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h i g h l i g h t s

" The CORAL software for the building up of QSPR/QSAR models is suggested.
" The CORAL model for cytotoxicity of metal oxide nanoparticles is demonstrated.
" The model is a mathematical function of the numbers of oxygen atoms and double bonds.
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a b s t r a c t

Convenient to apply and available on the Internet software CORAL (http://www.insilico.eu/CORAL) has
been used to build up quantitative structure–activity relationships (QSAR) for prediction of cytotoxicity
of metal oxide nanoparticles to bacteria Escherichia coli (minus logarithm of concentration for 50% effect
pEC50). In this study six random splits of the data into the training and test set were examined. It has
been shown that the CORAL provides a reliable tool that could be used to build up a QSAR of the pEC50.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nanomaterials gradually become vital constituent of modern
industry. They are visible on the shells of stores as components
of the everyday necessities (medicine, cosmetics, etc.). These wide-
spread applications of nanomaterials rise questions concerning
their environmental and health effects. It was recently argued that
only direct prediction of toxicity of nanomaterials provides a
reliable tool for evaluation of their effects on environment and hu-
mans (Leszczynski, 2010). Such issues could be (at least in part)
addressed using modern scientific techniques. Among them are
methods of computational chemistry, and the most appropriate
approach to study such phenomena the quantitative structure–
property/activity relationships (QSPRs/QSARs) (Randic, 1991;
Cosentino et al., 2000; Balaban et al., 2005; Ivanciuc et al., 2006;
Enoch et al., 2008; Tetko et al., 2008; Bhhatarai et al., 2010; Das

and Trinajstic, 2010; Leszczynski, 2010; Katritzky et al., 2010;
Mitra et al., 2010; Afantitis et al., 2011; Basak, 2011; Duchowicz
et al., 2011; Furtula and Gutman, 2011).

The QSAR studies of nanomaterials, such as the metal oxide
nanoparticles (Puzyn et al., 2011) fullerene C60 (Toropova et al.,
2010; Toropov et al., 2010a,b), and C70 (Toropova et al., 2011)
become an integral part of the QSPR/QSAR theory and applications
of various approaches. Among many possible tools for the QSPR/
QSAR analysis of the nanomaterials is CORAL software (http://
www.insilico.eu/CORAL). The aim of the present study is evalua-
tion of the CORAL as a tool for the QSAR analysis of the toxicity
of metal oxide nanoparticles.

2. Method

2.1. Data

The numerical data on cytotoxicity to bacteria E. coli (minus
logarithm of concentration for 50% effect, n = 17, pEC50) have been
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taken from the literature (Puzyn et al., 2011). Six random splits
into the training and test sets were examined. Two principles were
used in order to prepare these splits (i) ranges of pEC50 for training
and test set are as equivalent as possible; and (ii) percentage of
splits identity is as small as possible (Table 1). Table 2 contains
the details of structures of the considered metal oxides.

Table 1
Percentage of identity for kth and jth splits Pkj ¼ NtrainþNtest

17 � 100%, where Ntrain is the
number of oxides which are placed in training set for both kth and jth splits, Ntest is
the number of oxides which are placed in test set for both kth and jth splits.

Split1 Split 2 Split 3 Split 4 Split 5 Split 6

Split 1 100 52.9 52.9 58.8 64.7 41.2
Split 2 100 41.2 47.1 41.2 64.7
Split 3 100 47.1 52.9 41.2
Split 4 100 70.6 47.1
Split 5 100 64.7
Split 6 100
Oxide
ZnO Test Training Test Test Test Training
CuO Training Test Training Training Training Test
V2O3 Training Training Training Training Test Test
Y2O3 Training Training Training Test Test Training
Bi2O3 Test Test Training Test Training Training
In2O3 Training Test Training Test Training Training
Sb2O3 Training Training Training Training Training Training
Al2O3 Training Training Test Training Training Training
Fe2O3 Training Training Test Training Training Test
SiO2 Training Test Test Training Training Test
ZrO2 Test Test Training Training Test Training
SnO2 Training Training Test Test Test Training
TiO2 Test Training Test Training Training Training
CoO Training Test Training Training Training Test
NiO Test Training Training Test Test Test
Cr2O3 Training Training Training Test Training Training
La2O3 Test Training Training Training Training Training

Table 2
Structures and cytotoxicity to bacteria Escherichia coli of oxides.

