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The OECD has proposed five principles for validation of QSAR models used for regulatory
purposes. Here we present a case study investigating how these principles can be applied
to models based on Kohonen and counter propagation neural networks. The study is based on
a counter propagation network model that has been built using toxicity data in fish fathead
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minnow for 541 compounds. The study demonstrates that most, if not all, of the OECD criteria
may be met when modeling using this neural network approach.

Keywords: Validation of QSAR models; Counter propagation neural network; Duluth database

1. Introduction

In recent years, (Q)SAR based predictive models have emerged as a powerful
alternative to testing of chemical toxicity in animals. (Q)SAR models are usually
developed using linear statistical algorithms and based on relatively simple sets of
data. However, linear methods have limited utility in finding multi-dimensional
relational patterns in more complex sets of data. In such situations, non-linear
algorithms and soft-computing approaches have often proved to be more useful.
The use of these new approaches has also opened the possibility of developing
(Q)SAR models for a varied range of compounds, and using a multitude of
molecular descriptors. Amongst these powerful data-mining techniques are the
artificial neural networks. These are new and evolving computer technologies
designed to learn from data in a manner emulating the learning pattern in the
brain. An artificial neural network is defined by its architecture and learning
strategy. The architecture shows how the segments of computer memory (weights)
are connected together into a complex network. The learning strategy describes the
algorithm of ‘‘learning’’, which is passing repeatedly through the data and adjusting
its weights to minimize the error. Basically, there are two main groups of artificial
neural networks, which differ in architecture and learning strategy: (i) unsupervised
and supervised self organizing maps and (ii) supervised back-propagation artificial
neural networks. The term ‘unsupervised or supervised’ serves to indicate whether
descriptors (input variables) alone, or descriptors plus biological activities (output
variables), participate in the training. In the back-propagation neural network, a
training algorithm is defined with algebraic operations on the input and output side
of a neuron. The input operation is a scalar product between descriptors and
weights of a neuron and the output operation has the form of an activation
function. Neural networks of different architectures and learning strategies are
widely used in QSAR modelling. Due to the vast variety of neural network
techniques it is impossible to present all of them in all their details in this article,
and therefore readers are advised to consult references [1–4] for further reading. In
this article we performed a case study focusing on unsupervised self organizing
maps (Kohonen networks) and supervised self organizing maps (counter propaga-
tion neural networks), with a view to apply the OECD principles for validation of
(Q)SAR models [5].

The Kohonen neural network represents a basic type of artificial neural
networks [6, 7]. From a mathematical point of view, it involves mapping from a
multi-dimensional descriptor space into a two-dimensional array of neurons. The
mapping is a non-linear algorithm set as a sequence of learning epochs. An individual
epoch runs in two steps. The first step is the competitive learning and the second step
is the self organization of the map. The mapping preserves the topology of the
original space but does not preserve the metric. This first statement essentially means
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that similar objects, i.e. the objects located closely in descriptor space, are located

close to each other on the map. On the other hand, in the two-dimensional map,

the information about distances between objects in the descriptor space (the metric)

is lost. There are at least two reasons to perform this transformation. Firstly, a trained

map is a visualization of objects, which are originally located in a multi-dimensional

data space. Our mind can not analyze objects in multi-dimensional space, but can easily

recognize the similarity relationships in two-dimensional map (for example clusters).

Secondly, a trained map is a mathematical model. After mapping the objects

from spacious multi-dimensional space are relocated into a limited two-dimensional

network. This means that the information originally spread over the entire descriptor

space is overlapped and squeezed into a more limited two-dimensional network.

A generalization of the Kohonen network is the counter propagation neural network

(CP-NN), for which the architecture and learning strategy have been described in many

textbooks and articles [4, 8, 9]. In addition to descriptor values, this technique

introduces response (output) values into the modeling.
In the recent decades Kohonen neural networks and counter propagation neural

networks have became an important tool in QSAR/QSPR modeling in the fields related

to risk assessment and drug design [10–28]. They have been applied as modeling

techniques beside the widely used Multiple Linear Regression. Due to their non-linear

character, they are particularly useful for modeling non congeneric data sets. By non

congeneric sets we mean the situation where groups of compounds within that sets are

active on account of different mechanisms. Note, it is premature to state that in general

