Comput Syst Sci & Eng (1994) 4: 255-261
© 1994 CRL Publishing Ltd

CONSTRICTOR: a constraint-

based language

Giuseppina C Gini and C Rogialli

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy

It is well-known that programming by constraints is a powerful way of expressing problems; unfortunately it is not always an efficient
way of solving them. Problems that can be defined as Constraint Satisfaction Problems are in the areas of planning, scheduling, image
interpretation, temporal reasoning, and others. Constraint propagation also plays an important role in TMS and in qualitative physics.
While the first examples of constraint satisfaction techniques in Al appeared as long ago as the 1970s, only recently has it been recog-
nized that constraints can be the basis of programming languages. Our work is aimed at integrating CSP in the LISP environment as a
general-purpose tool. A model of constraint satisfaction and a language are defined. The language implementation is discussed, with
particular emphasis on the debugging Jacilities and their use to monitor the domains of the variables.

Keywords: constraint satisfaction problems, CONSTRICTOR, language

1. INTRODUCTION

We have designed and developed CONSTRICTOR, a
programming language for defining constraint networks
and solving constraint satisfaction problems (CSP).
While 'programming by constraints' is recognized as a
powerful way of expressing problems, it is seldom used
because of the complexity of the algorithms needed!.
Problems that have been formalized as CSPs include
image interpretation, scheduling, temporal reasoning and
graphic simulation, to name only a few.

To define those problems we may use an extensional
style (enumerating all the instances) or an intensional
style (through patterns). The unary Walt-Disney-
Character relation can be defined through the list
(Mickey Mouse, Bambi, Winnie Poo, etc.) or by the pat-
tern (created by Walt Disney & cartoon-character)

While constraint-satisfaction techniques in Al have
been appearing since the 1970s, only recently has it been
recognized that constraints can be the basis of program-
ming languages. Sussman? and Guesgen’ have provided
the first examples of such languages.

Our work is aimed at integrating CSP in the LISP envi-
ronment as a general-purpose tool. We are interested in a
simple and practical implementation of a CSP on finite or
infinite domains, with n-ary relations. Basic design crite-
ria have been: problem-independence, efficient integra-
tion of the CSP into LISP, and a good debugger.

vol 9 no 4 october 1994

The idea of combining the constraint programming
with other paradigms has become very attractive and
interesting. In recent years, the paradigm of Constraint
Logic Programming (CLP)#6 has appeared, and a new
generation of logic languages that incorporate techniques
for CSP are now available.

Our approach is different because we want to make
available some programming tools for constraint solution
while programming in a conventional language such as
LISP. Moreover, we can define constraints on n variables
while CLPs are limited to unary and binary constraints,
for which quite efficient algorithms are available

2. BACKGROUND

Constraint satisfaction can be illustrated by the simple
example of addition. Given the relation x + y =2z, and two
values for a couple of variables, we can determine the
value of the third variable. A constraint is often repre-
sented as a box with input and output arrows. Many con-
straint-boxes can be connected to form a constraint
network. In the following:

ViV, denote the n variables occurring in CSP,
Dy, .., D, the domains associated with them, and
Ch .., G the n-ary constraints among the

variables.

255

G C GINt AND C ROGIALLI

Finding the solutions of the network! means finding all
the combinations of values that satisfy all the constraints.
In other words, to find all the sequences (by, ..., b,) of val-
ues for the n variables that are global or local solutions,
according to the basic definitions:

Definition 1

Given a constraint network C = {Cy, Cy, ... Ci}. on the
variables V = {V{, V,, ... V,}, a global solution of the net-
work (s a combination of values § = {s, 55, ... 5,} such
that their ordered assignment to the variables satisfies all
the constraints.

Definition 2

Given a constraint network C = {Cy, Cy, ... Ci}. on the
variables V = {V|, V,, ... V,]}, a local solution is a set of
domains D = {D,, D, ... D)} such that for each C; and for
each of its variables V;, if V; is assigned any value in the
domain D; it is possible to find in the domains of the other
variables instances that satisfy C;.