Oxide SMILES pEC50 (mol/L)

ZnO O = [Zn] 3.45
CuO [Cu] = O 3.20
V2O3 O = [V]O[V] = O 3.14
Y2O3 O = [Y]O[Y] = O 2.87
Bi2O3 O = [Bi]O[Bi] = O 2.82
In2O3 O = [In]O[In] = O 2.81
Sb2O3 O = [Sb]O[Sb] = O 2.64
Al2O3 O = [Al]O[Al] = O 2.49
Fe2O3 O = [Fe]O[Fe] = O 2.29
SiO2 O = [Si] = O 2.20
ZrO2 O = [Zr] = O 2.15
SnO2 O = [Sn] = O 2.01
TiO2 O = [Ti] = O 1.74
CoO [Co] = O 3.51
NiO [Ni] = O 3.45
Cr2O3 O = [Cr]O[Cr] = O 2.51
La2O3 O = [La]O[La] = O 2.87

Table 3
Statistical quality of QSAR models of the toxicity calculated with CORAL software. Best predictions have been obtained with the threshold = 2 (these are given in bold).

T Nact Probe Training set Test set

n r2 RMSE F n r2 RMSE F

Split 1
0 119 1 11 0.9999 0.004 153934 6 0.8641 0.567 25
0 119 2 11 0.9999 0.005 70019 6 0.7268 0.675 11
0 119 3 11 0.9999 0.005 63146 6 0.5409 0.575 5
0 Average 0.9999 0.005 95699 0.7106 0.606 14
1 14 1 11 0.9999 0.004 94246 6 0.3107 0.773 2
1 14 2 11 0.9999 0.005 91578 6 0.6290 0.756 7
1 14 3 11 0.9999 0.005 70216 6 0.5214 0.735 4
1 Average 0.9999 0.005 85347 0.4870 0.755 4
2 3 1 11 0.7407 0.234 26 6 0.9397 0.205 62
2 3 2 11 0.7407 0.234 26 6 0.9400 0.205 63
2 3 3 11 0.7407 0.234 26 6 0.9409 0.204 64
2 Average 0.7407 0.234 26 0.9402 0.204 63

Split 2
0 119 1 11 0.9996 0.011 21798 6 0.3722 0.557 2
0 119 2 11 0.9999 0.006 84400 6 0.3626 0.467 2
0 119 3 11 0.9999 0.006 75565 6 0.6247 0.498 7
0 Average 0.9998 0.008 60588 0.4532 0.507 4
1 14 1 11 0.9998 0.007 57609 6 0.9657 0.872 113
1 14 2 11 0.9999 0.004 156263 6 0.6788 0.643 8
1 14 3 11 0.9999 0.005 104526 6 0.9435 0.737 67
1 Average 0.9999 0.005 106133 0.8627 0.751 63
2 3 1 11 0.8217 0.232 41 6 0.9650 0.237 110
2 3 2 11 0.8217 0.232 41 6 0.9647 0.236 109
2 3 3 11 0.8217 0.232 41 6 0.9648 0.236 110
2 Average 0.8217 0.232 41 0.9648 0.236 110

Split 3
0 119 1 11 0.9999 0.004 84785 6 0.4563 0.619 3
0 119 2 11 0.9999 0.004 76448 6 0.3982 0.647 3
0 119 3 11 0.9998 0.006 45466 6 0.0010 0.732 0
0 Average 0.9999 0.005 68900 0.2852 0.666 2
1 14 1 11 0.9999 0.005 69455 6 0.4778 0.505 4
1 14 2 11 0.9999 0.005 71171 6 0.5347 0.521 5
1 14 3 11 0.9999 0.005 63169 6 0.6919 0.534 9
1 Average 0.9999 0.005 67932 0.5681 0.520 6
2 3 1 11 0.8215 0.170 41 6 0.8325 0.336 20
2 3 2 11 0.8213 0.170 41 6 0.8407 0.338 21
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2.2. Optimal descriptors

The SMILES-based optimal descriptors (Toropov et al., 2010a,b)
have been calculated as follows:

DCWðTÞ ¼
XE

k¼1

Wð1SkÞ þ
XE�1

k¼1

Wð2SkÞ þ
XE�2

k¼1

Wð3SkÞ ð1Þ

where 1Sk,
2Sk, and 3Sk are one-, two-, and three-elements SMILES

attributes; the E is the total number of SMILES elements for a given
molecular structure;W(1Sk),W(2Sk), andW(3Sk) present the correla-
tion weights of the attributes. The SMILES element comprises one or
two symbols which should be examined as one (e.g., ‘Cl’, ‘Br’, etc.).
The threshold is a value used to classify attributes as either rare or
active. For instance, if the threshold is 5, then attributes which are
found in four (or fewer) SMILES structures of the training set should
be classified as rare. The correlation weights of rare attributes are
blocked with their values fixed at zero. The E is the number of 1Sk.
If a SMILES represents a sequence of element ‘ABCDE’, then the con-
struction 1Sk,