neural network models outperform linear ones. Some articles have reported

better statistical parameters for neural network models than linear ones [11, 12], and

vice versa [13]. The counter propagation neural network with its multi-dimensional

output-layer architecture is a powerful tool for classification, i.e., ordering of

compounds into pre-defined classes [14–19]. In this case, the toxicity of a

compound is defined as an affiliation to a particular class rather than as a lethal

concentration [17, 18]. Examples have been reported using toxicity/carcinogenicity

classes or modes of action as classes [19]. The Kohonen network is often used to

perform a general analysis of data sets. Visual inspection of objects ordered in 2-D

network facilitates easily recognition of similarity relationships among the objects, for

example clusters of similar compounds [20–24]. Kohonen networks can also be used to

split a data set into training and test sets in such a way that the all the information from

that data set is univocally divided into all sub-sets [25, 26]. Detailed analysis of

neighborhoods in networks can reflect common modes of activity, or highlight potential

outliers. A graphic representation of an individual descriptor layer shows the

distribution of descriptor values over the data set. Comparisons between descriptor

layers and property layers may also indicate the relative importance of an individual

descriptor within the model [27].
Kohonen network and CP NN have the potential to be used in chemical risk

management, including priority setting, risk assessment, classification and labeling.

For models to be used for regulatory purposes, it is important that they fulfill the

criteria laid down under the OECD as far as possible (as described in section 2).

The aim of this article is to review the counter propagation method in terms of

its applicability to the OECD principles. As a case study we have developed a CP NN

model for fish toxicity.
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2. OECD principles for validation of (Q)SAR models used for regulatory purposes

The initiative for (Q)SAR validation principles was set during the ‘Workshop on
regulatory acceptance of (Q)SARs for human health and environmental endpoints’,
which was held on March 4–6, 2002 in Setubal, Portugal [28]. Participants from
industry, government bodies, and academic institutions discussed the potential
use of (Q)SAR models in chemical management and decision-making processes.
They addressed many of the important questions associated with (Q)SAR modeling
such as: the definition of endpoints and descriptors, the mechanisms of activity,
the domain of models, the testing and validation of models, the availability of
training data, and transparency of models. They agreed that there was a need to
include (Q)SAR models into chemical management processes to accelerate the
decisions, to lower costs and to minimize the number of animals sacrificed for
testing purposes. To support the use of (Q)SAR models they adopted criteria
(known as the six Setubal principles) for acceptance of (Q)SAR models in
regulatory purposes.

At the 37th Joint Meeting of Chemicals Committee and Working Party on
Chemicals, Pesticides & Biotechnology, held on 17–19 November in Paris, the OECD
Member Countries discussed the Setubal conclusions. They generally supported the
conclusions [5] but slightly re-formulated them into five adopted five principles, the so-
called OECD principles for validation. (Q)SAR models considered for regulatory
purposes should be associated with the following information:

(1) a defined endpoint
(2) an unambiguous algorithm
(3) a defined domain of applicability
(4) appropriate measures of goodness-of-fit, robustness and predictivity
(5) a mechanistic interpretation, if possible.

In a framework of OECD some of the QSAR models were evaluated accordingly to
the principles [29].

According to Principle 1, a (Q)SAR should be associated with a ‘defined endpoint’,
where endpoint refers to any physicochemical, biological or environmental effect.
The intent of this principle is to ensure transparency in the endpoint being predicted,
since a given endpoint could be determined by different experimental protocols and
under different experimental conditions.

According to Principle 2, a (Q)SAR should be expressed in the form of an
unambiguous algorithm. The intent of this principle is to ensure the transparency of
modeling algorithm.

According to Principle 3, a (Q)SAR should be associated with a ‘definite domain of
applicability’. QSAR models are inevitably associated with limitations in terms of the
types of chemical structures, physicochemical properties and mechanisms of actions.

According to Principle 4, a (Q)SAR should be associated with a ‘appropriate measure
of goodness-of-fit, robustness and predictivity’. This principle expresses the need to
provide two types of information: the internal performance of a model (as expressed
as goodness-of-fit and robustness) and the predictivity of model using an appropriate
test set.