Not all the combinations obtained from a local solution
are also global solutions. The set S of all the global solu-
tions of a network is a subset of the Cartesian product of
the domains: § < X D,. It is worth knowing whether local
and global solutions are the same’ so that § = X D;. In this
case, all the global solutions can be found through local
propagation, a simple technique that does not require a
complete tree search8. However it has been proved that
local propagation is not enough to find global solutions
when S <X D,

Many advanced algorithms? have been developed for
constraint satisfaction as an evolution of the obvious
backtracking. They are based on look-ahead and look-
back strategies. All anticipate some tests on constraints to
avoid many more tests later on, and save auxiliary infor-
mation. The performance in reducing the number of con-
straint tests increases by a factor of 2.5 from the best to
the worst algorithm, while the number of look-ups
increases. For instance, the number of look-ups for the 8-
queens problem is from 104 to 105. Remember that for
pure backtracking it is 0.

For a general programming language the more
advanced algorithms are quite inappropriate. If they use
auxiliary memory they are limited, in practice, to unary
and binary constraints because n-dimensional arrays are
too expensive to manage. Moreover, all those algorithms
work on instantiated values; it is easy to instantiate vari-
ables if they have finite associated domains, it is difficult
for intensional constraints that usually start with
unknown domains.

Another class of possibly significant algorithms is con-
sistency checking!®. Those algorithms check node consis-
tency and path consistency so that constraint satisfaction
operates on a reduced graph. Also, those algorithms work
on unary and binary constraints. So the need for a solu-
tion strategy that is able to work efficiently for general-
purpose applications, and on n-ary constraints, is obvious.

The Constrictor project emerged when we approached
different problems in manufacturing and in assembly and

256

we found the recurrent use of constraint satisfaction tech-
niques. We developed a general-purpose tool to be used
in all these different problems, small enough to require a
very limited amount of memory and to run on a personal
computer. Since many parts of the applications we had in
mind can be programmed in algorithmic fashion, we
wanted CSP techniques integrated into a traditional lan-
guage. We chose LISP because it allows dynamic memo-
ry allocation and the best treatment of symbols.

We are much indebted to Consat’. We have adopted a
very similar syntax and worked on a few new objectives:
to obtain a portable system simply integrated into
CommonLisp. to adopt only one strategy for satisfying
the network, and to make some improvement by deleting
constraints as soon as possible. Along the way we discov-
ered that programming a constraint network is often hard.
For this reason. we developed an integrated debugger that
allows the animation through icons of the solution steps.

Pecos also is a similar system!!. dt is not a new lan-
guage, rather it is a constraint library added to an object-
oriented Le-Lisp environment. Pecos thus benefits
directly from the entire base environment which, in this
case, supports object-oriented, functional, structured.
non-deterministic and graphics features. The solving
mechanism for finite domain constraints 1s essentially
based on arc consistency checking and generation!d. the
one used for floating point constraints is based on interval
calculus.

We have instead, as Consat, chosen to realize a lan-
guage.

3. CONSTRAINT DEFINITION AND
SOLUTION IN CONSTRICTOR

We managed definitions of constraints as ‘extensional’
and ‘intensional’, we added a solution procedure, and
functions that allows some optimization by rearranging
the order of evaluation of the constraints.

Constraint relations are described by the primitive def-
constraint. All finite relations can be represented by enu-
merating their extensions, so listing all the tuples of the
admissible values, under the :tuples keyword. Infinite
relations are only described in an intensional style in a

compound constraint.

Let us introduce the language through examples. A
simple intensional constraint is the addition, where we
have three interface variables (under the :interface key-
word), and a :relation field, containing some :pattern.
which are LISP expressions:

(defconstraint addition
(:interface addl add2 sum)
(:relation
(:patternfadd] add2(+ addl add2}}
(-ificonstrained-p addl add2))
(:pattern (addl(- sim add]) sum)(:if (constrained-p addl sum))
(:pattern (- sum add2) add2 sum)(:if (constrained-p add2 sum))}})

The expression following :pattern are evaluated as
expressions into a COND according to which variable in

computer systems science & engineering

the interface is undefined (:unconstrained). If no Jpattern
is evaluated, the constraint is not satisfied and NIL is
returned.