2Sk, and 3Sk can be represented as:

‘ABCDE’ ! ‘A’; ‘B’; ‘C’; ‘D’; ‘E’ð1SkÞ

‘ABCDE’ ! ‘AB’; ‘BC’; ‘CD’; ‘DE’ð2SkÞ

‘ABCDE’ ! ‘ABC’; ‘BCD’; ‘CDE’ð3SkÞ:
Preferable predictability for all random splits is achieved if T = 2.

3. Results and discussion

Table 3 contains statistical characteristics of the pEC50 models
for six random splits (Table 3). Fig. 1 represents graphically the
best models for each split. There is significant difference of the pre-
dictability for these models, however, all models can be considered
as satisfactory. The model based on quantum chemical calculations
described in Puzyn et al. (2011) is characterized by n = 17,
r2 = 0.8619. No external validation has been carried out for this
model (Puzyn et al., 2011). Thus the model obtained in this work
is probably characterized by predictability at least of the same de-
gree as the recently published one. In fact the distribution of the
r2ðtestÞ values predicted here remains within the 0.83–0.96 range.

One can see (Table 3) robust models for six splits based on three
SMILES attributes related to situation where threshold = 2. These
are ‘[‘, ‘=’, and ‘O’. In other words, the model is calculated with
solely W(1Sk): W(2Sk) and W(3Sk) were not involved in the model.
Table 4 demonstrates calculation of the descriptor. Table 5 con-
tains the model calculated for split 1. Y-randomization (Mitra
et al., 2010) of the CORAL models (Table 6) also confirms their pre-
dictive potential.

4. Conclusions

An application of the CORAL software for prediction of toxicity
of series of nanomaterials was tested. We concluded that CORAL

Table 3 (continued)

T Nact Probe Training set Test set

n r2 RMSE F n r2 RMSE F

2 3 3 11 0.8215 0.170 41 6 0.8357 0.337 20
2 Average 0.8214 0.170 41 0.8363 0.337 20

Split 4
0 119 1 10 0.9997 0.009 28593 7 0.0063 0.578 0
0 119 2 10 0.9998 0.007 52545 7 0.8827 0.503 38
0 119 3 10 0.9998 0.008 35489 7 0.8345 0.527 25
0 Average 0.9998 0.008 38876 0.5745 0.536 21
1 13 1 10 0.9999 0.005 87592 7 0.7126 0.758 12
1 13 2 10 1.0000 0.003 275957 7 0.0971 0.864 1
1 13 3 10 0.9997 0.010 26515 7 0.7932 0.923 19
1 Average 0.9999 0.006 130021 0.5343 0.848 11
2 3 1 10 0.7779 0.261 28 7 0.9466 0.140 89
2 3 2 10 0.7779 0.261 28 7 0.9469 0.139 89
2 3 3 10 0.7779 0.261 28 7 0.9470 0.139 89
2 Average 0.7779 0.261 28 0.9468 0.139 89

Split 5
0 119 1 11 0.9997 0.008 34909 6 0.7779 0.568 14
0 119 2 11 0.9999 0.006 67200 6 0.8649 0.588 26
0 119 3 11 0.9998 0.006 57434 6 0.9750 0.719 156
0 Average 0.9998 0.006 53181 0.8726 0.625 65
1 16 1 11 0.9999 0.006 68393 6 0.9269 0.930 51
1 16 2 11 0.9999 0.006 62183 6 0.9271 0.825 51
1 16 3 11 0.9994 0.012 15885 6 0.6893 1.178 9
1 Average 0.9997 0.008 48820 0.8478 0.978 37
2 3 1 11 0.8172 0.207 40 6 0.9268 0.270 51
2 3 2 11 0.8172 0.207 40 6 0.9285 0.270 52
2 3 3 11 0.8169 0.207 40 6 0.9227 0.271 48
2 Average 0.8171 0.207 40 0.9260 0.270 50

Split 6
0 119 1 11 0.9996 0.009 22722 6 0.4711 0.727 4
0 119 2 11 0.9998 0.006 59324 6 0.9072 0.599 39
0 119 3 11 0.9998 0.007 37320 6 0.8546 0.688 24
0 Average 0.9997 0.008 39789 0.7443 0.671 22
1 16 1 11 0.9997 0.009 26143 6 0.6517 1.194 7
1 16 2 11 0.9999 0.006 66438 6 0.9076 1.004 39
1 16 3 11 0.9996 0.009 22457 6 0.4862 1.056 4
1 Average 0.9997 0.008 38346 0.6818 1.085 17
2 3 1 11 0.8377 0.190 46 6 0.8494 0.294 23
2 3 2 11 0.8377 0.190 46 6 0.8463 0.296 22
2 3 3 11 0.8377 0.190 46 6 0.8505 0.293 23
2 Average 0.8377 0.190 46 0.8487 0.294 22
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Fig. 1. QSAR models for the cytotoxicity to bacteria Escherichia coli of metal oxide particles for six random splits of the data into the training and test sets.