According to Principle 5, a (Q)SAR should be associated with a ‘mechanistic
interpretation’, wherever such an interpretation can be made. It is not always possible,
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from a scientific viewpoint, to provide a mechanistic interpretation of a given (Q)SAR.
The intent of this principle is to ensure that there is an assessment of the possibility of a
mechanistic association between the descriptors used in a model and the endpoint being
predicted, and that any association is documented.

3. Case study

3.1 Modeling

As case study, we present a CP NN model to predict aquatic toxicity. It was developed
using a set of 551 compounds from ‘Duluth’ database compiled by Russom et al. [31].
The dataset consists of acute fish toxicity values for fathead minnow expressed
as a lethal concentration determinated after 96-hour exposure. The endpoint fulfills the
first principle, since, it is referred to OECD Guideline 203. In addition, the compounds
can be classified into four hazard classes representing the LC50 for fish [30, 32].

Class 1 Class 2 Class 3 Class 4
Concentration (mgL�1) 4100 10 to� 100 1 to� 10 �1

The aquatic toxicity was measured as the acute fish toxicity The Duluth database has

been extensively studied and many QSARs have been reported. An overview of QSAR

studies is given in reference [31]. Different questions have been addressed such as:

selection of relevant descriptors, selection of different subsets considering the mode

of toxic action or assignment to a particular chemical class, as well as comparisons of

different modeling techniques. For example, Huuskonen [33] applied electrotopological

indices to study the aquatic toxicity (fathead minnow) of 140 organic chemicals

comparing linear regression models with the error-back propagation neural network

model. Kaiser and Niculescu [34] studied a set of 865 chemicals using functional group

descriptors and probabilistic neural networks as the modeling technique. Martin and

Young [35] studied the aquatic toxicity of 397 organic compounds, comparing multiple

linear regression models and neural network models. Kaiser [36] gave an overview

of using neural networks in the modeling of different toxicology endpoints. Toropov

and Toropova [37] investigated the toxicity of 69 benzene derivatives using optimized

correlation weight indices and Morgan extended connectivity indices. Toropov and

Benfenati [38] used Morgan extended connectivity and nearest neighboring codes as

local graph invariants in a study of 51 aldehydes. Pintore et al. [39] applied a

combination of several advanced techniques including self organizing maps, genetic

algorithm and adaptive fuzzy partitioning to model fish toxicity for 568 compounds

from the Duluth database. A further overview of other advanced modeling techniques is

presented in reference [40]. Mazzatorta et al. [20] studied a set of 562 compounds with

Kohonen and counter propagation neural networks. Barbieri et al. [25] investigated a

set of 568 compounds using Kohonen and CP neural networks. Several questions were

discussed such as analysis of outliers, neighborhoods in Kohonen network, division

into training and test set, visualization of data. Additional readings on QSARs for

aquatic (fish) toxicity and their use in chemical risk management can be found in

references [41–47].
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3.2 Descriptors

The descriptors for the model described below were calculated using the MDL QSAR
software program [48]. The program selected 22 descriptors, which are shown in table 1.

4. Modeling process

4.1 Data preprocessing

The descriptors were normalized to the interval [0, 1] according to the following
equation:

xnew1 ¼
x1 � xmin

1

xmax
1 � xmin

1

,

xnew1 – transformed descriptor, xmin=max
1 – minimal/maximal value of descriptor.

The descriptors together with their minimal and maximal values are given in table 1.

4.2 CP NN architecture

The CP NN developed consists of two layers, the input or Kohonen layer and the
output layer [2–5]. This is a two dimensional network of neurons (25� 25), which are

Table 1. Descriptors used for modeling (calculated and selected with MDL program). The minimal and
maximal values were used for rescaling procedure.

Descriptor’s
abbreviation Meaning of descriptor Min. Max.