Here we see how to assign values to the interface vari-

ables

(satisfy addition ‘WITH ‘((add] Iadd2 2jtsum 4))) => NIL
(satisfy addition -WITH addl (1 2 3))add? (24))))
=>((123)4224)32 SX1 4524 6)(347)

It is impossible to evaluate a constraint if no variable has
been instantiated. The keyword :condition is used to add
conditions, for instance to delay the evaluation of a con-
straint. Those conditions can result in augmenting the
efficiency of the constraint resolution.

Using our definition of addition

(satisfy addition »with ((add] 4)} => NIL

This result is not what expected. In fact it is impossible to
compute the two values for add? and sum, because they
are infinitly many, but NIL (= no solutions) is not a good
answer. We need to distinguish between NIL and
UNCOMPUTABLE. To get those different answers we
add a global computability condition in the definition of
the constraint, after the ‘relation, to state that at least two
of the variables should be assigned:

{:condition (< [(constrained-count add] add? sumj))

The condition is evaluated before the patterns; if a nega-
tive answer is produced - UNCOMPUTABLE is returned,

as in the case
(satisfv addition :with add] 4)) => JUNCOMPUTABLE

Suppose now we want to describe the constraint double-
sum, to work on five variables, so that C=A+B, E=C+D-

{defconstraint double-sum
{(:type compound)
(:interface AB C D E)
(:constraint-expressions {addition A B C) (addition C D E)))

The assignments of any three variables among A, B, D
and E make the constraint computable. For instance:

(satisfy double-sum -with WA TNB2)E 4))) => ((1.2.3.1.4))
(satisfy double-sum -with (A IXD INE 4))) => NIL

because the addition on A and B cannot be computed if
both B and C are ‘undefined. If we add the same zcondi-
tion as before:

(satisfy double-sum -with (A IND INE 4)}) => {(1.2.3.1.4)

Intensional constraints present some problems, For
instance, errors in the expressions of the :pattern can
have unpredictable effects. The reason is that errors can
create non-monotonic constraints. In fact, two main
requirements shouid be posted on our constraint system,

vol 9 no 4 october 1994

CONSTRICTOR: A CONSTRAINT-BASED LANGUAGE

as hereafter defined.

Let C be a constraint on n variables, D = {D,. D,, ..
D, } be the set of initial domains. and §= {5, S,, ... S} =
C(D) be the set of solutions.

Definition 3

Cis a monotonic constraint if. when evaluated Jorany D,
=(Dy,, D,,..D,,). D, being a subset of D for 1 <j<p,
the set of corresponding solutions S, is a subset of S for
every D,

Req. 1 §;=C(S)) for each S;in 8.
Req. 2 All the constraints in the network must be mono-
tonic.

All the enumerated constraints are monotonic. A com-
pound constraint is monotonic if al] the constraints inside
are monotonic. For non-monotonic constraints the results
are unpredictable. Reqgs. | and 2 are sufficient conditions.

4. THE RESOLUTION ALGORITHM
IN CONSTRICTOR

The use of constraints in Waltz!2 opens up another view
of a constraint. A constraint so far is a relation on instan-
tiated variables used to accept or reject some values. A
constraint is also a filter, a relation on domains (sets of
values) that filters the domains reducing their extension,
under the monotonic assumption. In this sense, all the
constraints are equivalent; also the 'qualitative’ con-
straints that operate on infinite domains because they
reduce those domains (initially represented by the key-
word ‘unconstrained) to finite dimensions. This idea of
reducing the domains while reducing the constraints to be
satisfied is the basis of our constraint satisfaction method.
The resolution algorithm of Constrictor had to be the ker-
nel of a general-purpose and efficient system with mini-
mum hardware requirements. For the first reason we
could not use domain knowledge, and for the second it is
important to save memory to reduce the calls to garbage
collection. Moreover, a general-purpose language can use
neither heuristics'3 nor domain knowledge to guide the
search.