Table 4
An example of DCW(2) calculation: split 1; SMILES is ‘O = [Zn]’; DCW(2) = -0.1268810.

1Sk W(1Sk) The number of 1Sk
in training set

The number of 1Sk
in test set

O �1.5636269 11 6
= �1.5615161 11 6
[ 1.4991310 11 6
Zn 0.0 0 1
[ 1.4991310 11 6
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represents a suitable tool for QSAR modelling of the pEC50 of the
metal oxide nanoparticles cytotoxicity to bacteriaE. coli. The robust
model (i.e. model without overtraining) is based on data about the
presence of oxygen and double bonds.
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Table 5
Calculation of the metal oxide nanoparticles cytotoxicity to bacteria Escherichia coli by
means of the following model pEC50 = 3.4056 + 0.4000 � DCW(2). The model has
been built up for split 1.

Set SMILES DCW(2) pEC50 (mol/L)

Expr Calc Expr–Calc

Training [Cu] = O �0.1268810 3.200 3.355 �0.155
Training O = [V]O[V] = O �1.8173889 3.140 2.679 0.461
Training O = [Y]O[Y] = O �1.8173889 2.870 2.679 0.191
Training O = [In]O[In] = O �1.8173889 2.810 2.679 0.131
Training O = [Sb]O[Sb] = O �1.8173889 2.640 2.679 �0.039
Training O = [Al]O[Al] = O �1.8173889 2.490 2.679 �0.189
Training O = [Fe]O[Fe] = O �1.8173889 2.290 2.679 �0.389
Training O = [Si] = O �3.2520240 2.200 2.105 0.095
Training O = [Sn] = O �3.2520240 2.010 2.105 �0.095
Training [Co] = O �0.1268810 3.510 3.355 0.155
Training O = [Cr]O[Cr] = O �1.8173889 2.510 2.679 �0.169
Test O = [Zn] �0.1268810 3.450 3.355 0.095
Test O = [Bi]O[Bi] = O �1.8173889 2.820 2.679 0.141
Test O = [Zr] = O �3.2520240 2.150 2.105 0.045
Test O = [Ti] = O �3.2520240 1.740 2.105 �0.365
Test [Ni] = O �0.1268810 3.450 3.355 0.095
Test O = [La]O[La] = O �1.8173889 2.870 2.679 0.191

Table 6
The checking of the models with Y-randomization.

Probe of Y-
scrambling

Split 1
n = 6

Split 2
n = 6

Split 3
n = 6

Split 4
n = 7

Split 5
n = 6

Split 6
n = 6

R2 0.9402 0.9648 0.8363 0.9468 0.9260 0.8487

R2
r 1 0.2270 0.3446 0.4729 0.0243 0.5491 0.0230

R2
r 2 0.2763 0.0539 0.3030 0.1060 0.0030 0.1746

R2
r 3 0.3762 0.4356 0.3670 0.0720 0.0012 0.1954

R2
r 4 0.0701 0.6815 0.0272 0.7143 0.0030 0.1014

R2
r 5 0.0161 0.0810 0.0178 0.0243 0.2331 0.5864

R2
r 6 0.0161 0.3798 0.0860 0.0047 0.5491 0.1837

R2
r 7 0.7544 0.0307 0.0077 0.3846 0.5390 0.0169

R2
r 8 0.4363 0.6747 0.0733 0.1407 0.0140 0.3394

R2
r 9 0.1470 0.0457 0.1165 0.0797 0.0303 0.1229

R2
r 10 0.1049 0.0022 0.0756 0.1589 0.7550 0.1954

R2
r

0.2424 0.2730 0.1547 0.1709 0.2677 0.1939

cR2
p

0.807 0.816 0.753 0.857 0.779 0.742

The R2
r is average for ten probes of the Y-scrambling. The cR2

p (calculated by

cR2
p ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

r

q
) should be larger than 0.5 (Mitra et al., 2010).
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