
 
 

 

  

Abstract—In order to increase the effectiveness of active hand 
prostheses we intend to exploit electromyographic (EMG) 
signals more than in the usual application for controlling one 
degree of freedom (gripper open or closed). Among all the 
numerous muscles that move the fingers, we chose only the 
ones in the forearm, to have a simple way to position only two 
electrodes. We analyze the EMG signals coming from two 
different subjects using a novel integration of ANN and 
wavelet.  We show how to discriminate between more 
movements, five in this study, using our new classifier. Results 
show how the methodology we adopted allows us to obtain  
good accuracy in classifying  the hand postures, and opens the 
way to more functional hand prostheses . 

 

I. INTRODUCTION 
HE target of our research is a feasibility study of a 

new hand prosthesis that could offer more mobility to 
the user without the need of complex control boxes neither 
of surgery to install needles. In fact, to increase the 
effectiveness of hand prostheses, we intend to exploit myo-
electric signals more than in the usual well developed 
application for controlling one degree of freedom of the 
hand (gripper open or closed).  

Imagine we want to discriminate between six movements, 
namely open and close hand, hand pitch up or down, move 
the thumb in abduction or adduction. The resulting 
prosthesis will give the user a more natural grasping 
movement, allowing also to move the wrist. The challenge is 
the possibility to use the same technology of the gripping 
prosthesis to discriminate between more movements [15]. 
We are not discussing here about the mechanical 
construction of the hand; we proposed already some ideas in 
[6, 19]. 

The electric activity of the muscles allows to understand 
whether the patient is willing to move his hand. An 
electromyogram (EMG) is a signal obtained by measuring 
the electrical activity in a muscle. Muscles consist of muscle 
fibers, activated by motoneurons. Impulses from the spinal 
cord arrive to the motoneuron and trigger a group of several 
muscle fibers, called motor unit. The electrical response of a 
motor unit is called motor unit action potential (MUAP). A 
train of MUAP form an EMG signal [14]. There are many 
classes of MUAP in a EMG signal, and our task is not to 
find them out but to globally classify the EMG using the 
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hypothesis that the same MUAPs are summed up when the 
same movement is done, so the EMGs of similar movements 
should show similarities. Those similarities can be exploited 
to build a classifier [8]. 

For prosthetic use we need to apply only surface 
electrodes. The signals detected by surface electrodes are 
more difficult to understand than signals obtained by needle 
electrodes [13]. The surface electrodes are large, so the area 
covered is large and corresponds to the activities of several 
tens of motor units. Since muscles are deep from skin the 
power spectrum of EMG is limited to 500Hz [10, 18]. 

A few papers presenting results in a similar task are 
available. Some have applied fuzzy rules to analyze EMG 
signals, as [1, 2]. Others developed neural networks, as [5]. 
Our work partially originates from Hudgins and co-workers 
[9] who obtained a classifier able to recognize 4 class labels 
with a performance about 90%. In our approach we 
introduce two novel ideas: the position of electrodes and the 
kind of data classification. 

About positioning the electrodes, we decided to set them 
on the lower arm and not on the biceps and triceps muscles 
as used by [9].  

About the classification of the acquired signals we 
introduced techniques of wavelet and autocorrelation to 
extract relevant features able to characterize the signal for 
classification. Our method uses a neural classifier in cascade 
after wavelet analysis. 

Wavelets [3, 4] have been introduced in the area of 
arbitrary functions approximation. An arbitrary function on 
(0, 1) can be represented as a linear combination of waves 
given by sines and cosines, infinitely long. Since we want to 
approximate a function in the interval (0, 1) we choose some 
short waves, i.e. some functions that tend to 0 as x tends to 
infinity. Those functions are called wavelets.  

In wavelet networks, the radial basis functions of RBF-
networks are replaced by wavelets. During the training 
phase, the network weights as well as the degrees of 
freedom (position and scale) of the wavelet functions are 
optimized. [16, 17] have used wavelet networks for signal 
representation and classification applied to the acoustic 
domain. [12] has already approached the EMG domain for a 
different classification problem. 

In the following sections we will discuss our project 
development. We present the characteristics of the EMG 
signals, we illustrate the classification method developed, 
we discuss its role  in the construction of a controller.  
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II. THE EMG SIGNAL ACQUISITION 
The choices about signal acquisition are about the choice 

of the muscles to detect in order to discriminate between the 
movements of the prosthesis and the choice of the electrodes 
to apply 

A. The muscles acting on the hand 
Since we want to use the muscles of the forearm to 

control the prosthesis, we list the most important in Table 1, 
obtained after [7]. 