We started from LPB (Local Propagation and
Backtracking) developed for Consat? and we added to it
an elimination phase. So we named our algorithm LPBE
(Local Propagation, Backtracking, and Elimination). LPB
is a compromise between local propagation, used to prop-
agate set of values, and backtracking, necessary to find aij
the global solutions. The steps are:

A: local propagation: all the constraints are activat-
ed and the domains are reduced:
B: the constraints whose domains have been modi-

fied are executed again, until the domains cannot
be reduced any more;

C: If the resuit is not unique, choice points are
sequentially set and local propagation continues
until a solution is found. If one solution has heen

257

G C GINI AND C ROGIALL

found save it and continue to D for backtracking
to the last choice until no more branches are
unexplored. If no choices are left the network i
inconsistent.

D: backtracking: values are changed and local prop-
agation continues from B.

We have observed that the condition in C is often too
strict. Suppose that during focal propagation a constraint
P is satisfied for any element of C, where C, 1s the
Cartesian product of the sets of the domains of the n vari-
ables at that time in the solution. Because all the con-
straints are monotonic, any other constraint can only
reduce the domains of its variables. In practice, the con-
straint P has terminated its influence on the solution,
because it will be satisfied by any subset of its solution
set. In fact, the Cartesian product of the domains reduced
by the application of other constraints is a subset of C,. In
the previous algorithm, instead P will be called again. To
reduce the number of constraints in the network before
exploring other branches is the idea of LPBE. The test on
the cartesian product is too expensive, so we have found a
simple condition to test 0 eliminate a constraint:

TEST: After evaluation of the constraint P, if
all the domains of its variables but one contain a sin-
gle value, eliminate P.

Motivation: Suppose P is a n-ary relation. We have n - 1
variables instantiated and one variable associated with a
domain of k values. The solutions of that constraint are
exactly the Cartesian product of the domains, which is &
combinations. If we eliminate P, all the other constraints
in the network can only reduce the number of the k com-
binations. In fact another constraint, P’, can possibly
reduce the elements in the multiple set, so that some com-
binations are eliminated. If P’ reduces a domain contain-
ing a single value to a nuil set, the subtree is no longer
explored anyway, because it cannot satisfy P’. This con-
dition, that is similar to the look-ahead inference rule of
Van Hentenrycks, is useful because it reduces the number
of tests near the leaves of the tree, and the number of
leaves grows quickly with the number of variables and
the looseness of constraints.
The main steps of LPBE in the solution are:

A: local propagation: initial domains are assigned 10
the variables of the network;

B: all the constraints are evaluated and the domains
reduced;

C: the constraints whose domains have been modi-

fied are re-executed until no constraint can
reduce the domains any more. Any constraint
that satisfies the TEST is eliminated;

D: if all the constraints have been eliminated, the
Cartesian product of the domains reduced by
focal propagation gives the global solutions. The
¢xecution terminates.

E: if the constraint list is not null, backtracking 1S
used to instantiate in sequence all the values of

258

the domains, and LPBE is recursively called
from B.

In practice, the effort required to evaluate constraints is
different for enumerated and for intensional constraints.
For enumerated constraints, each tuple of the definition is
checked against the initial domains of the variables. So
the complexity of computation is dominated by a factor
due to the number of tuples in the definition of the con-
straint, while the dimension of the initial domain 1s not SO
important. For intensional constraints, the evaluation is
based on the evaluation of the pattern. Patterns can oper-
ate on single values, not on domains. The filter is applied
on all the tuples obtained from the initial domains, and
only the admissible tuples are returned. The complexity
of this computation grows with the dimensions of the
domains, and tends to grow with the Cartesian product of
the domains.

To improve the efficiency in the case of intensional
constraints, pre-compilation is used to compile the func-
tions implicitly defined by the patterns. The evaluation of
a pattern is done by the call to its corresponding compiled
function.

