0:5. (Additional information on R2
m is available via link http://aptsoft-

ware.co.in/rmsquare/).
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increase or decrease for the cellular uptake in PaCa2 cancer cells
can be used to search for the mechanistic interpretation of the
model. E.g. the presence in nanoparticle (with the same core) of
modifiers which contain the majority of stable promoters of in-
crease for the endpoint can be interpreted as high probability that
this nanoparticle will be characterized by high value of the cellular
uptake in PaCa2 cancer cells.

The domain of applicability for CORAL models can be defined as
nanoparticles (with the same core) which do not contain SMILES
attributes absent in the sub-training set.

http://aptsoftware.co.in/rmsquare/
http://aptsoftware.co.in/rmsquare/


Fig. 3. Models of the cellular uptake in PaCa2 cancer cells for 109 nanoparticles which were obtained for five various splits into the training (sub-training, calibration, and test
sets) and validation sets.
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The reproducibility of the satisfactory statistical quality of a
model for external validation set in several runs of the Monte Carlo
method optimization should be considered as the measure of reli-
ability of a CORAL model. However, even this criterion should be
checked up for several splits into the sub-training, calibration, test,
and validation sets.

Thus, the CORAL software provides models according to OECD
principles (Gramatica, 2007).

The statistical characteristics of models described in the litera-
ture (Fourches et al., 2010) where four model with 87 and 22 sub-
stances in training and test sets, respectively, and one model with
88 substances in the training set and 21 substance in the test set
are characterized by r2 values from 0.67 to 0.90 and MAE ranging
from 0.13 to 0.21 log units. In other words, statistical characteris-
tics of the CORAL models are similar to the statistics of the
above-mentioned models. However, the CORAL models were
derived without inclusion of the data on van der Waals surface
and lipophilicity (Fourches et al., 2010).

4. Conclusions

The concept of QSAR as a random event is suggested as the
alternative to build up QSAR with sole distribution of available
data into the subset of the training and subset of validation. The
CORAL software gives satisfactory and stable predictions of the cel-
lular uptake of nanoparticles in PaCa2 cancer cells for five random
splits (i.e. for five described random events).

Supplementary materials

(i) SMILES of examined substances together with the numerical
data on the endpoint; (ii) details of the five splits into sub-training,
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calibration, test, and validation sets; and (iii) correlation weights
(for three runs of the Monte Carlo optimization) of the most signif-
icant promoters of increase and decay of the endpoint for five splits
which are examined in this work. It is to be noted that aforemen-
tioned data represented in the Supplementary materials section
give possibility to reproduce the described QSAR models using
the CORAL software available on the Internet (http://www.insili-
co.eu/coral).
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