1 SsCH3_acnt Count of all (–CH3) groups in molecule 0 9
2 SdCH2_acnt Count of all (¼CH2) groups in molecule 0 2
3 SssCH2_acnt Count of all (–CH2–) groups in molecule 0 15
4 SddC_acnt Count of all (¼C¼) groups in molecule 0 2
5 SaasC_acnt Count of all (aasC) groups in molecule 0 10
6 SssssC_acnt Count of all (4C5) groups in molecule 0 3
7 SdsN_acnt Count of all (¼N–) groups in molecule 0 2
8 SaaN_acnt Count of all (aaN) groups in molecule 0 3
9 SdaaN_acnt Count of all (daaN) groups in molecule 0 1

10 SsOH_acnt Count of all (–OH) groups in molecule 0 3
11 SsF_acnt Count of all (–F) groups in molecule 0 6
12 SssS_acnt Count of all (–S–) groups in molecule 0 2
13 SdssS_acnt Count of all (¼S5) groups in molecule 0 1
14 SsBr_acnt Count of all (–Br) groups in molecule 0 5
15 xch6 Simple 6th order chain chi index 0 0.3062
16 xch8 Simple 8th order chain chi index 0 0.0833
17 k0 Zero Order Kappa Shape Index,

encodes the number of vertex symmetry classes
in the graph, increases with an increase in the
number of symmetry classes in the graph or
decreases with increasing symmetry

0 46.4986

18 k1 First Order Kappa Shape Index, encodes the
degree of cyclicity in the graph,
decreases as graph cyclicity increases

2 27.5853

19 ka3 Third Order Kappa Alpha Shape Index 0 18.1633
20 logP Calculated value of log P �1.8943 7.3877
21 ovality Ovality of molecule 1.0947 1.9773
22 SpcPolarizability Specific polarizability of molecule (Polarizability/Volume) 0.0108 0.1408
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vectors Wj (wj1,wj2, . . . ,wjm). Here, Wj refers the neuron, wj,i are components of the
vector (weights), and m is the dimension of the vector. The dimension of the input
layer is equal to the dimension of the descriptor space (in our case, 22). The output layer
is located beneath the Kohonen layer having the same arrangement of neurons.
The dimension of the output layer is equal to the number of output (property)
variables. In this study, the number of output variables is five, one corresponding to the
concentration whilst the other four belong to the four classes of toxicity (see figure 1).

4.3 Initialization of model

The first step in the learning of a model is the initialization of weights, which are
initialized as random numbers. The random number generator is described in Lewis
et al. [49].

4.4 Learning

4.4.1 Selection of winning neuron. A vector of input variables (descriptors) is
presented to all neurons. According to equation (1), the algorithm selects the neuron
whose weights are closest to the input variables (winning neuron).

�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ðxsi � wjiÞ
2

s
�c ¼ minð�1, �2, . . . �j, . . . �n,Þ ) Wc ð1Þ

4.4.2 Modification of weights. The weights of the winning neuron are modified to the
values of the input variables (�c¼ 0). Simultaneously, the weights of the neighboring
neurons are modified to become similar to the input variables (equation (2)).

wnew
ji ¼ wold

ji þ �ðtÞ � bðdc � djÞ � ðxsi � wold
ji Þ ð2Þ

22 descriptor layers

Toxicity layer

4 layers for classes

25 × 25 neurons

Figure 1. Architecture of counter propagation neural network.
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Parameter � determines the rate of learning; it is maximal at the beginning (t¼ 1,
�¼ amax) and minimal at the end of the learning procedure (t¼ tmax, �¼ amin). The
function b(�) in equation (2) describes how the correction of the weights wji decreases
with the increasing topological distance between the central neuron and the neuron
being corrected. Index j specifies individual neuron and runs from 1 to n. The learning
runs over several epochs (t¼m) until the weights are stabilized.

4.4.3 Learning in the output layer. This step is a supervised learning because target
values are required for each input. The positions of objects are projected from the input
to the output layer. The weights in the output layer are modified in such a way that the
weights on projected positions correspond to the output values. The weights in the
neighborhood are modified according to equation (3). In this way the response surface
is constructed.

outnewji ¼ outoldji þ �ðtÞ � bðdc � djÞ � ðTsi � outoldji Þ ð3Þ

We used in-house developed FORTRAN based computer programs for modeling
[50]. The model was developed in accordance with the technical parameters described
in table 2.

4.4.4 Classification. With the special construction of the output layer, the CP NN
becomes a powerful tool in classification. For a property described with n classes,
n layers must be added in the output layer. Affiliation of a compound to one of the four
classes as defined in the previous section is described by the four dimensional vector.
One element of the vector is equal to one, i.e., those to which the class a compound
belongs and other elements are zero. With a multidimensional description of the classes
a CP NN with four output layers can be constructed. During training all the output
layers are trained independently. The prediction result is also a four dimensional vector
with elements set as real numbers. Each number expresses the affiliation of a predicted
compound to the corresponding class. In the predicted classes different situations can
occur. Firstly, one element is larger than others. In this case, the predicted compound
is unambiguously classified. Secondly, a compound is classified into two neighboring
classes. This means that the model classifies the compound somewhere in between.
Thirdly, a compound is classified into different classes with about the same affiliation.