The programmer may also improve the speed of execu-
tion by changing the order of evaluation of constraints.
As discussed by Nudel'4, this order can have a significant
impact on the complexity of the backtracking. Usually
LPBE explores the list of constraints to be activated in
sequence. If a cyclic strategy has been defined, when a
constraint is successfully evaluated the search to satisfy
the constraints on the modified variables is restarted from
the beginning of the list, not from the next element of that
list. Changing the activation order of constraints is useful
mainly when constraints are sorted. In this case, the most
complex constraints are delayed after the domains have
been considerably reduced by the application of the sim-
plest constraints.

5. NOTES ON IMPLEMENTATION
AND DEBUGGING

Constrictor is functional so that constraint solutions are
returned as values of the function SATISFY, the user
interface to call LPBE. A full version of the interpreter
and the debugger runs on the Apple Macintosh in Allegro
CommonLisp. It takes 230 Kb of RAM (200 in Lisp Heap
and 30 in Mac Heap). For more details, a short manual of
Constrictor is given in Appendix L.

Usually, we define constraints in the global context of
the LISP interpreter. We can also define local constraints
through the primitive constraint-let. The :pattern expres-
sions that appear in the intensive constraints are translat-
ed into COND expressions and compiled during the
execution of the defconstraint.

Satisfy is implemented as a macro. It is called with the
name of the constraint to be satisfied and with optional
parameters to indicate initial values, and to give instruc-
tions for how many solutions to find and how to print
them. It is possible to define recursive constraints by

computer systems science & engineering

inserting a call to satisfy in the definition of an intension-
al constraint.

Constrictor has been provided with a debugging facili-
ty oriented to the problems of constraint satisfaction tech-
niques. In fact, it is difficult to understand how the
domains are reduced along with the application of con-
straints and where possible bugs are. The debugger is ful-
ly integrated with the menus. When Constrictor is

installed a new option appears in the sixth position on the

top menu hine of Allegro. Different menus pop-up from
its opening.

We can get help on Constrictor; we can have a menu to
set the special variables, and we can ask for a constraint
trace of the chosen constraints.

When the constraint is activated, directly or through a
compound constraint in which it is called, we see how the
process evolves in an interactive window. Step and Auto-
step keys appears to start each step of execution of simple
or compound constraints. In the upper part of the tracing
window we see the icons describing the domains associ-
ated with the variable; in the lower part we see the icons
representing the elementary constraints that belong to the
compound constraint.

Three different icons indicate enumerated, intensional
or compound constraints; three icons describe the associ-
ated domains(infinite (runconstrained in Constrictor),
finite, or with an assigned value). The animation shows
the icons changing during the solution. When a domain is
modified its icon appears with an inverted background.
When a constraint is eliminated from the activation list,
its icon is crossed. All the icons are active elements: we
can select one to get all its information in the text field

6. EVALUATIONS AND
CONCLUSIONS

Here we have approached CSP on the base of formal
results on sequential algorithms. Work is under way to
define a parallel algorithm to be implemented on a trans-
puter architecture.

In recent years, much work has been done in CSP in
the Al community. Our system aims to be a useful tool
for developing solutions to such problems. It can be tai-
lored from local propagation, that reduces the depth of
the search tree, to backtracking, and it can be used in any
conventional LISP program. Moreover, it has been tested
on many classical combinatorial problems.

We have made a test to assess the real efficiency of
LPBE on the classical n-queens problem (see the defini-
tions in Constrictor for n = 4 in Appendix 2). In Figure |
we see a comparison between different algorithms. The
parameter we have chosen is the number of tests to get
the solution, as indicated in Mackworth and Freuder!; in
the same paper, a comparison between many algorithms,
shows that backtracking requires the maximum number
of tests from n = 7, while forward checking (with back-
marking) is the best.

We found out that for n < 6 (for little domains of the
variables) LPBE has a greater number of tests than other

vol 9 no 4 october 1994

CONSTRICTOR. A CONSTRAINT-BASED LANGUAGE

6
10 <

5 l%
10 4

102 /‘(|
?

o backtracking

Y

10
5 6 7 8 9

0 forward checking

Figure 1 The number of constraint checks for the N-queens problem
(the line indicates the values of LPBE)

algorithms, while for large domains it shows performance
better than looking ahead algorithms. If we consider the
number of table lookups, that are of the same order of
magnitude of constraints checks, we can conclude that
the performance can be competitive with both forward
checking and backmarking. In fact, LPBE does no table
lookups at all.