 
 
TABLE. 1. THE MUSCLES IN THE FOREARM USED TO MOVE THE HAND. 

Muscle Movement Action 
Abductor pollicis 

longus Abduction Abduction of the thumb 
and of the wrist 

Extensor 
digitorum 
communis 

Extension Extension of fingers and 
wrist  

Extensor pollicis 
brevis Extension Extension of thumb and 

wrist abduction  
Extensor pollicis 

longus Extension Extension of thumb and 
wrist abduction 

Extensor indicis Extension Extension of thumb and 
abduction of index  

Extensor digiti 
quinti Extension Extension of the little 

finger 

Flexor digitorum 
sublimis Flexion 

Flexion of articulations 
in wrist, interphalanxes 
and metacarpophalanxes  

Flexor digitorum 
profundus Flexion Flexion of interphalanxes 

articulations  and wrist 
Flexor pollicis 

longus Flexion Flexion of the thumb 

 

B. Kinds of movement for the prosthesis 
Since the hand has too many degrees of freedom (20 

considering only the fingers) and it is impossible to 
reproduce all of them in a simple way, we look only at the 
movements that can allow the patient to manipulate objects 
in a sufficient way. The movements available in commercial 
prosthesis are only two, namely to open or close the hand. 
We will add three more movements, i.e. abduction of the 
thumb, and extension or flexion of the wrist. 

Since the muscles that move the thumb are very deep, we 
will only consider thumb extension and leave the control of 
thumb flexion to an heuristic controller. 

Finally the five movements that we want to discriminate 
are illustrated in Figure 1. 

C. Electrodes and signal acquisition 
The choice of the electrodes has been restricted to the 

ones commercially available for electro-stimulation. A 
conductive gel will reduce the noise and improve the results. 

As said before, we decided to acquire the signals from 
two electrodes installed in the front and back side of the 
lower arm, as indicated in Fig. 2, while the reference 
electrode is applied on the other limb. In this case all the 
muscles acting in the movement are globally considered; the 

signal obtained should contain different patterns for the 
different movements, and our goal will be to characterize 
those patterns [10]. 

   

 
 

Fig. 1. The 5 movements to discriminate: a) wrist extension b)wrist flexion 
c)hand opened d)hand closed e) thumb abduction 

 
The measured signal contains noise and an offset signal; 

moreover not all the sequences are measured properly since 
the electrode is in practice a low-pass filter and distorts same 
spectral components of the signal. The cut frequency for an 
electrode of 5mm diameter  is about 360Hz, for a  20mm 
diameter is about 100Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The position of the electrodes 

III. THE CLASSIFIER OF EMG SIGNALS 

A. Basic design and constraints 
The classifier should output the class label in a time 
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compatible with a natural control loop. According to an 
empirical analysis, the maximum delay, tolerable by the 
user, between the commanded movement generated by the 
signal and the instant when the prosthesis starts moving is 
about 300ms; since the signal acquisition can require 200ms 
(fixed by hardware constraints), the classifier should operate 
in the maximum time of 100ms to output the desired 
movement. 

Our controller will use a pattern recognition approach, as 
illustrated in Fig. 4. It will acquire and classify data acquired 
on a single channel, obtained from 2 electrodes only. 
 

 
 
Fig. 4. – An open loop controller based on pattern recognition. 
 
 

 
The architecture we devised for the classifier is based on 

artificial neural network (NN); namely is fully connected 
multilayer network. The processing time from a trained NN 
is very low, but the time to extract the features from the 
unknown signal should be compatible with the 100ms time 
window, that is the above defined maximum time available 
to remain inside the window of 300ms. For this reason we 
have chosen a set of statistical parameters that are easy and 
fast to compute, and we have separately listed the 
parameters that require more computer time. 

B. Feature extraction 
Before classifying the signal, we extract the following 

features, as already proposed in [9]: 
1. Mean Absolute Value (MAV), where the 

average on the i-segment made of k samples is 
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. This parameter will be used 
also by the controller to set the velocity of 
movement of the prosthesis, since the velocity 
will be linearly correlated to MAV. 