Table 2. Technical parameters used for modeling. Parameters are associated with the program kctrf [50].

Parameter Value Range

Random routine used Ref. [49]
Randomization of object sequence order NO YES/NO
Number of neurons in x direction (DX) 25 Depend on program option
Number of neurons in y direction 25 Depend on program option
Number of weights in each neuron 27 No. of descriptorsþ targets
Toroid boundary condition NO YES/NO
Type of neighborhood correction Triangular
Furthest neuron for correction 30 1�DX
Maximal correction factor (MCF) 0.50
Minimal correction factor 0.01 0–MCF
Number of epochs – m 100 No limits
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It means that the model can not classify the compound. We know a priori that

the model does not work for this compound and this in itself is a very valuable

information.

5. Testing and validation

5.1 Goodness of fit (recall ability test)

In this test the prediction is made for the compounds in the training set. This shows how

good the model recognizes the training objects. It is recognized that the recall ability test

typically overestimates the prediction ability of a neural network models [1, 3, 10, 12].

Thus, the recall ability test results should be considered in combination with other tests.

Table 3 shows correlation coefficients for models trained with different number

of epochs. The correlation coefficient is stabilized after 200 training epochs, however,

a further test shows that the model is already over-trained. After other tests the model

trained with 100 epochs, was selected as the final one. Figure 2(a) shows the recall

ability regression line. Classification results are shown in table 4. It can be seen that

79.49% of the compounds are classified correctly, and 94.55% of compounds are either

classified correctly or misclassified for one class. The compounds over-classified, (the

predicted class is higher than target class) are 10.07% whereas 9.44% of compounds are

under-classified (the predicted class is lower than target class).

5.2 Leave-one-out test, leave-20% out and predictions for test set

In leave-out tests, the data set is divided into training sets and test sets. In consecutive

steps of testing, the models are built with training sets and applied on test sets. The test

provides information on the predictive power of the model, but also information on the

consistency of the training data. We applied leave-one-out and leave-20%-out tests.

The correlation coefficients are shown in table 3. After 150 epochs of training the

correlation coefficient drops indicating that the models are over-trained. The regression

line for model trained with 100 epochs is shown in figure 2(b). Similar trends can be

observed in a 20% leave-out test. Table 4 shows the classification results. In the

leave-one-out-test, 55.90% of compounds are classified correctly, 23.77% and 20.33%

are over-classified and under-classified, respectively. In the leave-20%-out test, 47.91%

of compounds are classified correctly, whereas 12.18% and 39.91% are over-classified

and under-classified, respectively.

Table 3. Correlation coefficients for different tests for models trained with 50–300 epochs.

No. of learning epochs Recall ability Leave-one-out Leave-20%-out Test set

50 0.861 0.730 0.699 0.918
100 0.898 0.748 0.708 0.923
150 0.900 0.748 0.723 0.895
200 0.930 0.730 0.707 0.892
300 0.930 0.728 0.691 0.868
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5.3 Predictions for the external test set

Before the modeling work, 10 compounds were selected as an external test set. These 10
compounds were selected randomly from different regions of the descriptor space, and
were never used in the training sets.
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Figure 2. Regression lines for recall ability test (a) and for leave-one-out test (b).
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5.3.1 Prediction of toxicity values and classes. The regression line showing predicted
versus experimental values is shown in figure 3. The statistical parameters of the

line are: r¼ 0.923, standard deviation SD¼ 1.187, the intercept on y axis a¼ 0.803, the
slope b¼ 1.027. Individual predictions and classification results are shown in table 5.