ACKNOWLEDGEMENTS

We thank the anonymous referees for their useful obser-
vations. This work has been partially supported by CNR
through "Progetto Finalizzato Robotica'.

APPENDIX 1. CONSTRICTOR: A SHORT
MANUAL

While loading Constrictor into LISP, two packages are created:
the language interpreter, and the pre-compiled procedures corre-
sponding to the definitions of constraints. A simple version of
Constrictor runs on MS-DOS machines while the full version of
the interpreter and the debugger runs on the Apple Macintosh
Plus (or more), in Allegro CommonLisp. It takes 230 Kb of
RAM (200 in Lisp Heap and 30 in Mac Heap).

Defconstraint is the procedure used to define constraints.

(defconstraint const-decl;, ... const-decl,) defines a con-
straint in the global context.

The basic keyword declaration is:

(cinterface var;, vars, ... var,)
Optional declarations are:

(:type c-type), to declare the type either primitive (the default
value), or compound

(:relation rel-sequence), where rel-sequence is a sequence of
:tuples for extensional constraints, a sequence of :pattern for
intensional constraints;

(:constraint-expressions consiraint-calls), enumerates the

259

G C GINi AND C ROGIALLI

constraints in a compound constraint;

(:condition global-condition), associates to intensional or
compound constrains a condition for evaluation. The global
condition is evaluated before the constraint is solved. Those
conditions are essentially based on the predicates constrained-p.
constrained-count, instanced-p, instanced-count.

We can also define local constraints:

(constraint-let (init-l;, init-l, init-I,) form; form, ..
form,) defines the n constraints described by the init-lists and
then sequentially evaluates the forms. Outside the lexical clo-
sure determined by the constraint-let the constraints are no more
accessible.

Satisfy is a macro. It is called with the name of the constraint
to be satisfied and with the optional parameters.

-with domain-list, to associate initial values to variables. The
value of domain-list is a kind of association list between names
and values. Variables not included in :with are initially assigned
:unconstrained.

-assoc-solutions boolean, T to print the solutions as an asso-
ciation list.

-count n, with n integer, to stop after finding the first n glob-
al solutions

-extended-result boolean, T to print the solutions in the form
of an association list of couples (variable-name.list of values).
In case no global solution has been found it is possible to see
the restrictions on the initial domains computed by the applied
constraints.

:locally boolean, T to find only locally consistent solutions.
Note that it is possible to define recursive constraints by insert-
ing a call to satisfy in the definition of an intensional constraint.
In this case it is difficult to understand the solution and the
debugger is not guaranteed to handle correctly any situation.
The four predicates used in the .condition part are:

(constrained-p vary, vars, .. vary) ; returns T if all the vari-
ables have finite domains (no -unconstrained is found)

(constrained-count vary, vary, .. var,}; retarns the number of
the variables with finite domains

(instanced-p vary, var,, .. var,); returns T if all the variables
are instantiated (their domain contains one element)

(instanced-count vary, vars, .. var,); returns the number of
the instantiated variables.

Other primitives allow extracting information from the con-
straints. Among other utilities we mention:

(constraint-sorted constraint), returns T if sorted by auto-
sort;

The overall behaviour of Constrictor is controlled by five spe-
cial variables; in particular:

compound-auto-sort, sorfts the constraints from unary,
binary, to n-ary, and from extensive to intensive to compound. It
is based on the idea that the initial application of simple con-
straints can considerably reduce the sotution time by reducing
the domains to be checked for more complex constraints.

Constraints can be protected from auto-sorting by the proce-
dures compound-lock and compound-unlock.