2. Difference between the MAV of two samples  

iii XXX −=Δ +1  
3. Zero count, number of times the signal pass 

through zero. To cut the noise we use a 
threshold of 0.01V, corresponding to a noise of 
4μV amplified 5000 times. The counter of 

zero-passing is incremented if sign of xk is 

different from sign xk+1 and Vxx kk 01.01 ≥− +  

4. Sign Changing; given 3 consecutive samples 

we increment a counter if 1−> kk xx  and 
1+> kk xx  and Vxx kk 01.01 ≥− +  or 

1−< kk xx and 1+< kk xx  and Vxx kk 01.01 ≥− −  
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5. Length of the signal  

The following features also were included in 
our analysis even if, for real time applications, 
they require high performance computers or 
dedicated hardware. We will add them as input 
one at a time after developing networks  with the 
first 5 features to see if they really improve the 
classifier. In Section 4 we see that the first and the 
last features of this list are really important. 

 

1. Autocorrelation coefficient, for a signal with 
finite energy or finite power, computed as 

 
2. STFT (Short-Time Fourier Transform),  

3. Wavelet; they measure the correlation of a 
signal using a principal function that is 
translated and modified in time. Wavelet is a 
series decomposition of the signal in a set of 
functions ψ(t), that are different both in the 
scale factor (s) and in the time shift (σ).  
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C. The network architecture 
The classifier has been devised as a Multi-layered Neural 
Network, whose inputs are the features extracted and whose 
output is the class label 1 through 5. 

In our case the number of input neurons is 5 to 8 for the 
features above discussed. If we divide the time of 
registration, 200 ms, in two segments we doubled the input 
neurons. 

Since a net with one hidden layer is a universal 
approximator, we chosen this basic architecture. To estimate 
the number of neurons in the hidden layer we need a trial 
procedure since there are no general rules to compute it. It 
should be as small as possible to simplify the computation 
and to reduce the risk of overfitting. We have also tried 



 
 

 

different learning algorithms, as the gradient descent with 
Newton or moments, and different transfer functions. To 
find the right number of epochs we used the Early stopping 
criterion. We divided the data in 70% for training and 30% 
for validation, and we continue the training while the error is 
reduced on the validation set, and stop when the error is 
increasing, as illustrated in Fig. 5. 

 
Fig. 5. – The early stopping criterion 
 

We used also another technique, called Weight Decay 
(WD); in the hypothesis of Gaussian distribution of the 
weights, this allows to keep the network weight low and 
therefore to avoid discontinuities in the output [20]. 

 
As transfer function we tried both Tangent and Sigmoid 

functions.  
Finally, we developed a series of experiments using two 

kinds of nets: 
 

a) TYPE 1 NET- Considering that the input data are 
continuous, we can produce a continuous output too, 
and transform the real value into a class label after. In 
this case we need to minimize the output error, given 

as 
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and y is the obtained output.  

b) TYPE 2 NET- Alternatively we can see the classification 
in c classes (here c=5) as the problem of computing 
the probability of a given series on input xn to belong 
to the class tn. 
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In this case we chose to minimize the cross entropy: 
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k. The transfer function 
chosen is sigmoid for the inner layer, softmax 
(normalized exponential) for the output layer (since 
the sum of all the probabilities should give 1). In this 

case the derivative of the error is computed as 
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All the networks have been developed in Matlab version 7. 

IV. EXPERIMENTAL RESULTS 
To collect data we used two volunteers without lesions; 

this may represent a limitation since we will need to repeat 
the experiments on amputees, nevertheless it is a good start 
point for our feasibility study. Two electrodes where applied 
on the lower arm and a third on the wrist to close the electric 
circuit. They were asked to repeat 10 times each of the 
movements, and data have been recorded and labeled. Data 
have been acquired for 300 ms each, with a different 
position of the electrodes lower (CD) or higher (CP) on the 
arm. The sequences of data to elaborate are finally indicated 
in Table 2. 

TABLE 2. THE DATA SETS ACQUIRED FROM 2 PERSONS. 
Volunteer CP CD 

Subject  1 300+300 300 

Subject 2 300+300 300 

 
The signal has been acquired at a frequency of 500Hz and 

amplified with a  gain of 5000. An example is illustrated in 
Fig. 6. 
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Fig. 6. EMG signal in the ten positions of the same movement, same person. 

Data files obtained from the instrument are transformed 
into different Matlab files containing one movement each. 
The separation is automatically obtained squaring the signal 
and setting a threshold. Then we use only the first 200ms of 
the signal for classification, since this is the maximum time 
window we can use to discriminate the intended movements. 

Moreover we split the data sets in three parts:  3/5 of the 
data for training, 1/5 for validation, 1/5 for external testing.  