Six of compounds (2-cyanopyridine, diethylamine, 2-octanone, 3,5-diiodo-4-hydroxy-

benzonitrile, 2,2-dimethyl-1-propylamine, [1(r)-endo]-(þ)-3-Bromocamphor) are
classified in the correct class with an affiliation larger than 0.6. Dibutyl adipate and

20,30,40-trichloroacetophenone are classified in two neighboring classes. On the other

hand, the isopropyl ether is classified into the first and third class with affiliation
numbers 0.5 and 0.4, respectively and the p-tert-butylphenol is classified into classes 1 to

3. For the last two cases we know that the model is poorly appropriate in predicting

Table 4. Classification results for different tests. Compounds were classified into four classes according to
fish toxicity.

Recall ability test Leave-one-out test Leave-20%-out test

Target class–predicted class # of comp. % # of comp. % # of comp. %

�3 1 0.18 2 0.36 1 0.18
�2 16 3.27 28 5.44 4 1.11
�1 40 7.62 97 17.97 58 10.89
0 436 79.49 306 55.90 262 47.91
1 39 7.44 95 17.60 105 19.42
2 8 1.81 11 2.36 70 13.07
3 1 0.19 2 0.37 41 7.42
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Figure 3. Regression line for the test set of ten compounds.
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these toxicities. It is necessary to emphasize that the predictions of toxicity values

and classes are independent, because the individual input layers are constructed
independently. In a very peculiar situation, the predicted value is correct, but the

compound is ambiguously classified.

5.3.2 Neighbors and clusters. The prediction of values for a new compound in the CP
NN model runs in two phases. First, the algorithm allocates the winning neuron, which
is found as described above. Second, its position is projected to the output layer where

the predicted values are found. The winning neuron and the neighboring neurons
provide additional information to the prediction. The compounds of training set, which

are located on those neurons, determine the prediction. When they are similar to a new
compound, they may indicate a similarity in the mechanism of activity. For the case

study presented, table 6 shows the compounds in the test set, the positions of the
winning neurons and the compounds in the training set located on the neighboring

neurons.

Table 5. Experimental and predicted toxicity values and classes for ten compounds of the test set.

Compound Exp. Tox. Pred. tox. Exp. class Pred. class

Isopropyl ether �2.0402 0.8248 1.0 0.5
0.1
0.4

2-Cyanopyridine �1.9421 �0.5170 1.0 0.8
0.2

Diethylamine �2.4587 �0.6684 1.0 0.7
0.1
0.3

Dibutyl adipate 4.2624 4.1969
0.4

1.0 0.5
0.1

2-Octanone 1.2702 2.2745
1.0 0.6

0.4

p-tert-Butylphenol 3.3731 2.7875 0.2
0.3

1.0 0.4
0.1

3,5-Diiodo-4-hydroxybenzonitrile 3.9990 4.8021
0.1

1.0 0.6
0.3

2,2-Dimethyl-1-propylamine �1.6954 �2.2796 1.0 0.8
0.2

20,30,40-Trichloroacetophenone 4.7162 5.7960
0.1

1.0 0.1
0.8

[1(r)-endo]-(þ)-3-Bromocamphor 1.2162 1.0152 0.3
1.0 0.7
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Table 6. Distances to winning neuron, positions in network and closest neighbors in the network for ten
compounds of the test set. The distance to the winning neuron is a measure how good a prediction fits to the
general framework of model. The position and neighbors determinate the prediction. The corresponding

toxicity values are in parentheses.

Compound Dist. to WN Position in NN Neighbors

Isopropyl ether 0.1390 25,21 2,5-Dimethyl-2,4-hexadiene (3.373)
4-Methyl-2-pentanone (�1.685)
5-Methyl-2-hexanone (�0.331)
4-Dimethylamino-3-methyl-2-butanon

(2.721)
Fensulfothion (1.965)
3-Methyl-2-butanone (�2.306)
Tetraethyltin (�1.181)

2-Cyanopyridine 0.1314 1,20 2-Picoline (�2.265)
3-Picoline (�0.436)
4-Picoline (�1.465)
3-Pyridinecarboxaldehyde (1.877)
Pyridine (�0.293)

Diethylamine 0.0904 24,19 Diethyl ether (�3.542)
(þ�)-sec-Butylamine (�1.324)
Isovaleraldehyde (3.277)
2,4-Pentanedione (�0.558)
Ethyl acetate (�0.959)
3-Pentanone (�2.884)
2-Methylbutyraldehyde (2.156)
2-Pentanone (�2.667)
2-Methylvaleraldehyde (1.673)
Methyl acetate (�1.463)
2-Butanone(�3.799)