APPENDIX 2: THE SOLUTION OF THE 4
QUEENS PROBLEM IN CONSTRICTOR

This is a simple case of the famous N-queens problem. Here we

260

use the classical constraints definition. that is the best for N > 4.
as discussed in Nadel'S. Since we know that only one queen can
be placed on a row, we define four variables:

Z = {rowl, row2, row3, rowd}.
with domains

D, =1{1.2.3.4] forl £i<4
and we want to find for each row the position of the queen (i.e.
the column of the chess board). Queens placed on the same row.
the same column. or the same diagonal can attack each other.
The first constraint is implicitly satisfied by our representation
of the chess board, the last two constraints are:

Cij:(ziizj) and ([Zi'Zj‘?ﬁ‘i-jI) for | £|<J_<_4
We can express the constraints by enumerating the admissible
tuples, or by simbolic relations. We develop in detail three pro-
grams and discuss their performance. In the example. for n = 4,
we have only the two solutions indicated in Figure 2.

CASE 1: only enumerated constraints
In this case we define the constraints between couples of rows: 1
andi+1,iandi+2,iandi+3.

{defconstraint next-row
(:interface row 1 row2)
(:relation (:tuple(1 3)(:tupletl 4))(:tuple(Z 4))
(:tuple(3))C:tuple(4 1)(:tuple(4 2))))
(defconstraint next2-row
(:interface row1 row2)
(:relation (:tuple(! 2))(:tuple(l 4))(:tuple(2 1 :tuple (2 3))
(:tuple(3 2))(:uple (3 4))(:tuple(4 1) (:tuple (4 3)) 1)
(defconstraint next3-row
(:interface row1 row2)
(:relation (:tuple(1 2))(:tuple(l 3))Ctuple(2 1):tuple(2 3))
(:tuple(2 4))(:tuple(3 1)(:tuple(3 D)(:tuple 34y
(:tuple (4 2)) (:tuple (4 3))))

These constraints are compounded in Four-queens:

(defconstraint Four-queens

(:type compound)

(:interface rowl row?2 row3 rowd)

(:constraint-expressions
(next-row row | row2) (next-row row?2 row3) (next-
row row3 row4)
(next2-row row ! row3) (next2-row row2 row4)
(next3-row row 1 rowd)))

W

Figure 2 (satisfy Four-queens) => ((2.4.1.3%3.1.4.2))

computer systems science & engineering

The time taken by the solution in this case will be the reference
time unit, 1.

CASE 2: intensional constraints

In this case we define the symbolic expressions that should be
satisfied between couples of rows. We need also a unary con-
straint, row, to define the possible values for the rows.

(defconstraint row
(:interface row)
(:relation (:tuple (1)) Ctuple (2)) Ctuple (3)) (:tuple (4)))

The relations between couples of rows are so defined:

(defconstraint next-row
(:interface rowl row2)
(:relation (:pattern (row] row?2)
‘if(and(not(= row2 rowl))
(not (=row2 (- rowl 1))
(not(=row2 (+ row!l 1))
(:condition (constrained-p row1 row2)))
(defconstraint next2-row
(:interface rowl row2)
(:relation (:pattern (row] row2)
:if(and(not(= row2 rowl))
{(not (= row2 (- rowl 2}))
(not(=row2 (+ rowl 2)))))
(:condition (constrained-p row] row2)))
(defconstraint next3-row
(:interface row! row2)
(:relation (:pattern (row] row2)
sif(and(not(= row2 rowl))
(not (= row2 (- rowl 3)))
(not{=row?2 (+ rowl 3NN
(:condition (constrained-p rowl row2)))

These constraints can be applied only to assigned values of
the interface variables. They are organized together in a com-
pound constraint:

(defconstraint Four-queens
(:type compound)
(:interface rowl row2 row3 row4)
(:constraint-expressions
(row row1)(row row2)(row row3)(row row4)
(next-row rowl row2) (next-row row2 row3) (next-row
row3 rowd)
(next2-row rowl row3) (next2-row row2 rowd) (next3-row
rowl row4)))

The constraints are evaluated when both the variables are
assigned a domain not :undefined. Here the execution time is
reduced to 93% of the time in the previous example.