We systematically built the networks in 4 categories, 
according to the combination of methods used to avoid over-
fitting (validated entropy or regulated entropy) and to the 
error measure ( MSE validated or MSE regulated). Validated 



 
 

 

means using early stopping, regulated means using weight 
decay. 

The number of neurons in the hidden layer has been 
checked between 10 and 30. 

A. performance evaluation 
An important aspect of our classifier is the wavelet 

feature. In Matlab the function CWT ( ) gives the matrix 
represented in Fig. 7 where we see a signal of 500ms for an 
s between 1 and 32; the function CWT() gives back a matrix 
of 32x500. It is difficult to use all those values directly in 
the training, where we need instead a limited number of 
relevant features. So the Matlab solution was discarded. 

 
Fig. 7. – the wavelet representation in Matlab, with s on the y axis and σ on 
the x. Darker colors represent smaller coefficients 
 

To extract the relevant wavelet features we adopted 
instead a solution proposed in [16]. The idea is to train a 
neural net that takes as input the time t and gives back the 
signal s(t). The network has an input layer that uses. After 
the network is trained, the a and b values of the scale and 
shifts associated with the maximum weights of the net are 
used as features for the above discussed classification neural 
net. In practice the two nets are in cascade, and the output of 
the first becomes input to the second. 

We see in Figure 8 the wavelet network. Since it takes 
some time to extract the parameters it will be wise to 
implement the wavelet net in hardware. The weights wi are 
modified during training in such a way to learn x(t). In our 
application we have used 25 neurons.  

We started training the classification network  using data 
coming from both the subjects. In table 3 we report the 
parameters for the network built after wavelet analysis, in 
table 4 the preliminary results for this experiment. 
Performances show the rate of correct classifications. 

 

 
Fig 8 . The wavelet network. 
 

In a first attempt we trained the network using data coming 
from both the subjects. 
 

TABLE. 3. NETWORK PARAMETERS 
Parameter Value 

Windows size 25 
Number of windows 4 

n. Class 5 
Min n. hidden neurons 25 
Max n. Hidden neurons 35 

n. Epochs 1500 
Target Error  0.01 

 
 
 

TABLE. 4. BEST PERFORMANCES OF THE CLASSIFIER ON THE DATA OF TWO 
PERSONS. 

Network Performance Hidden 
neurons 

Entropy + Early Stop 45.27 % 33 
Entropy +WD 55.22 % 25 

MSE + Early Stop 49.3 % 28 
MSE+ WD 56.21 % 33 

 
Those results are not acceptable. To understand why we 

can observe that, in this case, the network should adapt to 
two different subjects and to two different experimental 
setups.  So we changed both the experimental setup and the 
network construction.  In fact  we considered a separate 
network for each single subject, and trained different kinds 
of network architectures to finally chose the network with 
the best performances. The solution with a minor number of 
neurons has been preferred in case of similar performances 
of two networks, to reduce the computation. We also added 
in the input the signal autocorrelation. The results are 
illustrated in Table 5. 

 
TABLE. 5. BEST PERFORMANCES OF THE CLASSIFIER ON THE DATA OF TWO 

PERSONS. 
Data 
from 

ANN method 
used  

Performance Hidden 
neurons 

Subject 1 MSE + WD  86% 15 
Subject 1 Entropy + WD 75% 19 
Subject 2 Entropy + WD 90.16% 22 
Subject 2 Entropy + WD 96.77% 15 

 

We can observe a substantial improvement especially for 
subject 2. We should note that subject 2 is a more trained 
person active in rehabilitation tasks, while subject 1 is an 
occasional user. Moreover we can observe that the number 
of repetition of each movement used in training is only 60; a 
bigger number of training data probably will improve the 
results. 

In comparison to data obtained in other published paper, 
we can make the following considerations: our results are 
statistically better than the ones in [9] that reach 
performances about 90%. 
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V. CONCLUSIONS 
In this paper we have developed a method to classify 

EMG signals into multiple classes. Our target is to reach a 
high  quality of the classification and to use this 
classification stage as a part of a controller for a prosthesis. 
The obtained results are comfortable. Our approach uses a 2-
stage network, where the first net is used together with the 
computation of the features, and extracts the size and shift 
values of the most relevant wavelet present in the signal. 
The second net uses the extracted features to recognize one 
of the five possible movements. 

The results indicate that, after a short training, the user 
can easily control the movement to have high repeatability. 
We may expect that the same can happen also with amputees 
if the muscles of the lower arm are maintained. In this case 
we will obtain a good recognition capability and we may 
expect that some heuristics can help in making a reliable 
controller. 
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