Dibutyl adipate 0.0890 21,1 Diethyl sebacate (4.561)
tris(2-Butoxyethyl)Phosphate (3.572)
Tributyl phosphate (3.187)

2-Octanone 0.0754 19,7 Butyl ether (1.394)
1-Nonanol (3.231)
Tripropylamine (1.035)
2-Nonanone (2.236)
1-Bromoheptane (4.803)

p-tert-Butylphenol 0.2166 5,3 Flavone (4.150)
p-(tert-butyl)-phenyl-n-

Methylcarbamate (3.031)
Carbofuran (5.569)
p-(tert-butyl)Benzamide (1.715)

3,5-Diiodo-4-hydroxy-
benzonitrile

0.0789 14,19 2,3,4,6-Tetrachlorophenol (5.417)
Pentachlorophenol (7.090)
2,3,4,5-Tetrachlorophenol (6.338)
2,4,6-Triiodophenol (5.966)
2,4,6-Trichlorophenol (3.071)

2,2-Dimethyl-1-propylamine 0.1662 25,23 5,5-Dimethyl-1,3-cyclohexanedione
(�4.408)

5,5-Dimethylhydantoin (�4.856)
3,3-Dimethyl-2-Butanone (0.141)
tert-butyl Methylether (�2.031)
tert-butyl Acetate (�1.035)

20,30,40-Trichloroacetophenone 0.1230 11,18 1,3,5-Trichloro-2,4-dinitrobenzene (7.109)
1,3-Dichloro-4,6-dinitrobenzene #1 (8.425)

(Continued)
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Table 6. Continued.

Compound Dist. to WN Position in NN neighbors

[1(r)-endo]-(þ)-3-
Bromocamphor

0.3203 25,25 tert-butyl Sulfide (1.615)
tert-Octylamine (1.659)
1,8-Diamino-p-menthane (0.959)
2,2,5,5-Tetramethyltetrahydrofuran

(�0.270)
(1s)-(�)-Camphor (2.192)
Cineole (0.414)
1,1,1-Trichloro-2-methyl-2-

Propanol(hydrate) (0.273)
[(1s)-endo]-(�)-Borneol (0.961)
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Figure 4. Values of descriptors (m) and weights (r) on the winning neurons for ten compounds of the test
set. One obtains detailed information how good the predicted compound fits to the model.
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5.3.3 The distance between the winning neuron and descriptors. In Kohonen network
and CP NNs the values of weights generally determine the domain of the model.
This is to emphasize that the values of the weights are not equal to the values of
the descriptors, as the weights were modified during the training and they adopted
values ‘similar to the descriptors’. If a new compound is presented to the model for
prediction, and it is situated on the winning neuron, the distance between the
descriptors and the winning neuron can be considered as a measure of how good
a new compound fits into the domain of the model. This information will fulfill the
requirement under OECD principle 3 (domain of applicability). In table 6 we report
the distances to the winning neurons for all 10 compounds of the test set. It is an
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Figure 4. Continued.
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interesting observation that p-tert-butylphenol, which was not properly classified,
shows a longer distance to the winning neuron. This emphasizes how it is not
entirely in the domain of the model. Figure 4 shows further details from the model
in terms the individual values of weights and descriptors for the compounds in the
external test set. This is to emphasize how the distance between the winning neuron
and descriptors represents additional information in the prediction. The prediction
can be good even if the distance is large, or vice versa. Ultimately it is up to the
user on how to interpret this additional information.
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6. Conclusions

In this article we have presented a counter propagation neural network model for fish
toxicity that has been built using a set of 541 compounds from the Duluth database.
The case study presented here, clearly demonstrates that a (Q)SAR model can be
derived and validated using a CP NN approach whilst still satisfying most, if not all of
the OECD principles for validation of (Q)SAR models. These findings are likely to
open up further opportunities for using this powerful technique for developing and
validating (Q)SAR models for compounds from different chemical classes, and using
large sets of descriptor data. However, KSOM and CP NN represent a class of ANN
with relatively simple architecture and learning algorithm. It is noteworthy that models
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built with others ANN techniques remain to be validated according to the OECD

principles.
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[17] M. Vračko, M. Novič, J. Zupan. Anal. Chim. Acta, 384, 319 (1999).
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