CASE 3: intensional and delayed constraints

We want to impose an order on the evaluation of constraints.
The constraint ‘row' is the same as in CASE 2. The other con-
straints are so modified:

(defconstraint next-row-blk
(:interface row| row2)
(:relation (:pattern (rowl row2)
:if(and(not{=row2 row 1))

(not (=row2 (- rowl 1))
(not(=row?2 (+ rowl 1))

(:condition (or (instanced-p rowl) (instanced-p row2}}))

The same :condition part is substituted in the relative con-

vol 9 no 4 october 1994

CONSTRICTOR: A CONSTRAINT-BASED LANGUAGE

straints to get next2-row-blk and next3-row-blk: the new con-
straints are used in the expressions of the Four-queens-blk that
has the same structure of the old one. The constraints are evalu-
ated when at least one of the variables is instantiated. We get a
time that is 83% of the CASEL

If we activate the debugger. we can see that in CASE 2 the
intensional constraints are evaluated from the first time: they
are activated on two domains of four elements each, with 16
tests, and obtain six valid tuples. The backtracking is called to
instantiate the domains and two global solutions are found. The
intensional constraints have been activated 28 times., with 170
tests, of which only 78 are positive. In CASE 3 LPBE calls the
hacktracking because the relations are all uncomputable. After
that any constraint is called on domains with at most four values
and one value instantiated. Intensional constraints are activated
26 times. with 76 tests, of which 36 are positive. The same tech-
nique applied to the problem of 8 queens has saved 50% of time
with respect to the CASE 2 solution.

This technique of delaying the application of intensional
constraints can be developed using the debugger. In fact, we
should always start with a general definition to find all the glob-
al solutions, because the operation of delaying some constraints
can make uncomputable the network.

REFERENCES

1 Mackworth, A K and Freuder, E C 'The complexity of some

polynomial network consistency algorithms for constraint

satisfaction problems', Artificial Intelligence, Vol 25 (1985)

pp 65-74

Sussman, G J and Steele, G L. CONSTRAINTS - a language

for expressing almost-hierarchical descriptions’, Artificial

Inrelligence, Vol 14 (1980) pp 1-39

3 Guesgen, H W 'A universal constraint programming lan-
guage', Proc. IJCAI-89, Morgan Kaufman, San Mateo, CA
(1989) pp 60-65

4 Cohen, J-'Constraint Logic Programming'. Commun. ACM,

Vol 33 N 7 (July 1990)

Dincbas, M, Van Hentenryck, P, Simonis, H, Aggoun, A,

Graf, T and Berthier, F 'The constraint logic programming

language CHIP', Proc. Int. Conf. on Fifth Generation

Computer Systems, Tokyo, Japan (1988) pp 693-702

1

Lh

6 Van Hentenryck, P Constraint satisfaction in logic program-
ming, MIT Press, Cambridge. MA (1989)

7 Freuder, E C ‘A sufficient condition for backtrack-free
search’, J. ACM, Vol 29 (1982) pp 24-32

8 Guesgen, H W and Hertzberg, J 'Some fundamental proper-

ties of local constraint propagation’. Artificial Intelligence.
Vol 36 (1988) pp 237- 247

9 Haralick R M and Elliot G L ’'Increasing tree search efficien-
cy for constraints satisfaction problems', Aruficial Intel-
ligence, Vol 14 (1980) pp 263-313

10 Mackworth, A K 'Consistency in networks of relations',
Artificial Intelligence, Vol 8 (1977) pp 99-118

11 Puget, J F 'Programmation par constraintes orienteé objects’,
Proc. Avignon '92, Avignon, France (1992)

12 Waltz, D L Generating semantic descriptions from drawings
of scenes with shadows, Al-TR-271, MIT. Cambridge, MA
(197

12 Dechter, R 'Network-based heuristics for constraint-satisfac-
tion problems’, Artificial Intelligence, Vol 34 (1988)

14 Nudel, B 'Solving the general consistent labeling (or con-

straint satisfaction) problem: two algorithms and their
expected complexities’, Proc. AAAI83, Washington DC
(1983) pp 292-296

15 Nadel, B A 'Representation selection for constraint satisfac-
tion: a case study using n-queens’, /JEEE Expert (June 1990)
pp 16-23

261

